JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.TECH. ELECTRONICS AND COMMUNICATION ENGINEERING IV YEAR COURSE STRUCTURE & SYLLABUS (R16)

S.No.	Course Code	Course Title		Т	Р	Credits
1	EC701PC	Microwave Engineering		0	0	4
2		Professional Elective - II	Professional Elective - II 3 0 0		0	3
3		Professional Elective - III 3 0 (0	3	
4		Professional Elective - IV 3		0	0	3
5	EC702PC	VLSI Design	4	0	0	4
6	EC703PC	VLSI and E-CAD Lab	0	0	3	2
7	EC704PC	Microwave Engineering Lab	0	0	3	2
8	EC705PC	Industry Oriented Mini Project	0	0	3	2
9	EC706PC	Seminar	0	0	2	1
		Total Credits	17	0	11	24

Applicable From 2016-17 Admitted Batch

IV YEAR I SEMESTER

IV YEAR II SEMESTER

S.No.	Course Code	Course Title	L	Т	Р	Credits
1		Open Elective – III		0	0	3
2		Professional Elective -V	3	0	0	3
3		Professional Elective -VI		0	0	3
4	EC801PC	Major Project	0	0	30	15
		Total Credits	9	0	30	24

Professional Elective – I

EC611PE	Computer Organization and Operating System
EC612PE	Digital Image Processing
EC613PE	Spread Spectrum Communications
EC614PE	Digital system Design

Professional Elective – II

EC721PE	Computer Networks
EC722PE	FPGA Programming
EC723PE	Coding Theory and Techniques
EC724PE	Soft Computing Techniques

Professional Elective – III

EC731PE	Wireless Communications and Networks
EC732PE	Internet of Things
EC733PE	Radar Systems
EC734PE	Embedded Sytem Design

Professional Elective – IV

EC741PE	Optimization Techniques
EC742PE	Object Oriented Programming
EC743PE	Electronic Measurements and Instrumentation
EC744PE	Artificial Intelligence

Professional Elective – V

EC851PE	Network Security and Cryptography
EC852PE	System Design Using FPGAs
EC853PE	Optical Communications
EC854PE	Machine Learning

Professional Elective – VI

EC861PE	Actuators and Robot Systems
EC862PE	Analog CMOS IC Design
EC863PE	Global Positioning System
EC864PE	Computer Vision

*Open Elective subjects' syllabus is provided in a separate document.

***Open Elective** – Students should take Open Electives from the List of Open Electives Offered by Other Departments/Branches Only.

Ex: - A Student of Mechanical Engineering can take Open Electives from all other departments/branches except Open Electives offered by Mechanical Engineering Dept.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD LIST OF OPEN ELECTIVES OFFERED BY VARIOUS DEPARTMENTS FOR B.TECH. III AND IV YEARS

S.	Name of the Department	Open Elective – I	Open Elective – II
No.	Offering Open Electives	(Semester – V)	(Semester – VI)
1	Aeronautical Engg.	AE511OE: Introduction	AE621OE: Introduction to
		to Space Technology	Aerospace Engineering
2	Automobile Engg.	CE511OE: Disaster	MT621OE: Data Structures
		Management	MT622OE: Artificial
		MT512OE: Intellectual	Neural Networks
		Property Rights	
3	Biomedical Engg.	BM511OE: Reliability	BM621OE: Medical
		Engineering	Electronics
4	Civil Engg.	CE511OE: Disaster	CE621OE: Remote
		Management.	Sensing and GIS
			CE622OE: Geo-
			Informatics
			CE623OE: Intellectual
			Property Rights
5	Civil and Environmental	CE511OE: Disaster	CN621OE: Environmental
	Engg.	Management	Impact Assessment
			CE623OE: Intellectual
			Property Rights
6	Computer Science and Engg.	CS511OE: Operating	CS621OE: Java
	/ Information Technology	Systems	Programming
		CS512OE: Database	CS622OE: Software
		Management Systems	Testing Methodologies
_			CS623OE: Cyber Security
1	Electronics and	EC511OE: Principles of	EC621OE: Principles of
	Communication Engg. /	Electronic	Computer Communications
	Electronics and Telematics	Communications	and Networks
8	Electronics and Computer	EM511OE: Scripting	EM621OE: Soft
	Engg.	Languages	Computing Techniques
9	Electrical and Electronics	EE511OE: Non-	EE621OE: Design
	Engg.	Conventional Power	Estimation and Costing of
		Generation	Electrical Systems
		EE512OE: Electrical	EE622OE: Energy Storage
		Engineering Materials	Systems
		EE513OE:	EE623OE: Introduction to
		Nanotechnology	Mechatronics
10	Electronics and	EI511OE: Electronic	EI621OE: Industrial
	Instrumentation Engg.	Measurements and	Electronics
		Instrumentation	
11	Mechanical Engg.	ME511OE: Optimization	ME621OE: World Class
		Techniques	Manufacturing
		ME512OE: Computer	ME622OE: Fundamentals
		Graphics	of Robotics
		ME513OE: Introduction	ME623OE: Fabrication

		to Mechatronics	Processes
		ME514OE	110003505
		Fundamentals of	
		Mechanical Engineering	
12	Mechanical Engg (Material	NT5110E: Fabrication	NT621OE: Introduction to
12	Science and	Processes	Material Handling
	Nanotechnology)	NT512OE: Non	NT622OE: Non-
		destructive Testing	Conventional Energy
		Methods	Sources
		NT5130E	NT6230E: Robotics
		Fundamentals of	
		Engineering Materials	
13	Mechanical Engg	MT5110E: Analog and	MT6210E: Data Structures
10	(mechatronics)	Digital I C. Applications	MT622OE: Artificial
	(MT512OE: Intellectual	Neural Networks
		Property Rights	MT623OE: Industrial
		MT513OE: Computer	Management
		Organization	
14	Metallurgical and Materials	MM5110E: Materials	MM621OE: Science and
	Engg.	Characterization	Technology of Nano
		Techniques	Materials
		1	MM622OE: Metallurgy of
			Non Metallurgists
15	Mining Engg.	MN5110E: Introduction	MN621OE: Coal
		to Mining Technology	Gasification, Coal Bed
			Methane and Shale Gas
16	Petroleum Engg.	PE511OE: Materials	PE621OE: Energy
		Science and Engineering	Management and
		PE512OE: Renewable	Conservation
		Energy Sources	PE622OE: Optimization
		PE513OE:	Techniques
		Environmental	PE623OE:
		Engineering	Entrepreneurship and
			Small Business Enterprises

S.	Name of the Department	Open Elective –III
No.	Offering Open Electives	(Semester – VIII)
1	Aeronautical Engg.	AE831OE: Air Transportation Systems
		AE832OE: Rockets and Missiles
2	Automobile Engg.	AM831OE: Introduction to Mechatronics
		AM832OE: Microprocessors and Microcontrollers
3	Biomedical Engg.	BM831OE: Telemetry and Telecontrol
		BM832OE: Electromagnetic Interference and
		Compatibility
4	Civil Engg.	CE831OE: Environmental Impact Assessment
		CE832OE: Optimization Techniques in Engineering
		CE833OE: Entrepreneurship and Small Business
		Enterprises
5	Civil and Environmental	CN831OE: Remote Sensing and GIS
	Engg.	CE833OE: Entrepreneurship and Small Business

		Enterprises
6	Computer Science and	CS831OE: Linux Programming
	Engg. / Information	CS832OE: R Programming
	Technology	CS833OE: PHP Programming
7	Electronics and	EC831OE: Electronic Measuring Instruments
	Communication Engg. /	
	Electronics and Telematics	
	Engg.	
8	Electronics and Computer	EM831OE: Data Analytics
	Engg.	
9	Electrical and Electronics	EE831OE: Entrepreneur Resource Planning
	Engg.	EE832OE: Management Information Systems
		EE833OE: Organizational Behaviour
10	Electronics and	EI831OE: Sensors and Transducers,
	Instrumentation Engg.	EI832OE: PC Based Instrumentation
11	Mechanical Engg.	ME831OE: Total Quality Management
		ME832OE: Industrial Safety, Health, and
		Environmental Engineering
		ME833OE: Basics of Thermodynamics
		ME834OE: Reliability Engineering
12	Mechanical Engg. (Material	NT831OE: Concepts of Nano Science And Technology
	Science and	NT832OE: Synthesis of Nanomaterials
	Nanotechnology)	NT833OE: Characterization of Nanomaterials
13	Mechanical Engg.	MT831OE: Renewable Energy Sources
	(mechatronics)	MT832OE: Production Planning and Control
		CE833OE: Entrepreneurship and Small Business
		Enterprises
14	Metallurgical and Materials	MM831OE: Design and Selection of Engineering
	Engg.	Materials
15	Mining Engg.	MN831OE: Solid Fuel Technology
		MN832OE: Health & Safety in Mines
16	Petroleum Engg.	PE831OE: Disaster Management
		PE832OE: Fundamentals of Liquefied Natural Gas
		PE833OE: Health, Safety and Environment in
		Petroleum Industry

***Open Elective** – Students should take Open Electives from List of Open Electives Offered by Other Departments/Branches Only.

Ex: - A Student of Mechanical Engineering can take Open Electives from all other departments/branches except Open Electives offered by Mechanical Engineering Dept.

