JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech. in ARTIFICIAL INTELLIGENCE AND DATA SCIENCE II, III & IV YEARS COURSE STRUCTURE & SYLLABUS (R18 Regulations)

Applicable from AY 2021-22 Admitted Batch.

II YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	CS310PC	Discrete Mathematics	3	0	0	3
2	CS302PC	Data Structures	3	0	0	3
3	CS304PC	Computer Organization and Architecture	3	0	0	3
4	CS313PC	Operating Systems	3	0	0	3
5	CS311PC	Python Programming	2	0	0	2
6	SM306MS	Business Economics & Financial Analysis	3	0	0	3
7	CS307PC	Data Structures Lab	0	0	3	1.5
8	CS314PC	Operating Systems Lab	0	0	3	1.5
9	CS312PC	Python Programming Lab	0	0	2	1
10	*MC309	Gender Sensitization Lab	0	0	2	0
		Total Credits	17	1	8	21

II YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	MA413BS	Mathematical and Statistical Foundations	3	0	0	3
2	CS424PC	Automata Theory and Compiler Design	3	1	0	4
3	CS404PC	Database Management Systems	3	0	0	3
4	CS420PC	Introduction to Artificial Intelligence	3	0	0	3
5	CS412PC	Object Oriented Programming using Java	3	1	0	4
6	CS407PC	Database Management Systems Lab	0	0	3	1.5
7	CS408PC	Java Programming Lab	0	0	3	1.5
8	CS421PC	Artificial Intelligence Lab	0	0	2	1
9	*MC409	Constitution of India	3	0	0	0
		Total Credits	18	2	8	21

^{*}MC - Mandatory Course

III YEAR I SEMESTER

S. No.	Course Code	Course Title	L	т	Р	Credits
1		Machine Learning	3	0	0	3
2		Design and Analysis of Algorithms	3	0	0	3
3		Big Data Technologies	3	0	0	3
4		Software Engineering	3	0	0	3
5		Professional Elective - I	3	0	0	3
6		Professional Elective - II	3	0	0	3
7		Machine Learning Lab	0	0	3	1.5
8		Big Data Technologies Lab	0	0	3	1.5
9		Advanced Communication Skills Lab	0	0	2	1
10		Intellectual Property Rights	3	0	0	0
		Total Credits	21	0	8	22

III YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1		Knowledge Representation and Reasoning	3	1	0	4
2		Data Analytics	3	1	0	4
3		Computer Networks	3	1	0	4
4		Professional Elective – III	3	0	0	3
5		Open Elective - I	3	0	0	3
6		Data Analytics Lab	0	0	3	1.5
7		Computer Networks Lab	0	0	3	1.5
8		Professional Elective - III Lab	0	0	2	1
9		Environmental Science	3	0	0	0
		Total Credits	18	3	8	22

^{*}MC - Environmental Science - Should be Registered by Lateral Entry Students Only.

IV YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1		Deep Learning	3	0	0	3
2		Data Wrangling and Visualization	2	0	0	2
3		Professional Elective - IV	3	0	0	3
4		Professional Elective - V	3	0	0	3
5		Open Elective - II	3	0	0	3
6		Deep Learning Lab	0	0	2	1
7		Industrial Oriented Mini Project/ Summer Internship	0	0	0	2*
8		Seminar	0	0	2	1
9		Project Stage - I	0	0	6	3
		Total Credits	14	0	10	21

IV YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1		Organizational Behaviour	3	0	0	3
2		Professional Elective - VI	3	0	0	3
3		Open Elective - III	3	0	0	3
4		Project Stage - II	0	0	14	7
	•	Total Credits	9	0	14	16

Note: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit a report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

Professional Elective-I

1	Graph Theory
2	Introduction to Data Science
3	Scripting Languages
4	Image Processing
5	Computer Graphics

 $^{{}^{*}}MC-Satisfactory/Unsatisfactory$

Professional Elective - II

1	Software Testing Methodologies
2	Information Retrieval Systems
3	Pattern Recognition
4	Computer Vision and Robotics
5	Data Warehousing and Business Intelligence

Professional Elective - III

1	Natural Language Processing
2	Data Mining
3	Internet of Things
4	Mobile Application Development
5	Web Technologies

[#] Courses in PE - III and PE - III Lab must be in 1-1 correspondence.

Professional Elective -IV

1	Quantum Computing
2	Expert Systems
3	Cloud Computing
4	Cryptography and Network Security
5	Mobile Computing

Professional Elective - V

1	Social Network Analysis
2	Federated Machine Learning
3	Augmented Reality & Virtual Reality
4	Web Security
5	Ad-hoc & Sensor Networks

Professional Elective - VI

1	Speech and Video Processing
2	Robotic Process Automation
3	Randomized Algorithms
4	Cognitive Computing
5	Semantic Web

List of Open Electives:

Open Elective I:

- 1. Fundamentals of Al
- 2. Machine Learning Basics

Open Elective II:

- 1. Introduction to Natural Language Processing
- 2. Al Applications

Open Elective III:

- 1. Chatbots
- 2. Genetic Algorithms & Fuzzy Logic

CS310PC: DISCRETE MATHEMATICS

B.Tech. II Year I Sem.

L T P C 3 0 0 3

Prerequisites: An understanding of Mathematics in general is sufficient. **Course Objectives**

- Introduces elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations, graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Course Outcomes:

- Ability to understand and construct precise mathematical proofs
- Ability to use logic and set theory to formulate precise statements
- Ability to analyze and solve counting problems on finite and discrete structures
- Ability to describe and manipulate sequences
- Ability to apply graph theory in solving computing problems

UNIT - I

The Foundations: Logic and Proofs: Propositional Logic, Applications of Propositional Logic, Propositional Equivalence, Predicates and Quantifiers, Nested Quantifiers, Rules of Inference, Introduction to Proofs, Proof Methods and Strategy.

UNIT - II

Basic Structures, Sets, Functions, Sequences, Sums, Matrices and Relations Sets, Functions, Sequences & Summations, Cardinality of Sets and Matrices Relations, Relations and Their Properties, n-ary Relations and Their Applications, Representing Relations, Closures of Relations, Equivalence Relations, Partial Orderings.

UNIT - III

Algorithms, Induction and Recursion: Algorithms, The Growth of Functions, Complexity of Algorithms

Induction and Recursion: Mathematical Induction, Strong Induction and Well-Ordering, Recursive Definitions and Structural Induction, Recursive Algorithms, Program Correctness

UNIT - IV

Discrete Probability and Advanced Counting Techniques: An Introduction to Discrete Probability, Probability Theory, Bayes' Theorem, Expected Value and Variance

Advanced Counting Techniques: Recurrence Relations, Solving Linear Recurrence Relations, Divide-and-Conquer Algorithms and Recurrence Relations, Generating Functions, Inclusion-Exclusion, Applications of Inclusion-Exclusion

UNIT - V

Graphs: Graphs and Graph Models, Graph Terminology and Special Types of Graphs, Representing Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest-Path Problems, Planar Graphs, Graph Coloring.

