I Year – II Semester

<table>
<thead>
<tr>
<th>Category</th>
<th>Course Title</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course IV</td>
<td>Coding Theory and Techniques</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Course V</td>
<td>Digital Signal Processors and Architectures</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Course VI</td>
<td>Wireless Communications and Networks</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective III</td>
<td>Speech Signal Processing
Biomedical Signal Processing
Radar Signal Processing</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective IV</td>
<td>Network Security And Cryptography
Wireless MIMO Communications.
Optical Communications Technology</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Open Elective II</td>
<td>Image and Video Processing
Software Defined Radio
Adhoc Wireless Networks</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory II</td>
<td>Advanced Communications Lab</td>
<td>25</td>
<td>75</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Seminar II</td>
<td>Seminar</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>24</td>
<td>8</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech. – I Year –II Sem (ECE /DECE/DECS)

CODING THEORY AND TECHNIQUES

UNIT – I:
Coding for Reliable Digital Transmission and storage
Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.

Linear Block Codes: Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT - II:
Cyclic Codes: Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding ,Cyclic Hamming Codes, Shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT – III:
Convolutional Codes: Encoding of Convolutional Codes, Structural and Distance Properties, maximum likelihood decoding, Sequential decoding, Majority-logic decoding of Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

UNIT – IV:
Turbo Codes
LDPC Codes- Codes based on sparse graphs, Decoding for binary erasure channel, Log-likelihood algebra, Brief propagation, Product codes, Iterative decoding of product codes, Concatenated convolutional codes- Parallel concatenation, The UMTS Turbo code, Serial concatenation, Parallel concatenation, Turbo decoding

UNIT - V:
Space-Time Codes
Introduction, Digital modulation schemes, Diversity, Orthogonal space- Time Block codes, Alamouti’s schemes, Extension to more than Two Transmit Antennas, Simulation Results, Spatial Multiplexing: General Concept, Iterative APP Preprocessing and Per-layer Decoding, Linear Multilayer Detection, Original BLAST Detection, QL Decomposition and Interface Cancellation, Performance of Multi – Layer Detection Schemes, Unified Description by Linear Dispersion Codes.

TEXT BOOKS:

REFERENCE BOOKS:
2. Digital Communications-Fundamental and Application - Bernard Sklar, PE.
4. Introduction to Error Control Codes-Salvatore Gravano
UNIT-I:
Introduction to Digital Signal Processing: Introduction, A digital Signal – Processing system, the sampling process, Discrete time sequences, Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), linear time-invariant systems, Digital filters, Decimation and interpolation.
Architectures for Programmable DSP devices: Basic Architectural features, DSP computational building blocks, Bus Architecture and Memory, Data addressing capabilities, Address generation UNIT, programmability and program execution, speed issues, features for external interfacing.

UNIT-II:
Programmable Digital Signal Processors: Commercial Digital signal-processing Devices, Data Addressing modes of TMS320C54XX processors, memory space of TMS320C54XX processors, program control, TMS320C54XX instructions and programming, On-Chip peripherals, Interrupts of TMS320C54XX processors, Pipeline operation of TMS320C54XX processors.

UNIT-III:
Architecture of ARM Processors: Introduction to the architecture, Programmer’s model- operation modes and states, registers, special registers, floating point registers, Behaviour of the application program status register(APSRR)-Integer status flags, Q status flag, GE bits, Memory system-Memory system features, memory map, stack memory, memory protection unit (MPU), Exceptions and Interrupts-what are exceptions?, nested vectored interrupt controller(NVIC), vector table, Fault handling, System control block (SCB), Debug, Reset and reset sequence.
Technical Details of ARM Processors: General information about Cortex-M3 and cortex M4 processors-Processor type, processor architecture, instruction set, block diagram, memory system, interrupt and exception support, Features of the cortex-M3 and Cortex-M4 Processors-Performance, code density, low power, memory system, memory protection unit, interrupt handling, OS support and system level features, Cortex-M4 specific features, Ease of use, Debug support, Scalability, Compatibility.

UNIT-IV:
Instruction SET: Background to the instruction set in ARM Cortex-M Processors, Comparison of the instruction set in ARM Cortex-M Processors, understanding the assembly language syntax, Use of a suffix in instructions, Unified assembly Language (UAL), Instruction set, Cortex-M4-specific instructions, Barrel shifter, Accessing special instructions and special registers in Programming.

UNIT-V:
Floating Point Operations: About Floating Point Data,Cortex-M4 Floating Point Unit (FPU)-overview, FP registers overview, CPACR register, Floating point register bank, FPSCR, FPU->FPCCR, FPU->FPCAR, FPU->FPDSCR, FPU->MVFR0, FPU->MVFR1.
ARM Cortex-M4 and DSP Applications: DSP on a microcontroller, Dot Product example, writing optimised DSP code for the Cortex-M4-Biquad filter, Fast Fourier transform, FIR filter.

