JAWAHarlAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M. Pharmacy (PHARMACOLOGY)

COURSE STRUCTURE AND SYLLABUS

Effective from Academic Year 2017-18 Admitted Batch

I Year – I Semester

<table>
<thead>
<tr>
<th>Category</th>
<th>Course Title</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course I</td>
<td>Advanced Pharmacology – I</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Course II</td>
<td>Clinical Pharmacology and Pharmacotherapeutics</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Course III</td>
<td>Pharmacokinetics And Drug Metabolism</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective I</td>
<td>1. Modern Pharmaceutical Analytical Techniques</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Clinical Research and Pharmacovigilance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective I</td>
<td>1. Pharmacoepidemiology and Pharmacoeconomics</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Drug Regulatory Affairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Herbal Cosmetics Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Pharmaceutical Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Pharmaceutical Formulation Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory I</td>
<td>Advanced Pharmacology- I Lab</td>
<td>25</td>
<td>75</td>
<td>--</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Laboratory II</td>
<td>Clinical Pharmacology and Pharmacotherapeutics Lab</td>
<td>25</td>
<td>75</td>
<td>--</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Seminar I</td>
<td>Seminar</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>16</td>
<td>28</td>
</tr>
</tbody>
</table>

I Year – II Semester

<table>
<thead>
<tr>
<th>Category</th>
<th>Course Title</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course IV</td>
<td>Advanced Pharmacology- II</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Course V</td>
<td>Pharmacological and Toxicological Screening Methods</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Course VI</td>
<td>Principles of Drug Discovery</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective II</td>
<td>1. Quality Use of Medicines</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Principles of Toxicology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective II</td>
<td>1. Stability of Drugs and Dosage Forms</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Biostatistics and Research Methodology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Entrepreneurship Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Clinical Toxicology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Advanced Drug Delivery Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory III</td>
<td>Advanced Pharmacology –II Lab</td>
<td>25</td>
<td>75</td>
<td>--</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Laboratory IV</td>
<td>Advanced Screening Methods and Toxicology Lab</td>
<td>25</td>
<td>75</td>
<td>--</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Seminar II</td>
<td>Seminar</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>16</td>
<td>28</td>
</tr>
</tbody>
</table>
II Year - I Semester

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive Viva-Voce</td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Project work Review I</td>
<td>50</td>
<td>--</td>
<td>24</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

II Year - II Semester

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project work Review II</td>
<td>50</td>
<td>--</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Project Evaluation (Viva-Voce)</td>
<td>--</td>
<td>150</td>
<td>16</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Course Objective: The subject is designed to strengthen the basic knowledge in the field of pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, the subject helps the student to understand the concepts of drug action and mechanism involved.

Course Outcome: Upon completion of the course the student shall be able to:
- Explain the mechanism of drug actions at cellular and molecular level
- Discuss the Pathophysiology and pharmacotherapy of certain diseases
- Understand the adverse effects, contraindications and clinical uses of drugs used in treatment of diseases

UNIT I
Endocrine Pharmacology: Molecular and cellular mechanism of action of hormones such as growth hormone, prolactin, thyroid, insulin and sex hormones Anti-thyroid drugs, Oral hypoglycemic agents, Oral contraceptives, Corticosteroids. Drugs affecting calcium regulation.

UNIT II
Chemotherapy: Cellular and molecular mechanism of actions and resistance of antimicrobial agents such as β-lactams, aminoglycosides, quinolones, Macrolideantibiotics. Antifungal, antiviral, and anti-TB drugs.

UNIT III

UNIT IV
GIT Pharmacology: Antiulcer drugs, Prokinetics, antiemetics, anti-diarrheals and drugs for constipation and irritable bowel syndrome. Chronopharmacology Biological and circadian rhythms, applications of chronotherapy in various diseases like cardiovascular disease, diabetes, asthma, and peptic ulcer.