MICROWAVE ENGINEERING

B.Tech. IV Year I Sem. Course Code: EC701PC/ET743PE

L	Т	Р	С
4	0	0	4

Course Objectives: This is a core course in Microwave Communications domain, and covers contents related to Microwave Theory and Techniques. The main objectives of the course are:

- To get familiarized with microwave frequency bands, their applications and to understand the limitations and losses of conventional tubes at these frequencies.
- To develop the theory related to microwave transmission lines, and to determine the characteristics of rectangular waveguides, microstrip lines, and different types of waveguide components and ferrite devices.
- To distinguish between different types of microwave tubes, their structures and principles of microwave power generation, and to characterize their performance features and applications at tube levels as well as with solid state devices.
- To impart the knowledge of Scattering Matrix, its formulation and utility, and establish the S-Matrix for various types of microwave junctions.
- To understand the concepts of microwave measurements, identify the equipment required and precautions to be taken, and get familiarized with the methods of measurement of microwave power and various other microwave parameters.

Course Outcomes: Having gone through this course covering different aspects of microwave theory and techniques, the students would be able to

- To analyze completely the rectangular waveguides, their mode characteristics, and design waveguides for solving practical microwave transmission line problems.
- To distinguish between the different types of waveguide and ferrite components, explain their functioning and select proper components for engineering applications.
- To distinguish between the methods of power generation at microwave frequencies, derive the performance characteristics of 2-Cavity and Relfex Klystrons, Magnetrons, TWTs and estimate their efficiency levels, and solve related numerical problems
- To realize the need for solid state microwave sources, understand the concepts of TEDs, RWH Theory and explain the salient features of Gunn Diodes and ATT Devices.
- To establish the properties of Scattering Matrix, formulate the S-Matrix for various microwave junctions, and understand the utility of S-parameters in microwave component design.
- To set up a microwave bench, establish the measurement procedure and conduct the experiments in microwave lab for measurement of various microwave parameters.

UNIT - I

Microwave Transmission Lines - I: Introduction, Microwave Spectrum and Bands, Applications of Microwaves. Rectangular Waveguides – Solution of Wave Equations in

Rectangular Coordinates, TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Filter Characteristics, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross-section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations, Power Transmission, Impossibility of TEM Mode. Illustrative Problems, Micro strip Lines– Introduction, Z_0 Relations, Effective Dielectric Constant.

UNIT - II

Cavity Resonators– Introduction, Rectangular Cavities, Dominant Modes and Resonant Frequencies, Q Factor and Coupling Coefficients, Illustrative Problems

Waveguide Components and Applications: Coupling Mechanisms – Probe, Loop, Aperture types. Waveguide Discontinuities – Waveguide Windows, Tuning Screws and Posts, Matched Loads. Waveguide Attenuators – Different Types, Resistive Card and Rotary Vane Attenuators; Waveguide Phase Shifters – Types, Dielectric and Rotary Vane Phase Shifters, Waveguide Multiport Junctions – E plane and H plane Tees, Magic Tee. Directional Couplers – 2 Hole, Bethe Hole types, Illustrative Problems

Ferrites– Composition and Characteristics, Faraday Rotation, Ferrite Components – Gyrator, Isolator, Circulator.

UNIT - III

Microwave Tubes: Limitations and Losses of conventional Tubes at Microwave Frequencies, Microwave Tubes – O Type and M Type Classifications, O-type Tubes : 2 Cavity Klystrons – Structure, Reentrant Cavities, Velocity Modulation Process and Applegate Diagram, Bunching Process and Small Signal Theory – Expressions for O/P Power and Efficiency. Reflex Klystrons – Structure, Velocity Modulation and Applegate Diagram, Mathematical Theory of Bunching, Power Output, Efficiency, Oscillating Modes and O/P Characteristics, Illustrative Problems.

Helix TWTs: Significance, Types and Characteristics of Slow Wave Structures; Structure of TWT and Amplification Process (qualitative treatment), Suppression of Oscillations, Gain Considerations.

UNIT - IV

M-Type Tubes:

Introduction, Cross-field Effects, Magnetrons – Different Types, Cylindrical Traveling Wave Magnetron – Hull Cut-off and Hartree Conditions, Modes of Resonance and PI-Mode Operation, Separation of PI-Mode, o/p characteristics, Illustrative Problems

Microwave Solid State Devices: Introduction, Classification, Applications. TEDs – Introduction, Gunn Diodes – Principle, RWH Theory, Characteristics, Modes of Operation - Gunn Oscillation Modes, Introduction to Avalanche Transit Time Devices.

UNIT - V

Scattering Matrix– Significance, Formulation and Properties, S Matrix Calculations for -2 port Junctions, E plane and H plane Tees, Magic Tee, Circulator and Isolator, Illustrative Problems.

Microwave Measurements: Description of Microwave Bench – Different Blocks and their Features, Errors and Precautions, Microwave Power Measurement, Bolometers. Measurement of Attenuation, Frequency. Standing Wave Measurements – Measurement of Low and High VSWR, Cavity Q, Impedance Measurements.

TEXT BOOKS:

- 1. Microwave Devices and Circuits Samuel Y. Liao, Pearson, 3rd Edition, 2003.
- 2. Microwave Principles Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, CBS Publishers and Distributors, New Delhi, 2004.

REFERENCES:

- 1. Foundations for Microwave Engineering R.E. Collin, IEEE Press, John Wiley, 2nd Edition, 2002.
- 2. Microwave Engineering G.S. Raghuvanshi, Cengage Learning India Pvt. Ltd., 2012.
- 3. Microwave Engineering Passive Circuits Peter A. Rizzi, PHI, 1999.
- 4. Microwave Engineering David M. Pozar, John Wiley & Sons (Asia) Pvt Ltd., 1989, 3r ed., 2011 Reprint.

COMPUTER NETWORKS (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year I Sem. Course Code: ET702PC/EC721PE

Course Objectives:

- To introduce the fundamental various types of computer networks.
- To demonstrate the TCP/IP and OSI models with merits and demerits.
- To explore the various layers of OSI Model.
- To introduce UDP and TCP Models.
- To have the concept of different routing techniques for data communications.

Course Outcomes:

- Students should understand and explore the basics of Computer Networks and Various Protocols. He/ She will be in a position to understand the World Wide Web concepts.
- Students will be in a position to administrate a network and flow of information further he/she can understand easily the concepts of network security, Mobile and ad hoc networks.

UNIT - I

Introduction to Networks: Internet, Protocols and Standards, the OSI Model, Layers in OSI Model, TCP/IP Suite, Addressing.

Physical Layer: Multiplexing, Transmission Media, Circuit Switched Networks, Datagram Networks, and Virtual Circuit Networks.

UNIT - II

Data Link Layer: Introduction, Checksum, Framing, Flow and Error Control, Noiseless Channels, Noisy Channels, Random Access Controlled Access, Channelization, IEEE Standards, Ethernet, Giga-Bit Ethernet, Wireless LANs, SONET-SDH, Frame Relay and ATM.

UNIT - III

Network Layer: Logical Addressing, Internetworking, Tunneling, Address Mapping, ICMP, IGMP, Forwarding, Routing-Flooding, Bellman& Ford, Disjkstra's routing protocols, RIP, OSPF, BGP,- and Multicast Routing Protocols. Connecting Devices-Passive Hubs, Repeaters, Active Hubs, Bridges, Routers.

UNIT - IV

Transport Layer: Process to Process Delivery, UDP, TCP and SCTP Protocols, Congestion, Congestion Control, Quality of Service.

L T P C 3 0 0 3

Application Layer: Domain Name Space, DNS in Internet, Electronic Mail, File Transfer Protocol, WWW, HTTP, SNMP, Multi-Media.

UNIT - V

Network Security: Security services, mechanisms and attacks, IPSec, SSL, VPN, Firewall. Bluetooth, Zigbee, IPv4, IPv6.

TEXT BOOKS:

- 1. Data Communications and Networking Behrouz A. Forouzan, 4th Edition Mc Graw Hill Education, 2006.
- 2. Computer Networks -- Andrew S Tanenbaum, 4th Edition, Pearson Education.
- 3. Computer Networking: A Top-Down Approach Featuring the Internet, James F. Kurose, K. W. Ross, 3rd Edition, Pearson Education.

REFERENCES:

- 1. Data communications and Networks by William Stallings, Pearson Edu. 10th Edition.
- 2. Data communication and Networks Bhusan Trivedi, Oxford University Press 2016.
- 3. An Engineering Approach to Computer Networks-S.Keshav, 2nd Edition, Pearson Education.
- 4. Understanding Communications and Networks, 3rd Edition, W.A.Shay, Cengage Learning.

FPGA PROGRAMMING (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year I Sem. Course Code: EC722PE

L T P C 3 0 0 3

Prerequisite: Switching Theory & Logic Design

UNIT - I

Simple Programmable Logic Devices (SPLDS):

Programmable Read Only Memories (PROMs), Programmable Logic Arrays (PLAs), Programmable Array Logic (PALs), the Masked Gate Array ASIC.

Complex Programmable Logic Devices (CPLDs):

CPLD Architectures, Function Blocks, I/O Blocks, Clock Drivers, Interconnect CPLD Technology and Programmable Elements, Embedded Devices.