Trees: Introduction to Trees, Applications of Trees, Tree Traversal, Spanning Trees, Minimum Spanning Trees

TEXT BOOK:

 Discrete Mathematics and its Applications with Combinatorics and Graph Theory- Kenneth H Rosen, 7th Edition, TMH.

- Discrete Mathematical Structures with Applications to Computer Science-J.P. Tremblay and R. Manohar, TMH,
- 2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe L. Mott, Abraham Kandel, Teodore P. Baker, 2nd ed, Pearson Education.
- 3. Discrete Mathematics- Richard Johnsonbaugh, 7ThEdn., Pearson Education.
- 4. Discrete Mathematics with Graph Theory- Edgar G. Goodaire, Michael M. Parmenter.
- 5. Discrete and Combinatorial Mathematics an applied introduction: Ralph.P. Grimald, 5th edition, Pearson Education.

CS302PC: DATA STRUCTURES

B.Tech. II Year I Sem. L T P C 3 1 0 4

Prerequisites: A course on "Programming for Problem Solving".

Course Objectives:

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms.

Course Outcomes:

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues-operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees.

UNIT - IV

Graphs: Graph Implementation Methods. Graph Traversal Methods.

Sorting: Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT - V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- Data Structures using C A. S. Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B.A. Forouzan, Cengage Learning.

CS304PC: COMPUTER ORGANIZATION AND ARCHITECTURE

B.Tech. II Year I Sem.

L T P C 3 0 0 3

Co-requisite: A Course on "Digital Logic Design and Microprocessors".

Course Objectives:

- The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.
- It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations.
- Topics include computer arithmetic, instruction set design, microprogrammed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors

Course Outcomes:

- Understand the basics of instructions sets and their impact on processor design.
- Demonstrate an understanding of the design of the functional units of a digital computer system.
- Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
- Design a pipeline for consistent execution of instructions with minimum hazards.
- Recognize and manipulate representations of numbers stored in digital computers

UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit. **Basic Computer Organization and Design:** Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT - II

Microprogrammed Control: Control memory, Address sequencing, micro program example, design of control unit. **Central Processing Unit**: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation. **Computer Arithmetic:** Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT - IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access. **Memory Organization:** Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT - V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor. **Multi Processors:** Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence.

TEXT BOOK:

1. Computer System Architecture – M. Moris Mano, Third Edition, Pearson/PHI.

- Computer Organization Car Hamacher, Zvonks Vranesic, Safea Zaky, Vth Edition, McGraw Hill.
- Computer Organization and Architecture William Stallings Sixth Edition. Pearson/PHI.
- 3. Structured Computer Organization Andrew S. Tanenbaum, 4th Edition, PHI/Pearson.

CS313PC: OPERATING SYSTEMS

B.Tech. II Year I Sem.

L T P C 3 0 0 3

Prerequisites:

- A course on "Computer Programming and Data Structures".
- A course on "Computer Organization and Architecture".

Course Objectives:

- Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- Introduce the issues to be considered in the design and development of operating system
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Will be able to control access to a computer and the files that may be shared
- Demonstrate the knowledge of the components of computer and their respective roles in computing.
- Ability to recognize and resolve user problems with standard operating environments.
- Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

UNIT - I

Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls

UNIT - II

Process and CPU Scheduling - Process concepts and scheduling, Operations on processes, Cooperating Processes, Threads, and Interposes Communication, Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling.

System call interface for process management-fork, exit, wait, waitpid, exec

UNIT - III

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

Process Management and Synchronization - The Critical Section Problem, Synchronization Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors **Interprocess Communication Mechanisms:** IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message gueues, shared memory.

UNIT - IV

Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page Replacement Algorithms.

UNIT - V

File System Interface and Operations -Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close, Iseek, stat, ioctl system calls.

TEXT BOOKS:

1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley

2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

- 1. Operating Systems Internals and Design Principles Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach- Crowley, TMH.
- 3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
- 4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
- 5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

CS311PC: PYTHON PROGRAMMING

B.Tech. II Year I Sem. L T P C 2 0 0 2

Prerequisites: A course on "Programming for Problem Solving using C".

Course Objectives:

- Learn Syntax and Semantics and create Functions in Python.
- Handle Strings and Files in Python.
- Understand Lists, Dictionaries and Regular expressions in Python.
- Implement Object Oriented Programming concepts in Python.
- Build Web Services and introduction to Network and Database Programming in Python.

Course Outcomes:

- Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.
- Demonstrate proficiency in handling Strings and File Systems.
- Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
- Interpret the concepts of Object-Oriented Programming as used in Python.
- Implement exemplary applications related to Network Programming, Web Services and Databases in Python.

UNIT - I

Python Basics, Objects- Python Objects, Standard Types, Other Built-in Types, Internal Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the Standard Types, Unsupported Types

Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex Numbers, Operators, Built-in Functions, Related Modules

Sequences - Strings, Lists, and Tuples, Mapping and Set Types

UNIT - II

FILES: File Objects, File Built-in Function [open()], File Built-in Methods, File Built-in Attributes, Standard Files, Command-line Arguments, File System, File Execution, Persistent Storage Modules, Related Modules

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context Management, *Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions, *Creating Exceptions, Why Exceptions (Now)?, Why Exceptions at All?, Exceptions and the sys Module, Related Modules Modules: Modules and Files, Namespaces, Importing Modules, Importing Module Attributes, Module Built-in Functions, Packages, Other Features of Modules

UNIT - III

Regular Expressions: Introduction, Special Symbols and Characters, Res and Python Multithreaded Programming: Introduction, Threads and Processes, Python, Threads, and the Global Interpreter Lock, Thread Module, Threading Module, Related Modules

UNIT - IV

GUI Programming: Introduction, Tkinter and Python Programming, Brief Tour of Other GUIs, Related Modules and Other GUIs

WEB Programming: Introduction, Wed Surfing with Python, Creating Simple Web Clients, Advanced Web Clients, CGI-Helping Servers Process Client Data, Building CGI Application Advanced CGI, Web (HTTP) Servers

UNIT - V

Database Programming: Introduction, Python Database Application Programmer's Interface (DB-API), Object Relational Managers (ORMs), Related Modules

TEXT BOOK:

1. Core Python Programming, Wesley J. Chun, Second Edition, Pearson.

- 1. Think Python, Allen Downey, Green Tea Press
- 2. Introduction to Python, Kenneth A. Lambert, Cengage
- 3. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
- 4. Learning Python, Mark Lutz, O'Really.

SM306MS: BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

B.Tech. II Year I Sem. L T P C 3 0 0 3

Prerequisites: None

Course Objective: To learn the basic Business types, impact of the Economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company.

UNIT - I

Introduction to Business and Economics:

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply in Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics.

UNIT - II

Demand and Supply Analysis:

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

Supply Analysis: Determinants of Supply, Supply Function & Law of Supply.

UNIT - III

Production, Cost, Market Structures & Pricing:

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition.

Pricing: Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT - IV

Financial Accounting: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts.

UNIT - V

Financial Analysis through Ratios: Concept of Ratio Analysis, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios (simple problems). Introduction to Fund Flow and Cash Flow Analysis (simple problems).