UNIT V
Free radicals Pharmacology: Generation of free radicals, role of free radicals in etiopathology of various diseases such as diabetes, neurodegenerative diseases and cancer. Protective activity of certain important antioxidant Recent Advances in Treatment: Alzheimer’s disease, Parkinson’s disease, Cancer, Diabetes mellitus.

REFERENCES:
1. The Pharmacological basis of therapeutics- Goodman and Gill man’s
3. Basic and Clinical Pharmacology by B. G -Katzung
7. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B. C. Yu.
8. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists
9. Robbins & Cortan Pathologic Basis of Disease, 9th Ed. (Robbins Pathology)
PHARMAOCOLOGICAL AND TOXICOLOGICAL SCREENING METHODS (Core Course - V)

Course Objective: This subject is designed to impart the knowledge on preclinical evaluation of drugs and recent experimental techniques in the drug discovery and development. The subject content helps the student to understand the maintenance of laboratory animals as per the guidelines, basic knowledge of various in-vitro and in-vivo preclinical evaluation processes.

Course Outcome: Upon completion of the course the student shall be able to,

- Appraise the regulations and ethical requirement for the usage of experimental animals.
- Describe the various animals used in the drug discovery process and good laboratory practices in maintenance and handling of experimental animals.
- Describe the various newer screening methods involved in the drug discovery process.
- Appreciate and correlate the preclinical data to humans.

UNIT I
Laboratory Animals: Common laboratory animals: Description, handling and applications of different species and strains of animals. Transgenic animals: Production, maintenance and applications. Anesthesia and euthanasia of experimental animals. Maintenance and breeding of laboratory animals. CPCSEA guidelines to conduct experiments on animals. Good laboratory practice. Bioassay-Principle, scope and limitations and methods.

UNIT II

UNIT III

UNIT IV

UNIT V
REFERENCES:

1. Biological standardization by J. H. Burn D.J. Finney and I.G. Goodwin
2. Screening methods in Pharmacology by Robert Turner. A
3. Evaluation of drugs activities by Laurence and Bachrach
5. Fundamentals of experimental Pharmacology by M. N. Ghosh
6. Pharmacological experiment on intact preparations by Churchill Livingstone
7. Drug discovery and Evaluation by Vogel H.G.
9. Preclinical evaluation of new drugs by S. K. Guta
14. Rodents for Pharmacological Experiments, Dr. Tapan Kumar chatterjee.
15. Practical Manual of Experimental and Clinical Pharmacology by Bikash Medhi (Author), Ajay Prakash (Author)
PRINCIPLES OF DRUG DISCOVERY (Core Course - VI)

Course Objective: The subject imparts basic knowledge of drug discovery process. This information will make the student competent in drug discovery process.

Course Outcome: Upon completion of the course, the student shall be able to,
- Explain the various stages of drug discovery.
- Appreciate the importance of the role of genomics, proteomics and bioinformatics in drug discovery.
- Explain various targets for drug discovery.
- Explain various lead seeking method and lead optimization.
- Appreciate the importance of the role of computer aided drug design in drug discovery.

UNIT- I

UNIT- II

UNIT-III

UNIT-IV

UNIT-V
QSAR Statistical methods: regression analysis, partial least square analysis (PLS) and other multivariate statistical methods. 3D-QSAR approaches like COMFA and COMSIA Prodrug design- Basic concept, Prodrugs to improve patient acceptability, Drug solubility, Drug absorption, and distribution, sitespecific drug delivery and sustained drug action. Rationale of prodrug design and practical consideration of prodrug design.

REFERENCES
2. Darryl León. Scott Markell. Silico Technologies in Drug Target Identification and Validation. 2006 by Taylor and Francis Group, LLC.

QUALITY USE OF MEDICINES (Core Elective - II)

Course Objective: This course is designed to impart basic knowledge and skills that are required to practice quality use of medicines (QUM) in different healthcare settings and also to promote quality use of medicines, in clinical practice, through evidence-based medicine approach.