Field Programmable Gate Arrays (FPGAs):

FPGA Architectures, Configurable Logic Blocks, Configurable I/o Blocks, Embedded Devices, Programmable Inter Connect, Clock Circuitry, SRAM vs. Anti-fuse programming, FPGA Selection Criteria.

UNIT - II

Universal Design Methodology for Programmable Devices:

Introduction to UDM and UDM-PD, writing a Specification, Specification Review, Choosing Device and Tools, Design, Verification, Final Review, System Integration and Test. Hardware Descriptive Languages, Structure of VHDL & Verilog module, operator, Data types, Top-Down Design, Synchronous Design, Floating Nodes, Bus Contention, One-Hot state Encoding.

UNIT - III

Data flow Description and Behavioral Descriptions:

Introduction to styles types of hardware description –Behavioral, Structural, Dataflow and Mixed type and language descriptions.

Data flow Description: Structure of the dataflow description, Signal Declaration and Assignment Statements, Concurrent Signal assignments, Constant declaration and assignments, assigning a delay time to the signal, Data type-Vectors.

Behavioral Descriptions: Structure of the HDL Behavioral description, The VHDL/ Verilog HDL variable – assignment statement, sequential statement – IF, signal and variable assignment, CASE & LOOP statements

UNIT - IV

Structural and Switch level Descriptions.

Structural Description: Organization of the structural description, binding, state machines, Generate (HDL), Generic (VHDL), and parameter (Verilog).

Switch level Description: Useful definitions, Single NMOS & PMOS switches-verilog & VHDL description of NMOS & PMOS Switches, serial and parallel combinations of switches, Switch level Description of –primitive gates, Simple combinational logics, simple sequential circuits, Bidirectional Switches.

UNIT - V

Procedures, Tasks, Functions and Verification:

Mixed type descriptions, Procedures and Tasks: Procedures (VHDL), Tasks (Verilog), Examples of Procedures and Tasks, Functions in VHDL & Verilog HDL.

Verification: Introduction to verification, simulation, static timing Analysis, Association languages and formal verification.

TEXT BOOKS:

- 1. Designing with FPGAS & CPLDS- Bob Zeidman, CMP Books, First Printed in India 2011
- 2. HDL Programming Fundamental-VHDL & Verilog, Botros, Cengage Learning, Third Indian Reprint 2012

CODING THEORY AND TECHNIQUES (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year I Sem. Course Code: EC723PE/ET732PE

L T P C 3 0 0 3

Pre-requisite: Digital Communications

Course Objectives:

- To acquire the knowledge in measurement of information and errors.
- Understand the importance of various codes for communication systems.
- To design encoder and decoder of various codes.
- To known the applicability of source and channel codes.

Course Outcomes: Upon completing this course, the student will be able to

- Learn measurement of information and errors.
- Obtain knowledge in designing various source codes and channel codes.
- Design encoders and decoders for block and cyclic codes.
- Understand the significance of codes in various applications.

UNIT - I

Coding for Reliable Digital Transmission and storage:

Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies. **Source Codes:** Shannon-fano coding, Huffman coding

UNIT - II

Linear Block Codes:

Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT - III

Cyclic Codes:

Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding, Cyclic Hamming Codes, shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT - IV

Convolution Codes:

Encoding of Convolution Codes- Structural and Distance Properties, state, tree, trellis diagrams, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of

Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolution codes in ARQ system.

UNIT - V

BCH Codes:

Minimum distance and BCH bounds, Decoding procedure for BCH codes, Syndrome computation and iterative algorithms, Error locations polynomials for single and double error correction.

TEXT BOOKS:

- 1. Error Control Coding- Fundamentals and Applications –Shu Lin, Daniel J. Costello, Jr, Prentice Hall, Inc 2014.
- 2. Error Correcting Coding Theory-Man Young Rhee, McGraw Hill Publishing, 1989.

REFERENCES:

- 1. Digital Communications- John G. Proakis, 5th Ed., TMH, 2008.
- 2. Introduction to Error Control Codes-Salvatore Gravano, oxford
- 3. Error Correction Coding Mathematical Methods and Algorithms Todd K. Moon, Wiley India, 2006.
- 4. Information Theory, Coding and Cryptography Ranjan Bose, 2nd Ed., TMH, 2009.

SOFT COMPUTING TECHNIQUES (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year I Sem. Course Code: EC724PE

L T P C 3 0 0 3

Course Objectives: This course makes the students to Understand

- Fundamentals of Neural Networks & Feed Forward Networks.
- Associative Memories & ART Neural Networks.
- Fuzzy Logic & Systems.
- Genetic Algorithms and Hybrid Systems.

Course Outcomes: On completion of this course the students will be able to

- Identify and employ suitable soft computing techniques in classification and optimization problems.
- Design hybrid systems to suit a given real life problem.

UNIT – I

Fundamentals of Neural Networks & Feed Forward Networks:

Basic Concept of Neural Networks, Human Brain, Models of an Artificial Neuron, Learning Methods, Neural Networks Architectures, Single Layer Feed Forward Neural Network: The Perceptron Model, Multilayer Feed Forward Neural Network: Architecture of a Back-Propagation Network (BPN), The Solution, Backpropagation Learning, Selection of various Parameters in BPN. Application of Back propagation Networks in Pattern Recognition & Image Processing.

UNIT – II

Associative Memories & ART Neural Networks:

Basic concepts of Linear Associative, Basic concepts of Dynamical systems, Mathematical Foundation of Discrete-Time Hop field Networks (HPF), Mathematical Foundation of Gradient-Type Hopfield Networks, Transient response of Continuous Time Networks, Applications of HPF in Solution of Optimization Problem: Minimization of the Traveling salesman tour length, Summing networks with digital outputs, Solving Simultaneous Linear Equations, Bidirectional Associative Memory Networks; Cluster Structure, Vector Quantization, Classical ART Networks, Simplified ART Architecture.

UNIT – III

Fuzzy Logic & Systems:

Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic, Predicate Logic, Fuzzy Logic, Fuzzy Rule based system, Defuzzification Methods, Applications: Greg Viot's Fuzzy Cruise Controller, Air Conditioner Controller.

UNIT – IV

Genetic Algorithms:

Basic Concepts of Genetic Algorithms (GA), Biological background, Creation of Offsprings, Working Principle, Encoding, Fitness Function, Reproduction, Inheritance Operators, Cross Over, Inversion and Deletion, Mutation Operator, Bit-wise Operators used in GA, Generational Cycle, Convergence of Genetic Algorithm.

UNIT – V

Hybrid Systems:

Types of Hybrid Systems, Neural Networks, Fuzzy Logic, and Genetic Algorithms Hybrid, Genetic Algorithm based BPN: GA Based weight Determination, Fuzzy Back Propagation Networks: LR-type fuzzy numbers, Fuzzy Neuron, Fuzzy BP Architecture, Learning in Fuzzy BPN, Inference by fuzzy BPN.

TEXT BOOKS:

- 1. Introduction to Artificial Neural Systems J.M. Zurada, Jaico Publishers
- 2. Neural Networks, Fuzzy Logic & Genetic Algorithms: Synthesis & Applications -S. Rajasekaran, G.A. Vijayalakshmi Pai, PHI, 2011.
- 3. Genetic Algorithms by David E. Gold Berg, Pearson Education India, 2006.
- 4. Neural Networks & Fuzzy Sytems- Kosko.B., PHI, Delhi, 1994.

REFERENCES:

- 1. Artificial Neural Networks Dr. B. Yagananarayana, , PHI, 1999.
- 2. An introduction to Genetic Algorithms Mitchell Melanie, MIT Press, 1998
- 3. Fuzzy Sets, Uncertainty and Information- Klir G.J. & Folger. T. A., PHI, Delhi, 1993.

WIRELESS COMMUNICATIONS AND NETWORKS (PROFESSIONAL ELECTIVE – III)

B.Tech. IV Year I Sem. Course Code: EC731PE

L T P C 3 0 0 3

Prerequisite: Digital Communications

Course Objectives:

- To provide the students with the fundamental treatment about many practical and theoretical concepts that forms basic of wireless communications.
- To equip the students with various kinds of wireless networks and its operations.
- To provide an analytical perspective on the design and analysis of the traditional and emerging wireless networks, and to discuss the nature of, and solution methods to, the fundamental problems in wireless networking.
- To train students to understand the architecture and operation of various wireless wide area networks such as GSM, IS-95, GPRS and SMS.

Course Outcomes: Upon completion of the course, the student will be able to:

- Understand cellular system design concepts.
- Analyze various multiple access schemes used in wireless communication.
- Demonstrate wireless Local and Wide area networks and their specifications.
- Familiar with some of the existing and emerging wireless standards.
- Understand the concept of orthogonal frequency division multiplexing.

UNIT - I

The Cellular Concept-System Design Fundamentals:

Introduction, Frequency Reuse, Channel Assignment Strategies, Handoff Strategies-Prioritizing Handoffs, Practical Handoff Considerations, Interference and system capacity – Co channel Interference and system capacity, Channel planning for Wireless Systems, Adjacent Channel interference, Power Control for Reducing interference, Trunking and Grade of Service, Improving Coverage & Capacity in Cellular Systems- Cell Splitting, Sectoring.