TEXT BOOKS:

1. D.D. Chaturvedi, S.L. Gupta, Business Economics - Theory and Applications, International Book House Pvt. Ltd. 2013.

- 2. Dhanesh K Khatri, Financial Accounting, Tata McGraw Hill, 2011.
- 3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata McGraw Hill Education Pvt. Ltd. 2012.

- 1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.
- 2. S.N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013.

CS307PC: DATA STRUCTURES LAB

B.Tech. II Year I Sem. LTPC 0 0 3 1.5

Prerequisites: A Course on "Programming for problem solving".

Course Objectives:

- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:

- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, gueries and linked lists

List o

	queues and iniked lists.			
,	Ability to Implement searching and sorting algorithms			
Դք F	of Experiments			
	•			
1.	 Write a program that uses fund 	ctions to perform the	e following operations on singly linked	
	list.:			
	i) Creation ii) Insertior	n iii) Deletion	iv) Traversal	
2.	2. Write a program that uses fund	tions to perform the	following operations on doubly linked	
	list.:			
	i) Creation ii) Insertior	n iii) Deletion	iv) Traversal	
3.	3. Write a program that uses func	tions to perform the	following operations on circular linked	
	list.:			
	i) Creation ii) Insertior	n iii) Deletion	iv) Traversal	
4.	4. Write a program that implement	Write a program that implement stack (its operations) using		
	i) Arrays ii) Pointers			
5. Write a program that implement Queue (its operations) using			ns) using	
	i) Arrays ii) Pointers			
6.	Write a program that implements the following sorting methods to sort a given list of integers			
	in an and an		-	

- in ascending order
 - i) Bubble sort ii) Selection sort iii) Insertion sort
- 7. Write a program that use both recursive and non-recursive functions to perform the following searching operations for a Key value in a given list of integers:
 - i) Linear search ii) Binary search
- 8. Write a program to implement the tree traversal methods.
- 9. Write a program to implement the graph traversal methods.

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- 2. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, *PHI/Pearson* Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, Cengage Learning.

CS314PC: OPERATING SYSTEMS LAB (Using UNIX/LINUX)

B.Tech. II Year II Sem. L T P C 0 0 3 1.5

Prerequisites:

- A course on "Programming for Problem Solving".
- A course on "Computer Organization and Architecture".

Co-requisite:

• A course on "Operating Systems".

Course Objectives:

- To provide an understanding of the design aspects of operating system concepts through simulation
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management.
- Able to implement C programs using Unix system calls

List of Experiments:

- 1. Write C programs to simulate the following CPU Scheduling algorithms
 - a) FCFS b) SJF c) Round Robin d) priority
- 2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)
- 3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
- 4. Write a C program to implement the Producer Consumer problem using semaphores using UNIX/LINUX system calls.
- 5. Write C programs to illustrate the following IPC mechanisms
 - a) Pipes b) FIFOs c) Message Queues d) Shared Memory
- 6. Write C programs to simulate the following memory management techniques
 - a) Paging b) Segmentation

TEXT BOOKS:

- Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.
- 2. Advanced programming in the Unix environment, W. R. Stevens, *Pearson* education.

- 1. Operating Systems Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI.
- 2. Operating System A Design Approach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI.
- 4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education.
- 5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education.

CS312PC: PYTHON PROGRAMMING LAB

B.TECH II Year I Sem.

LTPC 0 0 2 1

Prerequisites: A course on "Programming for Problem Solving".

Course Objectives

- To be able to introduce core programming basics and program design with functions using Python programming language.
- To understand a range of Object-Oriented Programming, as well as in-depth data and information processing techniques.
- To understand the high-performance programs designed to strengthen the practical expertise.

Course Outcome

- Student should be able to understand the basic concepts scripting and the contributions of scripting language
- Ability to explore python especially the object-oriented concepts, and the built in objects of Python.
- Ability to create practical and contemporary applications such as TCP/IP network programming, Web applications, discrete event simulations

List of Experiments:

- 1. Write a program to demonstrate different number data types in Python.
- 2. Write a program to perform different Arithmetic Operations on numbers in Python.
- 3. Write a program to create, concatenate and print a string and accessing sub-string from a given string.
- 4. Write a python script to print the current date in the following format "Sun May 29 02:26:23 IST 2017"
- 5. Write a program to create, append, and remove lists in python.
- 6. Write a program to demonstrate working with tuples in python.
- 7. Write a program to demonstrate working with dictionaries in python.
- 8. Write a python program to find largest of three numbers.
- 9. Write a Python program to convert temperatures to and from Celsius, Fahrenheit. [Formula: c/5 = f-32/9
- 10. Write a Python program to construct the following pattern, using a nested for loop

- 11. Write a Python script that prints prime numbers less than 20.
- 12. Write a python program to find factorial of a number using Recursion.
- 13. Write a program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is a right triangle (Recall from the

- Pythagorean Theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides).
- 14. Write a python program to define a module to find Fibonacci Numbers and import the module to another program.
- 15. Write a python program to define a module and import a specific function in that module to another program.
- 16. Write a script named copyfile.py. This script should prompt the user for the names of two text files. The contents of the first file should be input and written to the second file.
- 17. Write a program that inputs a text file. The program should print all of the unique words in the file in alphabetical order.
- 18. Write a Python class to convert an integer to a roman numeral.
- 19. Write a Python class to implement pow(x, n)
- 20. Write a Python class to reverse a string word by word.

*MC309: GENDER SENSITIZATION LAB

(An Activity-based Course)

B.Tech. II Year I Sem.

L T P C 0 0 2 0

COURSE DESCRIPTION

This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Course Objectives:

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Course Outcomes:

- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT - I: UNDERSTANDING GENDER

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: Making Women, Making Men

- Preparing for Womanhood. Growing up Male. First lessons in Caste.

UNIT - II: GENDER ROLES AND RELATIONS

Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles-Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences-Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

UNIT - III: GENDER AND LABOUR

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work. - Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming

UNIT - IV: GENDER - BASED VIOLENCE

The Concept of Violence- Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No! -Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: "Chupulu".

Domestic Violence: Speaking Outls Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...."

UNIT - V: GENDER AND CULTURE

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals

Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks-The Brave Heart.

Note: Since it is an Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

- > Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on "Gender".
- ESSENTIAL READING: The Textbook, "Towards a World of Equals: A Bilingual Textbook on Gender" written by A. Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu published by Telugu Akademi, Telangana Government in 2015.

ASSESSMENT AND GRADING:

Discussion & Classroom Participation: 20%

• Project/Assignment: 30%

End Term Exam: 50%

MA413BS: MATHEMATICAL AND STATISTICAL FOUNDATIONS

B.Tech. II Year I Sem. L T P C 3 0 0 3

Prerequisites: Mathematics courses of first year of study.

Course Objectives:

- The Number Theory basic concepts useful for cryptography etc
- The theory of Probability, and probability distributions of single and multiple random variables
- The sampling theory and testing of hypothesis and making inferences
- Stochastic process and Markov chains.

Course Outcomes: After learning the contents of this course, the student must be able to

- Apply the number theory concepts to cryptography domain
- Apply the concepts of probability and distributions to some case studies
- Correlate the material of one unit to the material in other units
- Resolve the potential misconceptions and hazards in each topic of study.