TEXTBOOKS:

REFERENCE:
UNIT -I:

UNIT –II:

UNIT –III:
Mobile Radio Propagation: Small –Scale Fading and Multipath : Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke's model for flat fading, spectral shape due to Doppler spread in Clarke's model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

UNIT -IV:

UNIT -V:
Wireless Networks: Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11,IEEE 802.11 Medium Access Control, Comparision of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, Hiper Lan, WLL.

TEXT BOOKS:

REFERENCE BOOKS:
2. Wireless Digital Communications – Kamilo Feher, 1999, PHI.
SPEECH SIGNAL PROCESSING
(Core Elective –III)

UNIT –I:

UNIT –II:
Time Domain Models for Speech Processing: Introduction- Window considerations, Short time energy and average magnitude Short time average zero crossing rate, Speech Vs Silence discrimination using energy and zero crossing, Pitch period estimation using a parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function.

UNIT –III:

UNIT –IV:

UNIT–V:
Automatic Speech & Speaker Recognition: Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System, Continuous digit Recognition System
Hidden Markov Model (HMM) for Speech: Hidden Markov Model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMS,
Speaker Recognition: Recognition techniques, Features that distinguish speakers, Speaker Recognition Systems: Speaker Verification System, Speaker Identification System.

TEXT BOOKS:

REFERENCE BOOKS:
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech. – I Year –II Sem (ECE /DECE/DECS)

BIOMEDICAL SIGNAL PROCESSING
(Core Elective –III)

UNIT -I:
Random Processes
Stationary random process, Ergodicity, Power spectral density and autocorrelation function of random processes. Noise power spectral density analysis, Noise bandwidth and noise figure of systems.

UNIT -II:
Data Compression Techniques: Lossy and Lossless data reduction Algorithms. ECG data compression using Turning point, AZTEC, CORTEC, Huffman coding, vector quantisation, DICOM Standards

UNIT -III:

UNIT -IV:

UNIT -V:

TEXT BOOKS:

REFERENCE BOOKS:
UNIT I:

UNIT II:

UNIT III:

UNIT IV:
Pulse Compression in Radar Signals: Introduction, Significance, Types, Linear FM Pulse Compression—Block Diagram, Characteristics, Reduction of Time Side lobes, Stretch Techniques, Generation and Decoding of FM Waveforms—Block Schematic and Characteristics of Passive System, Digital Compression, SAW Pulse Compression.

UNIT V:
Phase Coding Techniques: Principles, Binary Phase Coding, Barker Codes, Maximal Length Sequences (MLS/LRS/PN), Block Diagram of a Phase Coded CW Radar. Poly Phase Codes: Frank Codes, Costas Codes, Non-Linear FM Pulse Compression, Doppler Tolerant PC Waveforms—Short Pulse, Linear Period Modulation (LPM/HFM), Sidelobe Reduction for Phase Coded PC Signals.

TEXT BOOKS:

REFERENCE BOOKS:
UNIT -I:
Modern Techniques: Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles and Modes of operations.

UNIT -II:
Conventional Encryption: Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation.

UNIT -III:
Number Theory: Prime and Relatively prime numbers, Modular arithmetic, Fermat’s and Euler’s theorems, Testing for primality, Euclid’s Algorithm, the Chinese remainder theorem, Discrete logarithms.

UNIT -IV:
Hash and Mac Algorithms: MD File, Message digest Algorithm, Secure Hash Algorithm, RIPEMD-160, HMAC.
Authentication Applications: Kerberos, X.509 directory Authentication service.
Electronic Mail Security: Pretty Good Privacy, S/MIME.

UNIT –V:
Intruders, Viruses and Worms: Intruders, Viruses and Related threats.
Fire Walls: Fire wall Design Principles, Trusted systems.

TEXT BOOKS:

REFERENCE BOOKS:
1. Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
5. Introduction to Cryptography, Buchmann, Springer.
UNIT I:
Fading Channels and Diversity Techniques: Wireless channels – Error/Outage probability over fading channels – Diversity techniques – Channel coding as a means of time diversity – Multiple antennas in wireless communications.

UNIT II:
Capacity and Information Rates of MIMO Channels: Capacity and Information rates of noisy, AWGN and fading channels – Capacity of MIMO channels – Capacity of non-coherent MIMO channels – Constrained signaling for MIMO communications.

UNIT III:
Space-Time Block and Trellis Codes: Transmit diversity with two antennas: The Alamouti scheme – Orthogonal and Quasi-orthogonal space-time block codes – Linear dispersion codes – Generic space-time trellis codes – Basic space-time code design principles – Representation of space-time trellis codes for PSK constellation – Performance analysis for space-time trellis codes – Comparison of space-time block and trellis codes.

UNIT IV:
Concatenated Codes and Iterative Decoding: Development of concatenated codes – Concatenated codes for AWGN and MIMO channels – Turbo coded modulation for MIMO channels – Concatenated space-time block coding.

UNIT V:
Space-Time Coding for Frequency Selective Fading Channels: MIMO frequency-selective channels – Capacity and Information rates of MIMO FS fading channels – Space-time coding and Channel detection for MIMO FS channels – MIMO OFDM systems.