UNIT – II

Mobile Radio Propagation: Large-Scale Path Loss:

Introduction to Radio Wave Propagation, Free Space Propagation Model, Relating Power to Electric Field, The Three Basic Propagation Mechanisms, Reflection-Reflection from Dielectrics, Brewster Angle, Reflection from prefect conductors, Ground Reflection (Two-Ray) Model, Diffraction-Fresnel Zone Geometry, Knife-edge Diffraction Model, Multiple knife-edge Diffraction, Scattering, Outdoor Propagation Models- Longley-Rice Model, Okumura Model, Hata Model, PCS Extension to Hata Model, Walfisch and Bertoni Model, Wideband PCS Microcell Model, Indoor Propagation Models-Partition losses (Same Floor),

Partition losses between Floors, Log-distance path loss model, Ericsson Multiple Breakpoint Model, Attenuation Factor Model, Signal penetration into buildings, Ray Tracing and Site Specific Modeling.

UNIT – III

Mobile Radio Propagation: Small –Scale Fading and Multipath:

Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke's model for flat fading, spectral shape due to Doppler spread in Clarke's model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

UNIT - IV

Equalization and Diversity:

Introduction, Fundamentals of Equalization, Training A Generic Adaptive Equalizer, Equalizers in a communication Receiver, Linear Equalizers, Non-linear Equalization-Decision Feedback Equalization (DFE), Maximum Likelihood Sequence Estimation (MLSE) Equalizer, Algorithms for adaptive equalization-Zero Forcing Algorithm, Least Mean Square Algorithm, Recursive least squares algorithm. Diversity Techniques-Derivation of selection Diversity improvement, Derivation of Maximal Ratio Combining improvement, Practical Space Diversity Consideration-Selection Diversity, Feedback or Scanning Diversity, Maximal Ratio Combining, Equal Gain Combining, Polarization Diversity, Frequency Diversity, Time Diversity, RAKE Receiver.

UNIT - V

Wireless Networks:

Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11, IEEE 802.11 Medium Access Control, Comparision of IEEE 802.11 a, b, g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, Hiper Lan, WLL.

TEXT BOOKS:

- Wireless Communications, Principles, Practice Theodore, S. Rappaport, 2nd Ed., 2002, PHI.
- 2. Wireless Communications-Andrea Goldsmith, 2005 Cambridge University Press.
- 3. Principles of Wireless Networks Kaveh Pah Laven and P. Krishna Murthy, 2002, PE

4. Mobile Cellular Communication – Gottapu Sasibhushana Rao, Pearson Education, 2012.

REFERENCES:

- 1. Wireless Digital Communications Kamilo Feher, 1999, PHI.
- 2. Wireless Communication and Networking William Stallings, 2003, PHI.

INTERNET OF THINGS (PROFESSIONAL ELECTIVE – III)

B.Tech. IV Year I Sem. Course Code: CS724PE/EC732PE

L T P C 3 0 0 3

Course Objectives:

- To introduce the terminology, technology and its applications
- To introduce the concept of M2M (machine to machine) with necessary protocols
- To introduce the Python Scripting Language which is used in many IoT devices
- To introduce the Raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of web-based services on IoT devices.

UNIT - I

Introduction to Internet of Things -Definition and Characteristics of IoT, Physical Design of IoT – IoT Protocols, IoT communication models, IoT Communication APIs, IoT enabled Technologies – Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Templates, Domain Specific IoTs – Home, City, Environment, Energy, Retail, Logistics, Agriculture, Industry, health and Lifestyle.

UNIT - II

IoT and M2M - Software defined networks, network function virtualization, difference between SDN and NFV for IoT. Basics of IoT System Management with NETCOZF, YANG -NETCONF, YANG, SNMP NETOPEER

UNIT - III

Introduction to Python - Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, data/time operations, classes, Exception handling. Python packages - JSON, XML, HTTP Lib, URL Lib, SMTP Lib.

UNIT - IV

IoT Physical Devices and Endpoints - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C). Programming – Python program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input from pins.

UNIT - V

IoT Physical Servers and Cloud Offerings - Introduction to Cloud Storage models and communication APIs. Webserver – Web server for IoT, Cloud for IoT, Python web application framework. Designing a RESTful web API

TEXT BOOK:

1. Internet of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547

 Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759

RADAR SYSTEMS (PROFESSIONAL ELECTIVE – III)

B.Tech. IV Year I Sem. Course Code: EC733PE

L T P C 3 0 0 3

Prerequisite: Analog and Digital Communications

Course Objectives:

- To explore the concepts of radar and its frequency bands.
- To understand Doppler effect and get acquainted with the working principles of CW radar, FM-CW radar.
- To impart the knowledge of functioning of MTI and Tracking Radars.
- To explain the deigning of a Matched Filter in radar receivers.

Course Outcomes: Upon completing this course, the student will be able to

- Derive the complete radar range equation.
- Understand the need and functioning of CW, FM-CW and MTI radars
- Known various Tracking methods.
- Derive the matched filter response characteristics for radar receivers.

UNIT – I

Basics of Radar: Maximum Unambiguous Range, Simple form of Radar Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications. Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Modified Radar Range Equation. **Radar Equation:** SNR, Envelope Detector – False Alarm Time and Probability, Integration of Radar Pulses, Radar Cross Section of Targets, Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative treatment).

UNIT – II

CW and Frequency Modulated Radar: Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar.

FM-CW Radar: Range and Doppler Measurement, Block Diagram and Characteristics, FM-CW altimeter.

UNIT - III

MTI and Pulse Doppler Radar: Principle, MTI Radar - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, Staggered PRFs. Range Gated Doppler Filters. MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse Doppler Radar.

$\mathbf{UNIT} - \mathbf{IV}$

Tracking Radar: Tracking with Radar, Sequential Lobing, Conical Scan, Mono pulse Tracking Radar – Amplitude Comparison Mono pulse (one- and two- coordinates), Phase Comparison Mono pulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Trackers.

UNIT – V

Detection of Radar Signals in Noise Matched Filter Receiver – Response Characteristics and Derivation, Correlation Function and Cross-correlation Receiver, Efficiency of Non-matched Filters, Matched Filter with Non-white Noise.

Radar Receivers – Noise Figure and Noise Temperature, Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas – Basic Concepts, Radiation Pattern, Beam Steering and Beam Width changes, Applications, Advantages and Limitations.

TEXT BOOK:

 Introduction to Radar Systems – Merrill I. Skolnik, TMH Special Indian Edition, 2ndEd., 2007.

REFERENCE BOOKS:

- 1. Radar: Principles, Technology, Applications Byron Edde, Pearson Education, 2004.
- 2. Radar Principles Peebles, Jr., P.Z., Wiley, New York, 1998.
- 3. Principles of Modern Radar: Basic Principles Mark A. Richards, James A. Scheer, William A. Holm, Yesdee, 2013
- 4. Radar Handbook Merrill I. Skolnik, 3rd Ed., McGrawHill Education, 2008.

EMBEDDED SYSTEM DESIGN (Professional Elective - III)

B.Tech. IV Year I Sem. Course Code: EI701PC/EC734PE/ET742PE

L T P C 3 0 0 3

Course Objectives:

- To provide an overview of Design Principles of Embedded System.
- To provide clear understanding about the role of firmware, operating systems in correlation with hardware systems.

Course Outcomes:

- Expected to understand the selection procedure of Processors in the embedded domain.
- Design Procedure for Embedded Firmware.
- Expected to visualize the role of Real time Operating Systems in Embedded Systems.
- Expected to evaluate the Correlation between task synchronization and latency issues

UNIT - I

Introduction to Embedded Systems: Definition of Embedded System, Embedded Systems Vs General Computing Systems, History of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.

UNIT - II

Typical Embedded System: Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS). **Memory:** ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.

UNIT - III

Embedded Firmware: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.

UNIT - IV

RTOS Based Embedded System Design: Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling.

UNIT - V

Task Communication: Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.

TEXT BOOKS:

1. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill.

REFERENCE BOOKS:

- 1. Embedded Systems Raj Kamal, MC GRAW HILL EDUCATION.
- 2. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 3. Embedded Systems Lyla, Pearson, 2013
- 4. An Embedded Software Primer David E. Simon, Pearson Education.

OPTIMIZATION TECHNIQUES (**PROFESSIONAL ELECTIVE – IV**)

B.Tech. IV Year I Sem. Course Code: EE734PE/EC741PE

L T P C 3 0 0 3

Prerequisite: Mathematics –I & Mathematics –II

Course Objectives:

- To introduce various optimization techniques i.e classical, linear programming, transportation problem, simplex algorithm, dynamic programming
- Constrained and unconstrained optimization techniques for solving and optimizing an electrical and electronic engineering circuits design problems in real world situations.
- To explain the concept of Dynamic programming and its applications to project implementation.

Course Outcomes: After completion of this course, the student will be able to

- explain the need of optimization of engineering systems
- understand optimization of electrical and electronics engineering problems
- apply classical optimization techniques, linear programming, simplex algorithm, transportation problem
- apply unconstrained optimization and constrained non-linear programming and dynamic programming
- Formulate optimization problems.

UNIT – I

Introduction and Classical Optimization Techniques: Statement of an Optimization problem – design vector – design constraints – constraint surface – objective function – objective function surfaces – classification of Optimization problems.

Classical Optimization Techniques: Single variable Optimization – multi variable Optimization without constraints – necessary and sufficient conditions for minimum/maximum – multivariable Optimization with equality constraints.