UNIT - I

Greatest Common Divisors and Prime Factorization: Greatest common divisors, The Euclidean algorithm, The fundamental theorem of arithmetic, Factorization of integers and the Fermat numbers **Congruences:** Introduction to congruences, Linear congruences, The Chinese remainder theorem, Systems of linear congruences

UNIT - II

Simple Linear Regression and Correlation: Introduction to Linear Regression, The Simple Linear Regression Model, Least Squares and the Fitted Model, Properties of the Least Squares Estimators, Inferences Concerning the Regression Coefficients, Prediction, Simple Linear Regression Case Study Random Variables and Probability Distributions: Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions, Statistical Independence. **Discrete Probability Distributions:** Binomial Distribution, Poisson distribution.

UNIT - III

Continuous Probability Distributions: Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial

Fundamental Sampling Distributions: Random Sampling, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, Sampling Distribution of S2, t-Distribution, F-Distribution.

UNIT - IV

Estimation & Tests of Hypotheses: Introduction, Statistical Inference, Classical Methods of Estimation. Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals, Tolerance Limits, Estimating the Variance, Estimating a Proportion for single mean, Difference between Two Means, between Two Proportions for Two Samples and Maximum Likelihood Estimation.

UNIT - V

Stochastic Processes and Markov Chains: Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, nstep transition probabilities, Markov chain, Steady state condition, Markov analysis.

TEXT BOOKS:

- Kenneth H. Rosen, Elementary number theory & its applications, sixth edition, Addison-Wesley, ISBN 978 0-321-50031-1
- 2. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists, 9th Ed. Pearson Publishers.
- 3. S. D. Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi **REFERENCE BOOK:**
 - 1. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications
 - T.T. Soong, Fundamentals of Probability And Statistics For Engineers, John Wiley & Sons Ltd, 2004.
 - 3. Sheldon M Ross, Probability and statistics for Engineers and scientists, Academic Press.

CS424PC: AUTOMATA THEORY & COMPILER DESIGN

B.Tech. II Year II Sem. L T P C 3 1 0 4

Course Objectives:

- 1. To introduce the fundamental concepts of formal languages, grammars and automata theory.
- 2. To understand deterministic and non-deterministic machines and the differences between decidability and undecidability.
- 3. Introduce the major concepts of language translation and compiler design and impart the knowledge of practical skills necessary for constructing a compiler.
- 4. Topics include phases of compiler, parsing, syntax directed translation, type checking use of symbol tables, intermediate code generation

Course Outcomes:

- 1. Able to employ finite state machines for modeling and solving computing problems.
- 2. Able to design context free grammars for formal languages.
- 3. Able to distinguish between decidability and undecidability.
- 4. Demonstrate the knowledge of patterns, tokens & regular expressions for lexical analysis.
- 5. Acquire skills in using lex tool and design LR parsers

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions. Conversion of NFA to DFA

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular Expressions.

Pumping Lemma for Regular Languages: Statement of the pumping lemma, Applications of the Pumping Lemma.

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Parse Trees, Ambiguity in Grammars and Languages.

UNIT - III

Push Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final state

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines

UNIT - IV

Introduction: The structure of a compiler,

Lexical Analysis: The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical- Analyzer Generator Lex,

Syntax Analysis: Introduction, Context-Free Grammars, Writing a Grammar, Top-Down Parsing, Bottom- Up Parsing, Introduction to LR Parsing: Simple LR, More Powerful LR Parsers

UNIT - V

Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD's, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's.

Intermediate-Code Generation: Variants of Syntax Trees, Three-Address Code

Run-Time Environments: Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management

TEXT BOOKS:

- 1. Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
- 2. Compilers: Principles, Techniques and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, 2nd Edition, Pearson.
- 3. Theory of Computer Science Automata languages and computation, Mishra and Chandrashekaran, 2nd Edition, PHI.

- 1. Introduction to Formal languages Automata Theory and Computation, Kamala Krithivasan, Rama R, Pearson.
- 2. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
- 3. lex & yacc John R. Levine, Tony Mason, Doug Brown, O'reilly
- 4. Compiler Construction, Kenneth C. Louden, Thomson. Course Technology.

CS404PC: DATABASE MANAGEMENT SYSTEMS

B.Tech. II Year II Sem.

L T P C 3 0 0 3

Prerequisites: A course on "Data Structures".

Course Objectives

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering tables and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: Queries, Constraints, Triggers: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active data bases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, multi-valued dependencies, FOURTH normal form, FIFTH normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree base Indexing, Comparison of File Organizations, Indexes and Performance Tuning, Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, *Tata Mc Graw Hill* 3rd Edition

2. Database System Concepts, Silberschatz, Korth, Mc Graw hill, V edition.

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C. J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

CS420PC: INTRODUCTION TO ARTIFICIAL INTELLIGENCE

B.Tech. II Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning.
- To understand the concepts of state space representation, exhaustive search, heuristic
- search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- Learn the distinction between optimal reasoning Vs human like reasoning and formulate an
 efficient problem space for a problem expressed in natural language. Also select a search
 algorithm for a problem and estimate its time and space complexities.
- Apply AI techniques to solve problems of game playing, theorem proving, and machine learning.
- Learn different knowledge representation techniques.
- Understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- Comprehend the applications of Probabilistic Reasoning and Bayesian Networks.
- Analyze Supervised Learning Vs. Learning Decision Trees

UNIT - I

Introduction to AI - Intelligent Agents, Problem-Solving Agents,

Searching for Solutions - Breadth-first search, Depth-first search, Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces.

UNIT - II

Games - Optimal Decisions in Games, Alpha–Beta Pruning, Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Knowledge-Based Agents,

Logic- Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses.

UNIT - III

First-Order Logic - Syntax and Semantics of First-Order Logic, Using First Order Logic, Knowledge Engineering in First-Order Logic. Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification. Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events.

UNIT - IV

Planning - Definition of Classical Planning, Algorithms for Planning with State Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches. Hierarchical Planning.

UNIT-V

Probabilistic Reasoning:

Acting under Uncertainty, Basic Probability Notation Bayes' Rule and Its Use, Probabilistic Reasoning, Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First- Order Probability.

TEXT BOOK:

 Artificial Intelligence: A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

- 1. Artificial Intelligence, 3rd Edn., E. Rich and K. Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence. Shivani Goel. Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education.

CS412PC: OBJECT ORIENTED PROGRAMMING USING JAVA

B.TECH II Year II Sem. L T P C 3 1 0 4

Prerequisite: Programming for Problem Solving

Course Objectives:

- To introduce object-oriented programming concepts.
- To understand object-oriented programming concepts, and apply them in solving problems.
- To introduce the principles of inheritance and polymorphism; and demonstrate how they relate to the design of abstract classes
- To introduce the implementation of packages and interfaces
- To introduce the concepts of exception handling and multithreading.
- To introduce the design of Graphical User Interface using applets and swing controls.