Course Outcome: Upon completion of this course it is expected that students shall be able to:
- Understand the principles of quality use of medicines
- Know the benefits and risks associated with use of medicines
- Understand regulatory aspects of quality use of medicines
- Identify and resolve medication related problems
- Promote quality use of medicines
- Practice evidence-based medicines

UNIT I
Introduction to Quality use of medicines (QUM): Definition and Principles of QUM, Key partners and responsibilities of the partners, Building blocks in QMC, Evaluation process in QMC, Communication in QUM, Cost effective prescribing.

UNIT II
Concepts in QUM Evidence based medicine: Definition, concept of evidence based medicine, Approach, and practice of evidence based medicine in clinical settings
Essential drugs: Definition, need, concept of essential drug, National essential drug policy, and list
Rational drug use: Definition, concept and need for rational drug use, Rational drug prescribing, Role of pharmacist in rational drug use.

UNIT III
QUM in various settings: Hospital settings, Ambulatory care/Residential care, Role of health care professionals in promoting the QUM, Strategies to promote the QUM, Impact of QUM on E-health, integrative medicine and multidisciplinary care.
QUM in special population: Pediatric prescribing, Geriatric prescribing, prescribing in pregnancy and lactation, Prescribing in immune compromised and organ failure patients.

UNIT IV
Regulatory aspects of QUM in India: Regulation including scheduling, Regulation of complementary medicines, Regulation of OTC medicines, Professional responsibility of pharmacist, Role of industry in QUM in medicine development.

UNIT V
Medication errors: Definition, categorization and causes of medication errors, Detection, and prevention of medication errors, Role of pharmacist in monitoring and management of medication errors
Pharmacovigilance: Definition, aims and need for pharmacovigilance, Types, predisposing factors, and mechanism of adverse drug reactions (ADRs), Detection, reporting and monitoring of ADRs, Causality assessment of ADRs, Management of ADRs, Role of pharmacist in pharmacovigilance.

REFERENCES:
2. Andrews EB, Moore N. Mann's Pharmacovigilance
3. Dipiro JT, Talbert RL, Yee GC. Pharmacotherapy: A Pathophysiologic Approach
4. Straus SE, Richardson WS, Glasziou P, Haynes RB. Evidence-Based Medicine: How to practice and teach it
5. Cohen MR. Medication Errors
6. Online:
 http://www.rug.nl/research/portal/files/14051541/Chapter_2.pdf
7. Relevant review articles from recent medical and pharmaceutical literature.
PRINCIPLES OF TOXICOLOGY (Core Elective - II)

Course Objective: This subject imparts knowledge on the preclinical safety and toxicological evaluation of drug & new chemical entity. This knowledge will make the student competent in regulatory toxicological evaluation.

Course Outcome: Upon completion of the course, the student shall be able to,
- Explain the various types of toxicity studies.
- Appreciate the importance of ethical and regulatory requirements for toxicity studies.
- Demonstrate the practical skills required to conduct the preclinical toxicity studies.

UNIT I
Basic definition and types of toxicology (general, mechanistic, regulatory and descriptive), Regulatory guidelines for conducting toxicity studies OECD, ICH, EPA and Schedule Y.
OECD principles of Good laboratory practice (GLP) History, concept and its importance in drug development

UNIT II
Acute, sub-acute and chronic-oral, dermal and inhalational studies as per OECD guidelines. Acute eye irritation, skin sensitization, dermal irritation, & dermal toxicity studies. Test item characterization-importance and methods in regulatory toxicology studies

UNIT III
Reproductive toxicology studies, Male reproductive toxicity studies, female reproductive studies (segment I and segment III), teratogenicity studies (segment II) Genotoxicity studies (Ames Test, in vitro and in vivo Micronucleus and Chromosomal aberrations studies) In vivo carcinogenicity studies

UNIT IV
IND enabling studies (IND studies)- Definition of IND, importance of IND, industry perspective, list of studies needed for IND submission. Safety pharmacology studies- origin, concepts and importance of safety pharmacology.
Tier1- CVS, CNS and respiratory safety pharmacology, HERGassay.
Tier2- GI, renal and other studies

UNIT V
Toxicokinetics- Toxicokinetic evaluation in preclinical studies, saturation kinetics Importance and applications of toxicokinetic studies. Alternative methods to animal toxicity testing.