Solution by method of Lagrange multipliers – Multivariable Optimization with inequality constraints – Kuhn – Tucker conditions.

UNIT – II

Linear Programming: Standard form of a linear programming problem – geometry of linear programming problems – definitions and theorems – solution of a system of linear simultaneous equations – pivotal reduction of a general system of equations – motivation to the simplex method – simplex algorithm.

Transportation Problem: Finding initial basic feasible solution by north – west corner rule, least cost method and Vogel's approximation method – testing for optimality of balanced transportation problems.

UNIT – III

Unconstrained Nonlinear Programming: One dimensional minimization methods, Classification, Fibonacci method and Quadratic interpolation method

Unconstrained Optimization Techniques: Univariant method, Powell's method and steepest descent method.

UNIT - IV

Constrained Nonlinear Programming: Characteristics of a constrained problem - classification - Basic approach of Penalty Function method - Basic approach of Penalty Function method - Basic approaches of Interior and Exterior penalty function methods - Introduction to convex programming problem.

$\mathbf{UNIT} - \mathbf{V}$

Dynamic Programming: Dynamic programming multistage decision processes – types – concept of sub optimization and the principle of optimality – computational procedure in dynamic programming – examples illustrating the calculus method of solution - examples illustrating the tabular method of solution.

TEXT BOOKS:

- 1. Singiresu S. Rao, Engineering Optimization: Theory and Practice by John Wiley and Sons, 4th edition, 2009.
- 2. H. S. Kasene & K. D. Kumar, Introductory Operations Research, Springer (India), Pvt. Ltd., 2004

REFERENCE BOOKS:

- 1. George Bernard Dantzig, Mukund Narain Thapa, "Linear programming", Springer series in operations research 3rd edition, 2003.
- 2. H.A. Taha, "Operations Research: An Introduction", 8th Edition, Pearson/Prentice Hall, 2007.
- 3. Kalyanmoy Deb, "Optimization for Engineering Design Algorithms and Examples", PHI Learning Pvt. Ltd, New Delhi, 2005.

OBJECT ORIENTED PROGRAMMING (**PROFESSIONAL ELECTIVE – IV**)

B.Tech. IV Year I Sem. Course Code: EC742PE

L T P C 3 0 0 3

Course Objectives:

- To introduce the object-oriented programming concepts.
- To understand object-oriented programming concepts, and apply them in solving problems.
- To introduce the principles of inheritance and polymorphism; and demonstrate how they relate to the design of abstract classes
- To introduce the implementation of packages and interfaces
- To introduce the concepts of exception handling and multithreading.
- To introduce the design of Graphical User Interface using applets and swing controls.

Course Outcomes

- Able to solve real world problems using OOP techniques.
- Able to understand the use of abstract classes.
- Able to solve problems using java collection framework and I/o classes.
- Able to develop multithreaded applications with synchronization.
- Able to develop applets for web applications.
- Able to design GUI based applications

UNIT - I

Object-oriented thinking- A way of viewing world – Agents and Communities, messages and methods, Responsibilities, Classes and Instances, Class Hierarchies- Inheritance, Method binding, Overriding and Exceptions, Summary of Object-Oriented concepts. Java buzzwords, An Overview of Java, Data types, Variables and Arrays, operators, expressions, control statements, Introducing classes, Methods and Classes, String handling.

Inheritance– Inheritance concept, Inheritance basics, Member access, Constructors, Creating Multilevel hierarchy, super uses, using final with inheritance, Polymorphism-ad hoc polymorphism, pure polymorphism, method overriding, abstract classes, Object class, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance.

UNIT - II

Packages- Defining a Package, CLASSPATH, Access protection, importing packages.

Interfaces- defining an interface, implementing interfaces, Nested interfaces, applying interfaces, variables in interfaces and extending interfaces.

Stream based I/O(java.io) – The Stream Classes-Byte streams and Character streams, reading console Input and Writing Console Output, File class, Reading and writing Files,

Random access file operations, The Console class, Serialization, Enumerations, auto boxing, generics.

UNIT - III

Exception handling - Fundamentals of exception handling, Exception types, Termination or resumptive models, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws and finally, built- in exceptions, creating own exception sub classes.

Multithreading- Differences between thread-based multitasking and process-based multitasking, Java thread model, creating threads, thread priorities, synchronizing threads, inter thread communication.

UNIT - IV

The Collections Framework (java.util)- Collections overview, Collection Interfaces, The Collection classes- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Accessing a Collection via an Iterator, Using an Iterator, The For-Each alternative, Map Interfaces and Classes, Comparators, Collection algorithms, Arrays, The Legacy Classes and Interfaces- Dictionary, Hashtable, Properties, Stack, Vector

More Utility classes, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner

UNIT - V

GUI Programming with Swing – Introduction, limitations of AWT, MVC architecture, components, containers. Understanding Layout Managers, Flow Layout, Border Layout, Grid Layout, Card Layout, Grid Bag Layout.

Event Handling- The Delegation event model- Events, Event sources, Event Listeners, Event classes, Handling mouse and keyboard events, Adapter classes, Inner classes, Anonymous Inner classes.

A Simple Swing Application, **Applets** – Applets and HTML, Security Issues, Applets and Applications, passing parameters to applets. Creating a Swing Applet, Painting in Swing, A Paint example, Exploring Swing Controls- JLabel and Image Icon, JText Field, The Swing Buttons- JButton, JToggle Button, JCheck Box, JRadio Button, JTabbed Pane, JScroll Pane, JList, JCombo Box, Swing Menus, Dialogs.

TEXT BOOKS:

- 1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt. Ltd.
- 2. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.

REFERENCE BOOKS:

- 1. An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch, John Wiley & sons.
- 2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 3. Object Oriented Programming through Java, P. Radha Krishna, Universities Press.

- 4. Programming in Java, S. Malhotra, S. Chudhary, 2nd edition, Oxford Univ. Press.
- 5. Java Programming and Object-oriented Application Development, R. A. Johnson, Cengage Learning.

ELECTRONIC MEASUREMENTS AND INSTRUMENTATION (PROFESSIONAL ELECTIVE – IV)

B.Tech. IV Year I Sem. Course Code: EC743PE

L T P C 3 0 0 3

Course Objectives:

- It provides an understanding of various measuring systems functioning and metrics for performance analysis.
- Provides understanding of principle of operation, working of different electronic instruments viz. signal generators, signal analyzers, recorders and measuring equipment.
- Provides understanding of use of various measuring techniques for measurement of different physical parameters using different classes of transducers.

Course Outcomes: On completion of this course student can be able to

- Identify the various electronic instruments based on their specifications for carrying out a particular task of measurement.
- Measure various physical parameters by appropriately selecting the transducers.
- Use various types of signal generators, signal analyzers for generating and analyzing various real-time signals.

UNIT - I

Block Schematics of Measuring Systems: Performance Characteristics, Static Characteristics, Accuracy, Precision, Resolution, Types of Errors, Gaussian Error, Root Sum Squares formula, Dynamic Characteristics, Repeatability, Reproducibility, Fidelity, Lag; Measuring Instruments: DC Voltmeters, D' Arsonval Movement, DC Current Meters, AC Voltmeters and Current Meters, Ohmmeters, Multi meters, Meter Protection, Extension of Range, True RMS Responding Voltmeters, Specifications of Instruments.

UNIT - II

Signal Analyzers: AF, HF Wave Analyzers, Harmonic Distortion, Heterodyne wave Analyzers, Spectrum Analyzers, Power Analyzers, Capacitance-Voltage Meters, Oscillators. Signal Generators: AF, RF Signal Generators, Sweep Frequency Generators, Pulse and Square wave Generators, Function Generators, Arbitrary Waveform Generator, Video Signal Generators, and Specifications

UNIT - III

Oscilloscopes: CRT, Block Schematic of CRO, Time Base Circuits, Lissajous Figures, CRO Probes, High Frequency CRO Considerations, Delay lines, Applications: Measurement of Time, Period and Frequency Specifications.

Special Purpose Oscilloscopes: Dual Trace, Dual Beam CROs, Sampling Oscilloscopes, Storage Oscilloscopes, Digital Storage CROs.

UNIT - IV

Transducers: Classification, Strain Gauges, Bounded, unbounded; Force and Displacement Transducers, Resistance Thermometers, Hotwire Anemometers, LVDT, Thermocouples, Synchros, Special Resistance Thermometers, Digital Temperature sensing system, Piezoelectric Transducers, Variable Capacitance Transducers, Magneto Strictive Transducers.

UNIT - V

Bridges: Wheat Stone Bridge, Kelvin Bridge, and Maxwell Bridge.

Measurement of Physical Parameters: Flow Measurement, Displacement Meters, Liquid level Measurement, Measurement of Humidity and Moisture, Velocity, Force, Pressure – High Pressure, Vacuum level, Temperature -Measurements, Data Acquisition Systems.

TEXT BOOKS:

- 1. Electronic Measurements and Instrumentation K. Lal Kishore, Pearson Education 2010.
- 2. Electronic Instrumentation: H. S. Kalsi Mc Graw Hill Education, 2nd Edition 2004.
- 3. Electronic Instrumentation and Measurements David A. Bell, 3rd Edition Oxford Univ. Press, 2013.