Course Outcomes:

- Able to solve real world problems using OOP techniques.
- Able to understand the use of abstract classes.
- Able to solve problems using java collection framework and I/o classes.
- Able to develop multithreaded applications with synchronization.
- Able to develop applets for web applications.
- Able to design GUI based applications

UNIT - I

Object-Oriented Thinking- A way of viewing world – Agents and Communities, messages and methods, Responsibilities, Classes and Instances, Class Hierarchies- Inheritance, Method binding, Overriding and Exceptions, Summary of Object-Oriented concepts. Java buzzwords, An Overview of Java, Data types, Variables and Arrays, operators, expressions, control statements, Introducing classes, Methods and Classes, String handling.

Inheritance— Inheritance concept, Inheritance basics, Member access, Constructors, Creating Multilevel hierarchy, super uses, using final with inheritance, Polymorphism-ad hoc polymorphism, pure polymorphism, method overriding, abstract classes, Object class, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance.

UNIT - II

Packages- Defining a Package, CLASSPATH, Access protection, importing packages.

Interfaces- defining an interface, implementing interfaces, Nested interfaces, applying interfaces, variables in interfaces and extending interfaces.

Stream based I/O (java.io)— The Stream classes-Byte streams and Character streams, Reading console Input and Writing Console Output, File class, Reading and writing Files, Random access file operations, The Console class, Serialization, Enumerations, auto boxing, generics.

UNIT - III

Exception handling - Fundamentals of exception handling, Exception types, Termination or resumptive models, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws and finally, built- in exceptions, creating own exception sub classes.

Multithreading- Differences between thread-based multitasking and process-based multitasking, Java thread model, creating threads, thread priorities, synchronizing threads, inter thread communication.

UNIT - IV

The Collections Framework (java.util)- Collections overview, Collection Interfaces, The Collection classes- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Accessing a

Collection via an Iterator, Using an Iterator, The For-Each alternative, Map Interfaces and Classes, Comparators, Collection algorithms, Arrays, The Legacy Classes and Interfaces- Dictionary, Hashtable, Properties, Stack, Vector

More Utility classes, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner

UNIT - V

GUI Programming with Swing – Introduction, limitations of AWT, MVC architecture, components, containers. Understanding Layout Managers, Flow Layout, Border Layout, Grid Layout, Card Layout, Grid Bag Layout.

Event Handling- The Delegation event model- Events, Event sources, Event Listeners, Event classes, Handling mouse and keyboard events, Adapter classes, Inner classes, Anonymous Inner classes.

A Simple Swing Application, Applets – Applets and HTML, Security Issues, Applets and Applications, passing parameters to applets. Creating a Swing Applet, Painting in Swing, A Paint example, Exploring Swing Controls- JLabel and Image Icon, JText Field, **The Swing Buttons**- JButton, JToggle Button, JCheck Box, JRadio Button, JTabbed Pane, JScroll Pane, JList, JCombo Box, Swing Menus, Dialogs.

TEXT BOOKS:

- 1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt. Ltd.
- 2. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.

- An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch, John Wiley & sons
- 2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 3. Object Oriented Programming through Java, P. Radha Krishna, University Press.
- 4. Programming in Java, S. Malhotra, S. Chudhary, 2nd edition, Oxford Univ. Press.
- 5. Java Programming and Object-oriented Application Development, R. A. Johnson, Cengage Learning.

CS407PC: DATABASE MANAGEMENT SYSTEMS LAB

B.Tech. II Year II Sem.

L T P C 0 0 3 1.5

Co-requisites:

Database Management Systems.

Course Objectives

- Introduce ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation

Course Outcomes

- Design database schema for a given application and apply normalization
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for database applications using procedures, cursors and triggers

List of Experiments

- 1. Concept design with E-R Model
- 2. Relational Model
- 3. Normalization
- 4. Practicing DDL commands
- 5. Practicing DML commands
- 6. Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.)
- 7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
- 8. Triggers (Creation of insert trigger, delete trigger, update trigger)
- 9. Procedures
- 10. Usage of Cursors

TEXT BOOKS:

- 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill, 3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C.J. Date, *Pearson Education*
- 4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

CS408PC: JAVA PROGRAMMING LAB

B.Tech. II Year II Sem.

L T P C 0 0 3 1.5

Course Objectives:

- To write programs using abstract classes.
- To write programs for solving real world problems using java collection frame work.
- To write multithreaded programs.
- To write GUI programs using swing controls in Java.
- To introduce java compiler and eclipse platform.
- To impart hands on experience with java programming.

Course Outcomes:

- Able to write programs for solving real world problems using java collection frame work.
- Able to write programs using abstract classes.
- Able to write multithreaded programs.
- Able to write GUI programs using swing controls in Java.

Note:

- 1. Use LINUX and MySQL for the Lab Experiments. Though not mandatory, encourage the use of Eclipse platform.
- 2. The list suggests the minimum program set. Hence, the concerned staff is requested to add more problems to the list as needed.

List of Experiments:

- 1. Use Eclipse or Net bean platform and acquaint with the various menus. Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.
- 2. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
- 3. a) Develop an applet in Java that displays a simple message.
 - b) Develop an applet in Java that receives an integer in one text field, and computes its factorial Value and returns it in another text field, when the button named "Compute" is clicked.
- 4. Write a Java program that creates a user interface to perform integer divisions. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num 2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a Number Format Exception. If Num2 were Zero, the program would throw an Arithmetic Exception. Display the exception in a message dialog box.
- 5. Write a Java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.
- 6. Write a Java program for the following:

Create a doubly linked list of elements.

Delete a given element from the above list.

Display the contents of the list after deletion.

7. Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with "Stop" or "Ready" or "Go" should appear above the buttons in selected color. Initially, there is no message shown.

- 8. Write a Java program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle, Triangle, and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.
- 9. Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas. Write a java program to display the table using Labels in Grid Layout.
- 10. Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired (Use Adapter classes).
- 11. Write a Java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab (\t). It takes a name or phone number as input and prints the corresponding other value from the hash table (hint: use hash tables).
- 12. Write a Java program that correctly implements the producer consumer problem using the concept of interthread communication.
- 13. Write a Java program to list all the files in a directory including the files present in all its subdirectories.
- 14. Write a Java program that implements Quick sort algorithm for sorting a list of names in ascending order
- 15. Write a Java program that implements Bubble sort algorithm for sorting in descending order and also shows the number of interchanges occurred for the given set of integers.

- 1. Java for Programmers, P. J. Deitel and H. M. Deitel, 10th Edition *Pearson* education.
- 2. Thinking in Java, Bruce Eckel, Pearson Education.
- 3. Java Programming, D. S. Malik and P. S. Nair, Cengage Learning.
- 4. Core Java, Volume 1, 9th edition, Cay S. Horstmann and G Cornell, *Pearson*.

CS421PC: ARTIFICIAL INTELLIGENCE LAB

B.Tech. II Year I Sem. L T P C 0 0 2 1

Course Objectives:

 Become familiar with basic principles of AI toward problem solving, knowledge representation, and learning.