REFERENCES:
3. Drugs from discovery to approval by Rick NG.
5. OECD test guidelines.
STABILITY OF DRUGS AND DOSAGE FORMS (Open Elective - II)

Course Objective: These topics are designed impart a specialized knowledge to preserve the properties of drugs and dosage forms during manufacture storage and shelf life. The understanding of properties and evaluation of stability during storage, by solution and solid state against several factors of degradation

Course Outcome: The students should describe the evaluation of stability of solutions, solids, and formulations against adverse conditions. The students should be able to suggest the measures to retain stability and storage conditions for retaining the efficacy of the products.

UNIT- I
Drug decomposition mechanisms:
1. Hydrolysis and acyltransfers: Nature of reaction, structure and utility, stabilization of Pharmaceutical examples.
2. Oxidation: Nature of oxidation, kinetics of oxidation, oxidation pathways of pharmaceutical, Interest Inhibition of oxidation

UNIT - II
Solid state chemical decomposition: Kinetic of solids state decomposition, Pharmaceutical examples of solid state decomposition, Pure drugs, drug excipient and drug-drug interaction in solid state, methods of stabilization.
Physical stability testing of dosage forms:
1. Solids – tablets, capsules, powder and granules
2. Disperse systems
3. Microbial decomposition

UNIT - III
Identification and quantitative determination of preservatives, Antioxidants, colouring materials, emulsifiers, and stabilizers in Pharmaceutical formulation.
Analysis of drugs from biological samples including, selection of biological sample, extraction of drugs by various methods as LLE, SPE and Membrane filtration. Factors affecting extraction of drugs.

UNIT - IV
General method of analysis to determine the quality of raw materials used in cosmetic industry. .. Indian Standard Specifications (ISI) laid down for sampling and testing of various cosmetics in finished form by the Bureau of Indian Standards.

UNIT - V
Methods of analysis to determine the quality of cosmetics in the finished forms such as Hair care products, Skin care products, Baby care products, Dental products, Personal hygiene products, Colour cosmetics, Ethnic products, Colour makeup preparation, Lipsticks, Hair setting lotions and Eye shadows. Toxicity testing in cosmetics and Safety and Legislation of Cosmetic products.
Stability studies: Concept of stability studies.
a) cGMP& ICH guidelines for Accelerated stability Testing.
b) Interaction of containers & closure Compatibility Testing.
REFERENCE BOOKS:

6. Classification of cosmetics raw materials and adjuncts IS 3958 of Indian Standards Institution (BIS).
7. Cosmetic and toilet goods – methods of sampling IS 3958 of Indian Standards Institution (BIS).
8. Methods of sampling and test for various cosmetics as laid down by Bureau of Indian Standards.
BIOSTATISTICS AND RESEARCH METHODOLOGY (OPEN ELECTIVE - II)

Course Objective: The student shall know the introduction, scope of biostatistics and Research work, calculation and present of the data. It also informs the students, how the present research work writing and correlating.

Course Outcome: The student will be known the Biostatistics arrangement, presentation and formation of tables and charts. They also know the correlation and regression & application of different methods, analysis of data and also learn how to write dissertation, thesis and Research paper.

UNIT I

UNIT II
Measures of central tendency: computation of means, median and mode from grouped and ungrouped data.
Measure of dispersion: computation of variance, standard deviation, standard error and their coefficients.