REFERENCES:

- 1. Electronic Instrumentation and Measurements David A. Bell, Oxford Univ. Press, 1997.
- Modern Electronic Instrumentation and Measurement Techniques: A.D. Helbincs, W.D. Cooper: PHI 5th Edition 2003.
- 3. Electronic Measurements and Instrumentation: B.M. Oliver, J.M. Cage MC GRAW HILL EDUCATION Reprint 2009.
- 4. Industrial Instrumentation: T.R. Padmanabham Springer 2009.

ARTIFICIAL INTELLIGENCE (PROFESSIONAL ELECTIVE – IV)

B.Tech. IV Year I Sem. Course Code: IT733PE/EC744PE

Prerequisites:

- 1. A course on "Computer Programming and Data Structures"
- 2. A course on "Advanced Data Structures"
- 3. A course on "Design and Analysis of Algorithms"
- 4. A course on "Mathematical Foundations of Computer Science"
- 5. Some background in linear algebra, data structures and algorithms, and probability will all be helpful

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning
- To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- Ability to formulate an efficient problem space for a problem expressed in natural language.
- Select a search algorithm for a problem and estimaate its time and space complexities.
- Possess the skill for representing knowledge using the appropriate technique for a given problem.
- Possess the ability to apply AI techniques to solve problems of game playing, and machine learning.

UNIT - I

Problem Solving by Search-I: Introduction to AI, Intelligent Agents

Problem Solving by Search –II: Problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching wih Partial Observations, Online Search Agents and Unknown Environment.

UNIT - II

Problem Solving by Search-II and Propositional Logic

L T P C 3 0 0 3 Adversarial Search: Games, Optimal Decisions in Games, Alpha–Beta Pruning, Imperfect Real-Time Decisions.

Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems.

Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic.

UNIT - III

Logic and Knowledge Representation

First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic.

Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events. Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

UNIT - IV

Planning

Classical Planning: Definition of Classical Planning, Algorithms for Planning with State-Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches.

Planning and Acting in the Real World: Time, Schedules, and Resources, Hierarchical Planning, Planning and Acting in Nondeterministic Domains, Multi agent Planning.

UNIT - V

Uncertain knowledge and Learning

Uncertainty: Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use,

Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory.

Learning: Forms of Learning, Supervised Learning, Learning Decision Trees.Knowledge in Learning: Logical Formulation of Learning, Knowledge in Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming.

TEXT BOOKS

1. Artificial Intelligence A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

REFERENCES:

- 1. Artificial Intelligence, 3rd Edn., E. Rich and K. Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education.

VLSI DESIGN

B.Tech. IV Year I Sem.	L	Т	Р	С
Course Code: EC702PC/ET721PE/EI741PE	4	0	0	4

Course Objectives: The objectives of the course are to:

- Give exposure to different steps involved in the fabrication of ICs using MOS transistor, CMOS/BICMOS transistors, and passive components.
- Explain electrical properties of MOS and BiCMOS devices to analyze the behavior of inverters designed with various loads.
- Give exposure to the design rules to be followed to draw the layout of any logic circuit.
- Provide concept to design different types of logic gates using CMOS inverter and analyze their transfer characteristics.
- Provide design concepts to design building blocks of data path of any system using gates.
- Understand basic programmable logic devices and testing of CMOS circuits.

Course Outcomes: Upon successfully completing the course, the student should be able to:

- Acquire qualitative knowledge about the fabrication process of integrated circuit using MOS transistors.
- Choose an appropriate inverter depending on specifications required for a circuit
- Draw the layout of any logic circuit which helps to understand and estimate parasitic of any logic circuit
- Design different types of logic gates using CMOS inverter and analyze their transfer characteristics
- Provide design concepts required to design building blocks of data path using gates.
- Design simple memories using MOS transistors and can understand design of large memories.
- Design simple logic circuit using PLA, PAL, FPGA and CPLD.
- Understand different types of faults that can occur in a system and learn the concept of testing and adding extra hardware to improve testability of system

UNIT – I

Introduction: Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & BiCMOS **Basic Electrical Properties:** Basic Electrical Properties of MOS and BiCMOS Circuits: I_{ds} - V_{ds} relationships, MOS transistor threshold Voltage, g_m , g_{ds} , Figure of merit ωo ; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

UNIT - II

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2 µm CMOS Design rules for wires, Contacts and Transistors Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits.

UNIT – III

Gate Level Design: Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time delays, Driving large capacitive loads, Wiring capacitance, Fan - in, Fan - out, Choice of layers.

UNIT - IV

Data Path Subsystems: Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Zero/One Detectors, Counters.

Array Subsystems: SRAM, DRAM, ROM, Serial Access Memories.

UNIT - V

Programmable Logic Devices: PLAs, FPGAs, CPLDs, Standard Cells, Programmable Array Logic, Design Approach, Parameters influencing low power design.

CMOS Testing: CMOS Testing, Need for testing, Test Principles, Design Strategies for test, Chip level Test Techniques.

TEXT BOOKS:

- 1. Essentials of VLSI circuits and systems Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, PHI, 2005 Edition
- 2. CMOS VLSI Design A Circuits and Systems Perspective, Neil H. E Weste, David Harris, Ayan Banerjee, 3rd Ed, Pearson, 2009.

REFERENCE BOOKS:

- 1. CMOS logic circuit Design John .P. Uyemura, Springer, 2007.
- 2. Modern VLSI Design Wayne Wolf, Pearson Education, 3rd Edition, 1997.

VLSI & E-CAD LAB

B.Tech. IV Year I Sem.	L	Т	Р	С
Course Code: EC703PC	0	0	3	2

List of Experiments

Design and implementation of the following CMOS digital/analog circuits using **Cadence / Mentor Graphics / Synopsys /Equivalent** CAD tools. The design shall include Gate-level design, Transistor-level design, Hierarchical design, Verilog HDL/VHDL design, Logic synthesis, Simulation and verification, Scaling of CMOS Inverter for different technologies, study of secondary effects (temperature, power supply and process corners), Circuit optimization with respect to area, performance and/or power, Layout, Extraction of parasitics and back annotation, modifications in circuit parameters and layout consumption, DC/transient analysis, Verification of layouts (DRC, LVS)

E-CAD programs:

Programming can be done using any complier. Down load the programs on FPGA/CPLD boards and performance testing may be done using pattern generator (32 channels) and logic analyzer apart from verification by simulation with any of the front end tools.

- 1. HDL code to realize all the logic gates
- 2. Design of 2-to-4 decoder
- 3. Design of 8-to-3 encoder (without and with priority)
- 4. Design of 8-to-1 multiplexer and 1-to-8 demultiplexer
- 5. Design of 4 bit binary to gray code converter
- 6. Design of 4 bit comparator
- 7. Design of Full adder using 3 modeling styles
- 8. Design of flip flops: SR, D, JK, T
- 9. Design of 4-bit binary, BCD counters (synchronous/ asynchronous reset) or any sequence counter
- 10. Finite State Machine Design

VLSI programs:

- Introduction to layout design rules. Layout, physical verification, placement & route for complex design, static timing analysis, IR drop analysis and crosstalk analysis of the following:
 - 1. Basic logic gates
 - 2. CMOS inverter
 - 3. CMOS NOR/ NAND gates
 - 4. CMOS XOR and MUX gates
 - 5. Static / Dynamic logic circuit (register cell)
 - 6. Latch
 - 7. Pass transistor
 - 8. Layout of any combinational circuit (complex CMOS logic gate).
 - 9. Analog Circuit simulation (AC analysis) CS & CD amplifier

Note: Any *SIX of* the above experiments from each part are to be conducted (Total 12)

MICROWAVE ENGINEERING LAB

B.Tech. IV Year I Sem.	L	Т	Р	С
Course Code: EC704PC	0	0	3	2

Note: Minimum of 12 experiments to be conducted

- 1. Reflex Klystron Characteristics
- 2. Gunn Diode Characteristics
- 3. Directional Coupler Characteristics
- 4. VSWR Measurement of Mached load
- 5. VSWR mesurement of with open and short circuit loads
- 6. Measurement of Waveguide Parameters
- 7. Measurement of Impedance of a given Load
- 8. Measurement of Scattering Parameters of a E plane Tee
- 9. Measurement of Scattering Parameters of a H plane Tee
- 10. Measurement of Scattering Parameters of a Magic Tee
- 11. Measurement of Scattering Parameters of a Circulator
- 12. Attenuation Measurement
- 13. Microwave Frequency Measurement
- 14. Antenna Pattern Measurements.

NETWORK SECURITY AND CRYPTOGRAPHY (PROFESSIONAL ELECTIVE – V)

B.Tech. IV Year II Sem. Course Code: EC851PE

L T P C 3 0 0 3

Course Objectives:

- Understand the basic concept of Cryptography and Network Security, their mathematical models
- To understand the necessity of network security, threats/vulnerabilities to networks and countermeasures
- To understand Authentication functions with Message Authentication Codes and Hash Functions.
- To provide familiarity in Intrusion detection and Firewall Design Principles

Course Outcomes: Upon completing this course, the student will be able to

- Describe network security fundamental concepts and principles
- Encrypt and decrypt messages using block ciphers and network security technology and protocols
- Analyze key agreement algorithms to identify their weaknesses
- Identify and assess different types of threats, malware, spyware, viruses, vulnerabilities

UNIT - I

Security Services, Mechanisms and Attacks, A Model for Internetwork security, Classical Techniques: Conventional Encryption model, Steganography, Classical Encryption Techniques.