Course Outcomes:

- Apply basic principles of AI in solutions that require problem solving, knowledge representation, and learning.
- Possess the skill for representing knowledge using the appropriate technique
- · Possess the ability to apply AI techniques to solve problems of Game Playing

List of Experiments (AI)

- 1) Write a program in prolog to implement simple facts and Queries
- 2) Write a program in prolog to implement simple arithmetic
- 3) Write a program in prolog to solve Monkey banana problem
- 4) Write a program in prolog to solve Tower of Hanoi
- 5) Write a program in prolog to solve 8 Puzzle problems
- 6) Write a program in prolog to solve 4-Queens problem
- 7) Write a program in prolog to solve Traveling salesman problem
- 8) Write a program in prolog for Water jug problem

TEXT BOOK:

1. Artificial Intelligence: A Modern Approach Third Edition Stuart Russell and Peter Norvig, 2010. Pearson Education, Inc. ISBN: 978-0-13-604259-4

*MC409: CONSTITUTION OF INDIA

B.Tech. II Year II Sem.

L T P C 3 0 0 0

The Constitution of India is the supreme law of India. Parliament of India cannot make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the "basic structure" of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of "Constitutionalism" – a modern and progressive concept historically developed by the thinkers of "liberalism" – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of "constitutionalism" in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India's legacy of "diversity". It has been said that Indian constitution reflects ideals of its freedom movement; however, few critics have argued that it does not truly incorporate our own ancient legal heritage and cultural values. No law can be "static" and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution but also strengthened the same through progressive interpretations of the text of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it "as one of the strongest court in the world".

Course content

- 1. Meaning of the constitution law and constitutionalism
- 2. Historical perspective of the Constitution of India
- 3. Salient features and characteristics of the Constitution of India
- 4. Scheme of the fundamental rights
- 5. The scheme of the Fundamental Duties and its legal status
- 6. The Directive Principles of State Policy Its importance and implementation
- 7. Federal structure and distribution of legislative and financial powers between the Union and the States
- Parliamentary Form of Government in India The constitution powers and status of the President of India
- 9. Amendment of the Constitutional Powers and Procedure
- 10. The historical perspectives of the constitutional amendments in India
- 11. Emergency Provisions: National Emergency, President Rule, Financial Emergency
- 12. Local Self Government Constitutional Scheme in India
- 13. Scheme of the Fundamental Right to Equality
- 14. Scheme of the Fundamental Right to certain Freedom under Article 19
- 15. Scope of the Right to Life and Personal Liberty under Article 21

MACHINE LEARNING

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Prerequisites:

- 1. Data Structures
- 2. Knowledge on statistical methods

Course Objectives:

- This course explains machine learning techniques such as decision tree learning, Bayesian learning etc.
- To understand computational learning theory.
- To study the pattern comparison techniques.

Course Outcomes:

- Understand the concepts of computational intelligence like machine learning
- Ability to get the skill to apply machine learning techniques to address the real time problems in different areas
- Understand the Neural Networks and its usage in machine learning application.

UNIT - I

Introduction - Well-posed learning problems, designing a learning system, Perspectives and issues in machine learning

Concept learning and the general to specific ordering – introduction, a concept learning task, concept learning as search, find-S: finding a maximally specific hypothesis, version spaces and the candidate elimination algorithm, remarks on version spaces and candidate elimination, inductive bias.

Decision Tree Learning – Introduction, decision tree representation, appropriate problems for decision tree learning, the basic decision tree learning algorithm, hypothesis space search in decision tree learning, inductive bias in decision tree learning, issues in decision tree learning.

UNIT - II

Artificial Neural Networks-1– Introduction, neural network representation, appropriate problems for neural network learning, perceptions, multilayer networks and the back-propagation algorithm.

Artificial Neural Networks-2- Remarks on the Back-Propagation algorithm, An illustrative example: face recognition, advanced topics in artificial neural networks.

Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling theory, a general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithms.

UNIT - III

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibs algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief networks, the EM algorithm.

Computational learning theory – Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the mistake bound model of learning.

Instance-Based Learning- Introduction, *k*-nearest neighbour algorithm, locally weighted regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning.

UNIT-IV

Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis space search, genetic programming, models of evolution and learning, parallelizing genetic algorithms.

Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, inverting resolution.

Reinforcement Learning – Introduction, the learning task, Q-learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.

UNIT - V

Analytical Learning-1- Introduction, learning with perfect domain theories: PROLOG-EBG, remarks on explanation-based learning, explanation-based learning of search control knowledge.

Analytical Learning-2-Using prior knowledge to alter the search objective, using prior knowledge to augment search operators.

Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis.

TEXT BOOK:

1. Machine Learning - Tom M. Mitchell, - MGH

REFERENCE BOOK:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis

DESIGN AND ANALYSIS OF ALGORITHMS

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Advanced Data Structures".

Course Objectives:

- Introduces the notations for analysis of the performance of algorithms.
- Introduces the data structure disjoint sets.
- Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate;
- Describes how to evaluate and compare different algorithms using worst-, average-, and best case analysis.
- Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Course Outcomes:

- Ability to analyze the performance of algorithms
- Ability to choose appropriate data structures and algorithm design methods for a specified application
- Ability to understand how the choice of data structures and the algorithm design methods
- Impact the performance of programs

UNIT - I

Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

UNIT - II

Disjoint Sets: Disjoint set operations, union and find algorithms

Backtracking: General method, applications, n-queen's problem, sum of subsets problem, graph coloring

UNIT - III

Dynamic Programming: General method, applications- Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

UNIT - IV

Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees. Single source shortest path problem.

UNIT-V

Branch and Bound: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP - Hard and NP-Complete classes, Cook's theorem.

TEXT BOOK:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University Press.

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
- Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley and sons.

BIG DATA TECHNOLOGIES

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Course Objectives

- The purpose of this course is to provide the students with the knowledge of Big data Analytics principles and techniques.
- This course is also designed to give an exposure of the frontiers of Big data Analytics

Courses Outcomes

- Ability to explain the foundations, definitions, and challenges of Big Data and various Analytical tools.
- Ability to program using HADOOP and Map reduce, NOSQL
- Ability to understand the importance of Big Data in Social Media and Mining.

UNIT - I

Getting an Overview of Big Data: What is Big Data? History of Data Management – Evolution of Big Data, Structuring Big Data, Elements of Big Data, Big Data Analytics, Careers in Big Data, Future of Big Data

Technologies for Handling Big Data: Distributed and Parallel Computing for Big Data, Introducing Hadoop, Cloud Computing and Big Data, In-Memory Computing Technology for Big Data.

UNIT - II

Understanding Hadoop Ecosystem: Hadoop Ecosystem, Hadoop Distributed File System, MapReduce, Hadoop YARN, Hbase, Hive, Pig and Pig Latin, Sqoop, ZooKeeper, Flume, Oozie **Understanding MapReduce Fundamentals and HBase:** The MapReduce Framework, Techniques to Optimize MapReduce Jobs, Uses of MapReduce, Role of HBase in Big Data Processing

UNIT - III

Understanding Analytics and Big Data: Comparing Reporting and Analysis, Types of Analytics, Points to Consider during Analysis, Developing an Analytic Team, Understanding Text Analytics **Analytical Approaches and Tools to Analyze Data:** Analytical Approaches, History of Analytical Tools. Introduction to Popular Analytical Tools, Comparing Various Analytical Tools, Installing R.