UNIT III
Measures of Correlation and Regression: Experimental designing, planning of an experiment, replication and randomization. Probit analysis.
Probability rules: Binomial, Poison and Normal distribution.
Hypothesis testing: Student't test, Chi square test, Analysis of Variance (ANOVA): 1-way, 2-way, 3-ways

UNIT IV
Developing a research question, Resources for research question, Literature Review: Traditional Qualitative Review, Meta-Analysis—A Quantitative Review
Preparation of Research Proposal
Variables—Definition of Variable, Types of variables (Dependent and Independent variables, Confounded variables), Measurement of variables, Types of measurement scales and their comparison. Reliability and Validity of Measurements.

UNIT V
The research report paper writing/ thesis writing
Different parts of the research paper
1. Title—Title of project with authors’ name
2. Abstract – Statement of the problem, Background list in brief and purpose and scope
3. Key words
4. Methodology- subject, apparatus, instrumentation and procedure
5. Results – tables, graphs figure and statistical presentation
6. Discussion support or non-support of hypothesis, practical and theoretical implications
7. Conclusion
8. Acknowledgements
9. References
10. Errata
11. Importance of Spell check for entire projects
12. Uses of footnotes

TEXT BOOKS:
1. Deepak Chawla Neena Sondhi, Research Methodology Concepts and Cases, Vikas books publishers
2. Donald H. McBurney -Theresa L. White “Research Methods” (Cengage learning India Pvt. Ltd)

REFERENCE BOOKS:
1. Remington’s Pharmaceutical Sciences
2. Theory & Practice of Industrial Pharmacy by Lachman
3. Statistics for business and economics 3rd edition by Vikas books publications
4. Biostatistics & Computer applications by GN Rao and NK Tiwari
10. Research Methodology by RK Khanna bis and Suvasis Saha
11. Research methods and Quantity methods by G.N.Rao
Course Objective: This course is designed to impart knowledge and skills necessary to train the Students on entrepreneurship management.

Course Outcome: On completion of this course it is expected that students will be able to understand,

- The Role of enterprise in national and global economy
- Dynamics of motivation and concepts of entrepreneurship
- Demands and challenges of Growth Strategies And Networking

UNIT I

UNIT II
Entrepreneur: Entrepreneurial motivation – dynamics of motivation. Entrepreneurial competency – Concepts. Developing Entrepreneurial competencies - requirements and understanding the process of entrepreneurship development, self-awareness, interpersonal skills, creativity, assertiveness, achievement, factors affecting entrepreneur role.

UNIT III

UNIT IV

UNIT V
Preparing Project Proposal to Start on New Enterprise Project work – Feasibility report; Planning, resource mobilization and implementation.

TEXT AND REFERENCE BOOKS:
Course Objective: In the current scenario of accidental, homicidal and suicidal excessive consumption of drugs, pesticides, heavy metals and other poisonings, this elective helps the students to acquire the required knowledge and skills in the management of poisoning.

Course Outcome: At the end of the course the student is equipped with handling the first aid, elimination enhancement and treatment of poisoning and supportive care in poisoning due to
- Pesticides
- Drug over usage
- Heavy metals
- Radiation
- Snakes and anthropod bites
- Food poisoning

The student also gains knowledge in substance abuse and treatment of drug dependence.

UNIT I
General principles involved in the management of poisoning, antidotes and the clinical applications.

UNIT II
Supportive care in clinical toxicology.
Gut decontamination, elimination enhancement and toxicokinetics.

UNIT III
Clinical symptoms and management of acute poisoning with the following agents –
- Pesticide poisoning: organophosphorous compounds, carbamates, organochlorines, pyrethroids.
- Opiates overdose.
- Antidepressants
- Barbiturates and benzodiazepines.
- Alcohol: ethanol, methanol.
- Paracetamol and salicylates.
- Non-steroidal anti-inflammatory drugs.
- Hydrocarbons: Petroleum products and PEG.
- Caustics: inorganic acids and alkalis.
- Radiation poisoning

UNIT IV
Clinical symptoms and management of chronic poisoning with the following agents –
- Heavy metals: Arsenic, lead, mercury, iron, copper
- Plants poisoning. Mushrooms, Mycotoxins.
- Food poisonings
- Envenomations – Arthropod bites and stings.