Modern Techniques: Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Block Cipher Design Principles.

UNIT - II

Encryption: Triple DES, International Data Encryption algorithm, Blowfish, RC5, Characteristics of Advanced Symmetric block Ciphers. Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation.

UNIT – III

Public Key Cryptography: Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Elliptic Curve Cryptograpy.

Number Theory: Prime and Relatively prime numbers, Modular arithmetic, Fermat's and Euler's theorems, Testing for primality, Euclid's Algorithm, the Chinese remainder theorem, Discrete logarithms.

UNIT - IV

Message Authentication and Hash Functions: Authentication requirements and functions, Message Authentication, Hash functions, Security of Hash functions and MACs.

Hash and Mac Algorithms: MD-5, Message digest Algorithm, Secure Hash Algorithm.

Digital signatures and Authentication protocols: Digital signatures, Authentication Protocols, Digital signature standards.

Authentication Applications: Kerberos, Electronic Mail Security: Pretty Good Privacy, SIME/MIME.

$\mathbf{UNIT} - \mathbf{V}$

IP Security: Overview, Architecture, Authentication, Encapsulating Security Payload, Key Management. Web Security: Web Security requirements, Secure sockets layer and Transport layer security, Secure Electronic Transaction.

Intruders, Viruses and Worms: Intruders, Viruses and Related threats.

Fire Walls: Fire wall Design Principles, Trusted systems.

TEXT BOOKS:

- 1. Cryptography and Network Security: Principles and Practice William Stallings, Pearson Education.
- 2. Network Security: The complete reference, Robert Bragg, Mark Rhodes, TMH, 2004.

REFERENCE BOOKS:

- 1. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.
- 2. Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
- 3. Principles of Information Security, Whitman, Thomson.
- 4. Introduction to Cryptography, Buchmann, Springer.

SYSTEM DESIGN USING FPGAs (PROFESSIONAL ELECTIVE – V)

B.Tech. IV Year II Sem. Course Code: EC852PE

L T P C 3 0 0 3

Prerequisite: Switching Theory and Logic Design

UNIT - I

Integrated Design Process and Methodology, Hardware Descriptive language and digital circuit primitives- Flip flop, latch, Three state Buffer, combinational gates, HDL Synthesis Rules, pads.

HDL Simulation Environment, Synthesis Environment, synthesis Technology library, HDL Design process for a Block.

UNIT - II

Design of Basic Combinational circuits through VHDL/Verilog HDL

Selectors, Encoder, Code Converter, Equality Checker, Comparators, Half adder, Full adder, Carry ripple adder, carry look ahead adder, Count one circuit, leading zero Circuit, Barrel Shifter.

UNIT - III

Design of Basic Sequential Circuit Through VHDL/Verilog HDL

Signal manipulator, counter, Shift Register, Parallel to serial Converter, Serial to parallel convertor, General framework to design registers- Interrupt Registers, DMA and control Register, configuration registers, Register Block portioning and synthesis.

UNIT - IV

Clock and Reset Circuits

Clock Buffer and Clock Tree, Clock Tree generation, Reset Circuitry, Clock Skew and Fixes, Synchronization between clock domains, clock Divider, Gated clock.

UNIT - V

Design Case Study

Design Description, Design partition, Design verification, Design Synthesis, Worst-case Timing analysis, Best-case Timing Analysis, Net list Generation, Post layout Verification, Design Management.

TEXT BOOK:

1. Digital Systems Design with VHDL and Synthesis – K. C. Chang, Wiley-India Edition

OPTICAL COMMUNICATIONS (**PROFESSIONAL ELECTIVE – V**)

B.Tech. IV Year II Sem. Course Code: EC853PE

Prerequisite: Analog Communications and Digital Communications

Course Objectives: The objectives of the course are:

- To realize the significance of optical fibre communications.
- To understand the construction and characteristics of optical fibre cable.
- To develop the knowledge of optical signal sources and power launching.
- To identify and understand the operation of various optical detectors.
- To understand the design of optical systems and WDM.

Course Outcomes: At the end of the course, the student will be able to:

- Understand and analyze the constructional parameters of optical fibres.
- Be able to design an optical system.
- Estimate the losses due to attenuation, absorption, scattering and bending.
- Compare various optical detectors and choose suitable one for different applications.

UNIT - I

Overview of Optical Fiber Communication: - Historical development, The general system, Advantages of Optical Fiber Communications, Optical Fiber Wave Guides- Introduction, Ray Theory Transmission, Total Internal Reflection, Acceptance Angle, Numerical Aperture, Skew Rays, Cylindrical Fibers- Modes, Vnumber, Mode Coupling, Step Index Fibers, Graded Index Fibers.

Single Mode Fibers- Cut Off Wavelength, Mode Field Diameter, Effective Refractive Index, Fiber Materials Glass, Halide, Active Glass, Chalgenide Glass, Plastic Optical Fibers.

UNIT - II

Signal Distortion in Optical Fibers: Attenuation, Absorption, Scattering and Bending Losses, Core and Cladding Losses, Information Capacity Determination, Group Delay, Types of Dispersion - Material Dispersion, Wave-Guide Dispersion, Polarization Mode Dispersion, Intermodal Dispersion, Pulse Broadening, Optical Fiber Connectors- Connector Types, Single Mode Fiber Connectors, Connector Return Loss.

UNIT - III

Fiber Splicing: Splicing Techniques, Splicing Single Mode Fibers, Fiber Alignment and Joint Loss- Multimode Fiber Joints, Single Mode Fiber Joints.

Optical Sources- LEDs, Structures, Materials, Quantum Efficiency, Power, Modulation, Power Bandwidth Product, Injection Laser Diodes- Modes, Threshold Conditions, External

L T P C 3 0 0 3

Quantum Efficiency, Laser Diode Rate Equations, Resonant Frequencies, Reliability of LED & ILD.

Source to Fiber Power Launching: - Output Patterns, Power Coupling, Power Launching, Equilibrium Numerical Aperture, Laser Diode to Fiber Coupling.

UNIT - IV

Optical Detectors: Physical Principles of PIN and APD, Detector Response Time, Temperature Effect on Avalanche Gain, Comparison of Photo Detectors, Optical Receiver Operation- Fundamental Receiver Operation, Digital Signal Transmission, Error Sources, Receiver Configuration, Digital Receiver Performance, Probability of Error, Quantum Limit, Analog Receivers.

UNIT - V

Optical System Design: Considerations, Component Choice, Multiplexing, Point-to- Point Links, System Considerations, Link Power Budget with Examples, Overall Fiber Dispersion in Multi-Mode and Single Mode Fibers, Rise Time Budget with Examples.

Transmission Distance, Line Coding in Optical Links, WDM, Necessity, Principles, Types of WDM, Measurement of Attenuation and Dispersion, Eye Pattern.

TEXT BOOKS:

- 1. Optical Fiber Communications Gerd Keiser, TMH, 4th Edition, 2008.
- 2. Optical Fiber Communications John M. Senior, Pearson Education, 3rd Edition, 2009.

REFERENCE BOOKS:

- 1. Fiber Optic Communications D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Pearson Education, 2005.
- 2. Text Book on Optical Fibre Communication and its Applications S.C. Gupta, PHI, 2005.
- 3. Fiber Optic Communication Systems Govind P. Agarwal, John Wiley, 3rd Ediition, 2004.
- 4. Introduction to Fiber Optics by Donald J.Sterling Jr. Cengage learning, 2004.
- 5. Optical Communication Systems John Gowar, 2nd Edition, PHI, 2001.

MACHINE LEARNING (PROFESSIONAL ELECTIVE – V)

B.Tech. IV Year II Sem. Course Code: EC854PE/EI864PE

L T P C 3 0 0 3

Prerequisites:

- Data Structures
- Knowledge on statistical methods

Course Objectives:

- This course explains machine learning techniques such as decision tree learning, Bayesian learning etc.
- To understand computational learning theory.
- To study the pattern comparison techniques.

Course Outcomes:

- Understand the concepts of computational intelligence like machine learning
- Ability to get the skill to apply machine learning techniques to address the real time problems in different areas
- Understand the Neural Networks and its usage in machine learning application.

UNIT - I

Introduction - Well-posed learning problems, designing a learning system, Perspectives and issues in machine learning

Concept learning and the general to specific ordering – introduction, a concept learning task, concept learning as search, find-S: finding a maximally specific hypothesis, version spaces and the candidate elimination algorithm, remarks on version spaces and candidate elimination, inductive bias.

Decision Tree Learning – Introduction, decision tree representation, appropriate problems for decision tree learning, the basic decision tree learning algorithm, hypothesis space search in decision tree learning, inductive bias in decision tree learning, issues in decision tree learning.

UNIT - II

Artificial Neural Networks-1– Introduction, neural network representation, appropriate problems for neural network learning, perceptions, multilayer networks and the back-propagation algorithm.

Artificial Neural Networks-2- Remarks on the Back-Propagation algorithm, An illustrative example: face recognition, advanced topics in artificial neural networks.

Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling theory, a general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithms.

UNIT - III

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibs algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief networks, the EM algorithm.

Computational learning theory – Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the mistake bound model of learning.

Instance-Based Learning- Introduction, *k*-nearest neighbour algorithm, locally weighted regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning.