UNIT - IV

Data Visualization-I: Introducing Data Visualization, Techniques Used for Visual Data Representation, Types of Data Visualization, Applications of Data Visualization, Visualizing Big Data, Tools Used in Data Visualization, Tableau Products

Data Visualization with Tableau (Data Visualization-II): Introduction to Tableau Software, Tableau Desktop Workspace, Data Analytics in Tableau Public, Using Visual Controls in Tableau Public

UNIT-V

Social Media Analytics and Text Mining: Introducing social media, Introducing Key Elements of social media, Introducing Text Mining, Understanding Text Mining Process, Sentiment Analysis, Performing Social Media Analytics and Opinion

Mining on Tweets

Mobile Analytics: Introducing Mobile Analytics, Introducing Mobile Analytics Tools, Performing Mobile Analytics, Challenges of Mobile Analytics

TEXT BOOKS:

- 1. Big data, blackbook, Dreamtech press, 2015
- 2. Big Data Analytics, Seema Acharya, Subhashini Chellappan, Wiley 2015.
- 3. Simon Walkowiak, Big Data Analytics with R, Packt Publishing, ISBN: 9781786466457

- Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiley CIO Series, 2013.
- 2. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O" Reilly Media, 2012.
- Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.

SOFTWARE ENGINEERING

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes:

- Ability to translate end-user requirements into system and software requirements, using e.g.
- UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level design
 of a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

UNIT - I

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths.

A Generic view of process: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI), process patterns, process assessment, personal and team process models.

Process models: The waterfall model, incremental process models, evolutionary process models, the unified process.

UNIT - II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

System models: Context models, behavioral models, data models, object models, structured methods.

UNIT - III

Design Engineering: Design process and design quality, design concepts, the design model.

Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT - IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging.

Product metrics: Software quality, metrics for analysis model, metrics for design model, metrics for source code, metrics for testing, metrics for maintenance.

UNIT - V

Metrics for Process and Products: Software measurement, metrics for software quality.

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM, RMMM plan.

Quality Management: Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition.

- 2. Software Engineering- Sommerville, 7th edition, Pearson Education.
- 3. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.

- 1. software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.
- 2. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies.
- 3. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education.

GRAPH THEORY (Professional Elective - I)

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Pre-requisites: An understanding of Mathematics in general is sufficient.

Course Outcomes:

- Know some important classes of graph theoretic problems;
- Be able to formulate and prove central theorems about trees, matching, connectivity, colouring and planar graphs;
- Be able to describe and apply some basic algorithms for graphs;
- Be able to use graph theory as a modelling tool.

UNIT - I

Introduction-Discovery of graphs, Definitions, Subgraphs, Isomorphic graphs, Matrix representations of graphs, Degree of a vertex, Directed walks, paths and cycles, Connectivity in digraphs, Eulerian and Hamilton digraphs, Eulerian digraphs, Hamilton digraphs, Special graphs, Complements, Larger graphs from smaller graphs, Union, Sum, Cartesian Product, Composition, Graphic sequences, Graph theoretic model of the LAN problem, Havel-Hakimi criterion, Realization of a graphic sequence.

UNIT - II

Connected graphs and shortest paths - Walks, trails, paths, cycles, Connected graphs, Distance, Cut-vertices and cut-edges, Blocks, Connectivity, Weighted graphs and shortest paths, Weighted graphs, Dijkstra"s shortest path algorithm, Floyd-Warshall shortest path algorithm.

UNIT - III

Trees- Definitions and characterizations, Number of trees, Cayley's formula, Kirchod-matrix-tree theorem, Minimum spanning trees, Kruskal's algorithm, Prim's algorithm, Special classes of graphs, Bipartite Graphs, Line Graphs, Chordal Graphs, Eulerian Graphs, Fleury's algorithm, Chinese Postman problem, Hamilton Graphs, Introduction, Necessary conditions and sufficient conditions.

UNIT - IV

Independent sets coverings and matchings – Introduction, Independent sets and coverings: basic equations, Matchings in bipartite graphs, Hall's Theorem, K"onig"s Theorem, Perfect matchings in graphs, Greedy and approximation algorithms.

UNIT - V

Vertex Colorings- Basic definitions, Cliques and chromatic number, Mycielski"s theorem, Greedy coloring algorithm, Coloring of chordal graphs, Brooks theorem, Edge Colorings, Introduction and Basics, Gupta-Vizing theorem, Class-1 and Class-2 graphs, Edge-coloring of bipartite graphs, Class-2 graphs, Hajos union and Class-2 graphs, A scheduling problem and equitable edge-coloring.

TEXT BOOKS:

- 1. J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Texts in Mathematics. Springer, 1st edition, 2008.
- 2. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.

- 1. Lecture Videos; http://nptel.ac.in/courses/111106050/13.
- 2. Introduction to Graph Theory, Douglas B. West, Pearson.
- 3. Schaum's Outlines Graph Theory, Balakrishnan, TMH.
- 4. Introduction to Graph Theory, Wilson Robin j, PHI.
- 5. Graph Theory with Applications to Engineering and Computer Science, Narsing Deo, PHI.
- 6. Graphs An Introductory Approach, Wilson and Watkins.

INTRODUCTION TO DATA SCIENCE (Professional Elective - I)

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- Learn concepts, techniques and tools they need to deal with various facets of data science practice, including data collection and integration
- Understand the basic types of data and basic statistics
- Identify the importance of data reduction and data visualization techniques

Course Outcomes: After completion of the course, the student should be able to

- Understand basic terms what Statistical Inference means.
- Identify probability distributions commonly used as foundations for statistical modeling. Fit a model to data
- describe the data using various statistical measures
- utilize R elements for data handling
- perform data reduction and apply visualization techniques.

UNIT - I

Introduction: Definition of Data Science- Big Data and Data Science hype – and getting past the hype – Datafication - Current landscape of perspectives - Statistical Inference - Populations and samples - Statistical modeling, probability distributions, fitting a model – Over fitting.

Basics of R: Introduction, R-Environment Setup, Programming with R, Basic Data Types.

UNIT - II

Data Types & Statistical Description

Types of Data: Attributes and Measurement, What is an Attribute? The Type of an Attribute, The Different Types of Attributes, Describing Attributes by the Number of Values, Asymmetric Attributes, Binary Attribute, Nominal Attributes, Ordinal Attributes, Numeric Attributes, Discrete versus Continuous Attributes.

Basic Statistical Descriptions of Data: Measuring the Central Tendency: Mean, Median, and Mode, Measuring the Dispersion of Data: Range, Quartiles, Variance, Standard Deviation, and Inter-quartile Range, Graphic Displays of Basic Statistical Descriptions of Data.

UNIT - III

Vectors: Creating and Naming Vectors, Vector Arithmetic, Vector sub setting,

Matrices: Creating and Naming Matrices, Matrix Sub setting, Arrays, Class.