TEXT BOOKS

REFERENCES

UNIT –I
Signal propagation in Optical Fibers:

UNIT –II:
Fiber Optic Components for Communication & Networking:
Couplers, Isolators and Circulators, Multiplexers, Bragg Gratings, Fabry-Perot Filters, Mach Zender Interferometers, Arrayed Waveguide Grating, Tunable Filters, High Channel Count Multiplexer Architectures, Optical Amplifiers, Direct and External Modulation Transmitters, Pump Sources for Amplifiers, Optical Switches and Wavelength Converters.

UNIT –III:
Modulation and Demodulation:

UNIT -IV:
Transmission System Engineering
System Model, Power Penalty in Transmitter and Receiver, Optical Amplifiers, Crosstalk and Reduction of Crosstalk, Cascaded Filters, Dispersion Limitations and Compensation Techniques.

UNIT –V:
Fiber Non-Linearities and System Design Considerations
Limitation in High Speed and WDM Systems due to Non-linearities in Fibers, Wavelength Stabilization against Temperature Variations, Overall System Design considerations – Fiber Dispersion, Modulation, Non-Linear Effects, Wavelengths, All Optical Networks.

TEXT BOOKS:

REFERENCE BOOKS:
IMAGE AND VIDEO PROCESSING
(Open Elective-II)

UNIT –I:
Fundamentals of Image Processing and Image Transforms: Basic steps of Image Processing System Sampling and Quantization of an image, Basic relationship between pixels.
Image Segmentation: Segmentation concepts, Point, Line and Edge Detection, Thresholding, Region based segmentation.

UNIT –II:
Frequency domain methods: Basics of filtering in frequency domain, Image smoothing, Image sharpening, Selective filtering.

UNIT –III:
Image Compression: Image compression fundamentals - Coding Redundancy, Spatial and Temporal redundancy, Compression models: Lossy & Lossless, Huffman coding, Bit plane coding, Transform coding, Predictive coding, Wavelet coding, Lossy Predictive coding, JPEG Standards.

UNIT -IV:

UNIT –V:
2-D Motion Estimation: Optical flow, General Methodologies, Pixel Based Motion Estimation, Block-Matching Algorithm, Mesh based Motion Estimation, Global Motion Estimation, Region based Motion Estimation, Multi resolution motion estimation, Waveform based coding, Block based transform coding, Predictive coding, Application of motion estimation in Video coding.

TEXT BOOKS:

REFRENCE BOOKS:
3. Digital Video Processing – A Murat Tekalp, PERSON, 2010
SOFTWARE DEFINED RADIO
(Open Elective-II)

UNIT -I:

UNIT -II:
Profile and Radio Resource Management : Communication Profiles- Introduction, Communication Profiles, Terminal Profile, Service Profile, Network Profile, User Profile, Communication Profile Architecture, Profile Data Structure, XML Structure, Distribution of Profile Data, Access to Profile Data, Management of Communication Profiles, Communication Classmarks, Dynamic Classmarks for Reconfigurable Terminals, Compression and Coding, Meta Profile Data

UNIT -III:

UNIT -IV:
Reconfiguration of the Network Elements : Introduction, Reconfiguration of Base Stations and Mobile Terminals, Abstract Modelling of Reconfigurable Devices, the Role of Local Intelligence in Reconfiguration, Performance Issues, Classification and Rating of Reconfigurable Hardware, Processing Elements, Connection Elements, Global Interconnect Networks, Hierarchical Interconnect Networks, Installing a New Configuration, Applying Reconfiguration Strategies, Reconfiguration Based on Comparison, Resource Recycling, Flexible Workload Management at the Physical Layer, Optimised Reconfiguration, Optimisation Parameters and Algorithms, Optimization Algorithms, Specific Reconfiguration Requirements, Reconfiguring Base Stations, Reconfiguring Mobile Terminals

UNIT -V:

TEXT BOOKS:

REFERENCE BOOKS:
UNIT - I:
Wireless Local Area Networks

UNIT - II:
MAC Protocols

UNIT - III:
Routing Protocols

UNIT – IV:
Transport Layer Protocols

UNIT – V:
Quality of Service in Ad Hoc Wireless Networks:

TEXT BOOKS:

REFERENCE BOOKS
1. Wireless Communication Technology- Roy Blake, CENGAGE, 2012
Note:

A. Minimum of 10 Experiments have to be conducted
B. All Experiments may be Simulated using MATLAB and to be verified using related training kits.

1. Measurement of Bit Error Rate using Binary Data
2. Determination of output of convolution Encoder for a given sequence
3. Determination of output of convolution Decoder for a given sequence
4. Efficiency of Direct Sequence Spread Spectrum Technique
5. Simulation of Frequency Hopping (FH) Spread- Spectrum
6. Implementation of optimum receiver for the AWGN channel.
8. Design of FSK system
9. BPSK Modulation and Demodulation techniques
10. DQPSK Modulation and Demodulation techniques
11. 8-QAM Modulation and Demodulation techniques
12. OFDM Transceiver design
13. Performance evaluation of CDMA system