UNIT V
Substance abuse: Signs and symptoms of substance abuse and treatment of dependence
- CNS stimulants: amphetamine
- Opioids
- CNS depressants
- Hallucinogens: LSD
- Cannabis group
- Tobacco
REFERENCES:
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I Year – II Sem M.Pharm (Pharmacology)
ADVANCED DRUG DELIVERY SYSTEMS (Open Elective II)

Course Objective: The students shall know the pharmacokinetic and pharmacodynamic on the basis of CDSS. They also know the design evaluation and application related to oral, parenteral, transdermal, implants, bioadhesives and targeted drug delivery systems.

Course Outcomes: Students will know the fabrication, design, evaluation and application of above drug delivery systems.

UNIT I
Fundamentals of controlled drug delivery systems, pharmacokinetic and pharmacodynamic basis of controlled drug delivery. Design, fabrication, evaluation and applications of the following controlled releasing systems
a. Controlled release oral drug delivery systems
b. Parenteral controlled release drug delivery systems

UNIT II
Design, fabrication, evaluation, and applications of the following:
 a) Implantable Therapeutic systems
 b) Transdermal delivery systems
 c) Ocular and Intrauterine delivery systems
 d) Vaccine delivery: Delivery systems used to promote uptake, absorption enhancers, oral immunization, controlled release microparticles form vaccine development

UNIT III
Biochemical and molecular biology approaches to controlled drug delivery of
a. Bioadhesive drug delivery systems
b. Nasal drug delivery systems
c. Drug delivery to Colon

UNIT IV
Biochemical and molecular biology approaches to control drug delivery of
a. Liposomes
b. Niosomes
c. Microspheres
d. Nanoparticles
e. Resealed erythrocytes

UNIT V
Drug targeting to particular organs
a. Delivery to lungs
b. Delivery to the brain and problems involved
c. Drug targeting in neoplasams

TEXT BOOKS:
 d. Targeted and Controlled Drug Delivery (Novel carrier systems) by S. P. Vyas and Khar.
 e. Modern Pharmaceutics by Gilbert S. Banker and Christopher T. Rhodes.
 f. Advances in Drug Delivery, Vol 1, 2, 3 by Y. Madhusudan Rao, A. V. Jithan
 g. Oral Drug Delivery Technology, 2nd ed, by Aukunuru Jithan
List of Experiments
1. To record the dose response curve of Histamine using isolated guinea-pig ileum preparation.
3. To carry out bioassay of Histamine using isolated guinea-pig ileum preparation by interpolation method.
4. To carry out bioassay of Histamine using guinea-pig ileum preparation by three point method.
5. To carry out bioassay of Histamine using guinea-pig ileum preparation by four point method.
6. Effect of drugs on chick/rat mean arterial blood pressure (MABP) by using Condon’s mercury manometer.
7. Effect of drugs on perfused frog heart
List of Experiments
Study of theory, principle, procedure involved, and interpretation of given results for the following experiments:
1. Analgesic property of drug using analgesiometer.
3. Anticonvulsant activity of drugs using maximal electroshock and pentylenetetrazole methods.
4. Antidepressant activity of drugs using pole climbing apparatus and pentobarbitone induced sleeping time methods.
5. Locomotor activity evaluation of drugs using actophotometer and rotorod.
6. Cardiotonic activity of drugs using isolated frog heart and mammalian heart preparations.
7. Antidiabetic activity using rats / mice.
8. Hepatoprotective activity
9. Anti ulcer activity
10. Antioxidant activity
11. Toxicity studies as per OECD guidelines.
12. Functional observation battery tests (modified Irwin test)