UNIT - IV

Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis space search, genetic programming, models of evolution and learning, parallelizing genetic algorithms.

Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, inverting resolution.

Reinforcement Learning – Introduction, the learning task, Q-learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.

UNIT - V

Analytical Learning-1- Introduction, learning with perfect domain theories: PROLOG-EBG, remarks on explanation-based learning, explanation-based learning of search control knowledge.

Analytical Learning-2-Using prior knowledge to alter the search objective, using prior knowledge to augment search operators.

Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis.

TEXT BOOK:

1. Machine Learning – Tom M. Mitchell, - MGH

REFERENCE:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis

ACTUATORS AND ROBOT SYSTEMS (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year II Sem.	L	Т	Р	С
Course Code: EC861PE	3	0	0	3

UNIT - I

Introduction & Basic Definitions

Introduction, Control Programs for Robots, Industry Applications of Robots, Pick and Place, Gantry and Arm type Robots in typical set-ups like Automobile Industry

Coordinate Systems: Cartesian, Cylindrical, Polar, and Revolute systems: Robot Positioning: Robot Arms; Axes, their ranges, offset and In-line Wrist: Roll, Pitch and Yaw, their meaning in Robotics

UNIT - II

Mechanical Aspects

Kinematics, Inverse Kinematics, Motion Planning and Mobile Mechanisms

UNIT - III

Sensors and Applications

Range and Use of Sensors, Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors: Reed Switches, Ultrasonic, Barcode Readers and RFID

UNIT - IV

Robot Systems

Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors

UNIT - V

Programming of Robots

Programming of Robots such as Lego Robots, Programming environment, Example Applications, Safety considerations

TEXT BOOKS:

- 1. Introduction to Robotics P.J. Mckerrow, ISBN: 0201182408
- 2. Introduction to Robotics S. Nikv, 2001, Prentice Hall,
- 3. Mechatronics and Robotics: Design & Applications A. Mutanbara, 1999, CRC Press.

REFERENCE BOOK:

1. Robotics – K.S. Fu, R.C. Gonzalez and C.S.G. Lee, 2008, TMH.

ANALOG CMOS IC DESIGN (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year II Sem. Course Code: EC862PE

L T P C 3 0 0 3

Pre-Requisite: Analog Electronics

Course Objectives: Analog circuits play a very crucial role in all electronic systems and due to continued miniaturization; many of the analog blocks are not getting realized in CMOS technology.

- To understand most important building blocks of all CMOS analog Ics.
- To study the basic principle of operation, the circuit choices and the tradeoffs involved in the MOS transistor level design common to all analog CMOS ICs.
- To understand specific design issues related to single and multistage voltage, current and differential amplifiers, their output and impedance issues, bandwidth, feedback and stability.
- To understand the design of differential amplifiers, current amplifiers and OP AMPs.

Course Outcomes: After studying the course, each student is expected to be able to

- Design basic building blocks of CMOS analog ICs.
- Carry out the design of single and two stage operational amplifiers and voltage references.
- Determine the device dimensions of each MOSFETs involved.
- Design various amplifiers like differential, current and operational amplifiers.

UNIT - I

MOS Devices and Modeling

The MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, CMOS Device Modeling - Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Computer Simulation Models, Sub-threshold MOS Model.

UNIT - II

Analog CMOS Sub-Circuits

MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirrors-Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.

UNIT - III

CMOS Amplifiers

Inverters, Differential Amplifiers, Cascode Amplifiers, Current Amplifiers, Output Amplifiers, High Gain Amplifiers Architectures.

UNIT - IV

CMOS Operational Amplifiers

Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

UNIT - V

Comparators

Characterization of Comparator, Two-Stage, Open-Loop Comparators, Other Open-Loop Comparators, Improving the Performance of Open-Loop Comparators, Discrete-Time Comparators.

TEXT BOOKS

- 1. CMOS Analog Circuit Design Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.
- 2. Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Wiley India, Fifth Edition, 2010.

REFERENCES

- 1. Analog Integrated Circuit Design- David A. Johns, Ken Martin, Wiley Student Edn, 2013.
- 2. Design of Analog CMOS Integrated Circuits- Behzad Razavi, TMH Edition.
- 3. CMOS: Circuit Design, Layout and Simulation- Baker, Li and Boyce, PHI.

GLOBAL POSITIONING SYSTEM (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year II Sem. Course Code: EC863PE

L T P C 3 0 0 3

UNIT - I

Introduction: Basic concept, system architecture, GPS and GLONASS Overview, Satellite Navigation, Time and GPS, User position and velocity calculations, GPS, Satellite Constellation, Operation Segment, User receiving Equipment, Space Segment Phased development, GPS aided Geoaugmented navigation (GAGAN) architecture.

UNIT - II

Signal Characteristics: GPS signal components, purpose, properties and power level, signal acquisition and tracking, Navigation information extraction, pseudorange estimation, frequency estimation, GPS satellite position calculation, Signal structure, anti spoofing (AS), selective availability, Difference between GPS and GALILEO satellite construction.

UNIT - III

GPS Receivers & Data Errors: Receiver Architecture, receiver design options, Antenna design, GPS error sources, SA errors, propagation errors, ionospheric error, tropospheric error, multipath, ionospheric error, estimation using dual frequency GPS receiver, Methods of multipath mitigation, Ephemeris data errors, clock errors.

UNIT - IV

Differential GPS: Introduction, LADGPS, WADGPS, Wide Area Augmentation systems, GEO Uplink subsystem, GEO downlink systems, Geo Orbit determination, Geometric analysis, covariance analysis, GPS /INS Integration Architectures

UNIT - V

GPS Applications: GPS in surveying, Mapping and Geographical Information System, Precision approach Aircraft landing system, Military and Space application, intelligent transportation system.

GPS orbital parameters, description of receiver independent exchange format (RINEX), Observation data and navigation message data parameters, GPS position determination, least squares method

TEXT BOOK:

1. Mohinder S.Grewal, Lawrence R.Weill, Angus P.Andrews, "Global positioning systems, Inertial Navigation and Integration", Wiley 2007.

REFERENCE:

1. E.D.Kaplan, Christopher J. Hegarty, "Understanding GPS Principles and Applications", Artech House Boston 2005.

COMPUTER VISION (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year II Sem. Course Code: EC864PE

Course Objectives:

- To review image processing techniques for computer vision.
- To understand shape and region analysis.
- To understand Hough Transform and its applications to detect lines, circles, ellipses.
- To understand three-dimensional image analysis techniques.
- To understand motion analysis.
- To study some applications of computer vision algorithms.

Course Outcomes: Upon completion of this course, the students should be able to

- Implement fundamental image processing techniques required for computer vision.
- Perform shape analysis.
- Implement boundary tracking techniques.
- Apply chain codes and other region descriptors.
- Apply Hough Transform for line, circle, and ellipse detections.
- Apply 3D vision techniques.
- Implement motion related techniques.
- Develop applications using computer vision techniques.

UNIT - I

Image Processing Foundations: Review of image processing techniques – classical filtering operations – thresholding techniques – edge detection techniques – corner and interest point detection – mathematical morphology – texture.

UNIT - II

Shapes and Regions: Binary shape analysis – connectedness – object labeling and counting – size filtering – distance functions – skeletons and thinning – deformable shape analysis – boundary tracking procedures – active contours – shape models and shape recognition – centroidal profiles – handling occlusion –boundary length measures – boundary descriptors – chain codes – Fourier descriptors – region descriptors – moments.

UNIT - III

Hough Transform: Line detection – Hough Transform (HT) for line detection – foot-ofnormal method – line localization – line fitting – RANSAC for straight line detection – HT based circular object detection– accurate center location – speed problem – ellipse detection – Case study: Human Iris location– hole detection – generalized Hough Transform (GHT) – spatial matched filtering – GHT for ellipse detection – object location – GHT for feature collation.

L T P C 3 0 0 3

UNIT - IV

3D Vision and Motion: Methods for 3D vision – projection schemes – shape from shading – photometric stereo – shape from texture – shape from focus – active range finding – surface representations – point-based representation – volumetric representations – 3D object recognition – 3D reconstruction – introduction to motion – triangulation – bundle adjustment – translational alignment – parametric motion – spline-based motion – optical flow – layered motion.

UNIT - V

Applications: Application: Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape models of faces Application: Surveillance – foreground-background separation – particle filters – Chamfer matching, tracking, and occlusion – combining views from multiple cameras – human gait analysis Application: In-vehicle vision system: locating roadway – road markings – identifying road signs – locating pedestrians.

TEXT BOOKS:

- 1. Simon J. D. Prince, —Computer Vision: Models, Learning, and Inferencell, Cambridge University Press, 2012.
- 2. Mark Nixon and Alberto S. Aquado, —Feature Extraction & Image Processing for Computer Vision^{II}, Third Edition, Academic Press, 2012.
- 3. E. R. Davies, —Computer & Machine Vision, Fourth Edition, Academic Press, 2012.

REFERENCES:

- 1. D. L. Baggio et al., —Mastering OpenCV with Practical Computer Vision Projects^{II}, Packt Publishing, 2012.
- 2. Jan Erik Solem, —Programming Computer Vision with Python: Tools and algorithms for analyzing images, O'Reilly Media, 2012.
- 2. R. Szeliski, —Computer Vision: Algorithms and Applications^{II}, Springer 2011.