Factors and Data Frames: Introduction to Factors: Factor Levels, summarizing a Factor, Ordered Factors, Comparing Ordered Factors, Introduction to Data Frame, sub setting of Data Frames, Extending Data Frames, Sorting Data Frames.

Lists: Introduction, creating a List: Creating a Named List, Accessing List Elements, Manipulating List Elements, Merging Lists, Converting Lists to Vectors

UNIT - IV

Conditionals and Control Flow: Relational Operators, Relational Operators and Vectors, Logical Operators, Logical Operators and Vectors, Conditional Statements.

Iterative Programming in R: Introduction, While Loop, For Loop, Looping Over List.

Functions in R: Introduction, writing a Function in R, Nested Functions, Function Scoping, Recursion, Loading an R Package, Mathematical Functions in R.

UNIT - V

Data Reduction: Overview of Data Reduction Strategies, Wavelet Transforms, Principal Components Analysis, Attribute Subset Selection, Regression and Log-Linear Models: Parametric Data Reduction, Histograms, Clustering, Sampling, Data Cube Aggregation.

Data Visualization: Pixel-Oriented Visualization Techniques, Geometric Projection Visualization Techniques, Icon-Based Visualization Techniques, Hierarchical Visualization Techniques, Visualizing Complex Data and Relations.

TEXT BOOKS:

- Doing Data Science, Straight Talk from The Frontline. Cathy O'Neil and Rachel Schutt, O'Reilly, 2014
- 2. Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques, 3rd ed. The Morgan Kaufmann Series in Data Management Systems.
- 3. K G Srinivas, G M Siddesh, "Statistical programming in R", Oxford Publications.

- 1. Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, Pearson Education.
- 2. Brain S. Everitt, "A Handbook of Statistical Analysis Using R", Second Edition, 4 LLC, 2014.
- 3. Dalgaard, Peter, "Introductory statistics with R", Springer Science & Business Media, 2008.
- 4. Paul Teetor, "R Cookbook", O'Reilly, 2011.

SCRIPTING LANGUAGES (Professional Elective - I)

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Prerequisites:

- 1. A course on "Computer Programming and Data Structures"
- 2. A course on "Object Oriented Programming Concepts"

Course Objectives:

- This course introduces the script programming paradigm
- Introduces scripting languages such as Perl, Ruby and TCL.
- Learning TCL

Course Outcomes:

- Comprehend the differences between typical scripting languages and typical system and application programming languages.
- Gain knowledge of the strengths and weakness of Perl, TCL and Ruby; and select an appropriate language for solving a given problem.
- · Acquire programming skills in scripting language

UNIT - I

Introduction: Ruby, Rails, The structure and Execution of Ruby Programs, Package Management with RUBYGEMS, Ruby and web: Writing CGI scripts, cookies, Choice of Web Servers, SOAP and web services.

RubyTk – Simple Tk Application, widgets, Binding events, Canvas, scrolling.

UNIT - II

Extending Ruby: Ruby Objects in C, the Jukebox extension, Memory allocation, Ruby Type System, Embedding Ruby to Other Languages, Embedding a Ruby Interpreter.

UNIT - III

Introduction to PERL and Scripting

Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting Languages. PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes, strings, pattern and regular expressions, subroutines.

UNIT - IV

Advanced Perl

Finer points of looping, pack and unpack, filesystem, eval, data structures, packages, modules, objects, interfacing to the operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security Issues.

UNIT - V

TCL

TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output, procedures, strings, patterns, files, Advance TCL- eval, source, exec and uplevel commands, Name spaces, trapping errors, event driven programs, making applications internet aware, Nuts and Bolts Internet Programming, Security Issues, C Interface.

Tk

Tk-Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and Binding, Perl-Tk.

TEXT BOOKS:

- 1. The World of Scripting Languages, David Barron, Wiley Publications.
- 2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly
- 3. "Programming Ruby" The Pragmatic Programmer's guide by Dabve Thomas Second edition

- 1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J. Lee and B. Ware (Addison Wesley) Pearson Education.
- 2. Perl by Example, E. Quigley, Pearson Education.
- 3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
- 4. Tcl and the Tk Toolkit, Ousterhout, Pearson Education.
- 5. Perl Power, J. P. Flynt, Cengage Learning.

IMAGE PROCESSING (Professional Elective - I)

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Pre-requisites:

- Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of digital signal processing is desirable.
- A course on "Computational Mathematics"
- A course on "Computer Oriented Statistical Methods"

Course Objectives:

- Provide a theoretical and mathematical foundation of fundamental Digital Image Processing concepts.
- The topics include image acquisition; sampling and quantization; pre-processing; enhancement; restoration; segmentation; and compression.

Course Outcomes:

- Demonstrate the knowledge of the basic concepts of two-dimensional signal acquisition, sampling, and quantization.
- 2. Demonstrate the knowledge of filtering techniques.
- 3. Demonstrate the knowledge of 2D transformation techniques.
- 4. Demonstrate the knowledge of image enhancement, segmentation, restoration and compression techniques.

UNIT - I

Digital Image Fundamentals: Digital Image through Scanner, Digital Camera. Concept of Gray Levels. Gray Level to Binary Image Conversion. Sampling and Quantization. Relationship between Pixels. Imaging Geometry. 2D Transformations-DFT, DCT, KLT and SVD.

UNIT - II

Image Enhancement in Spatial Domain Point Processing, Histogram Processing, Spatial Filtering, Enhancement in Frequency Domain, Image Smoothing, Image Sharpening.

UNIT - III

Image Restoration Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration.

UNIT - IV

Image Segmentation Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region Oriented Segmentation.

UNIT - V

Image Compression Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Source Encoder and Decoder, Error Free Compression, Lossy Compression.

TEXT BOOK:

1. Digital Image Processing: R.C. Gonzalez & R. E. Woods, Addison Wesley/ Pearson Education, 2nd Ed, 2004.

- 1. Fundamentals of Digital Image Processing: A. K. Jain, PHI.
- Digital Image Processing using MAT LAB: Rafael C. Gonzalez, Richard E. Woods, Steven L.Eddins: Pearson Education India, 2004.
- 3. Digital Image Processing: William K. Pratt, John Wilely, 3rd Edition, 2004.

COMPUTER GRAPHICS (Professional Elective - I)

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Pre-requisites:

- Familiarity with the theory and use of coordinate geometry and of linear algebra such as matrix multiplication.
- A course on "Computer Programming and Data Structures".

Course Objectives:

- The aim of this course is to provide an introduction of fundamental concepts and theory of computer graphics.
- Topics covered include graphics systems and input devices; geometric representations and 2D/3D transformations; viewing and projections; illumination and color models; animation; rendering and implementation; visible surface detection;

Course Outcomes:

- Acquire familiarity with the relevant mathematics of computer graphics.
- Be able to design basic graphics application programs, including animation.
- Be able to design applications that display graphic images to given specifications.

UNIT - I

Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices

Output primitives: Points and lines, line drawing algorithms (Bresenham's and DDA Algorithm), midpoint circle and ellipse algorithms

Polygon Filling: Scan-line algorithm, boundary-fill and flood-fill algorithms

UNIT - II

- **2-D geometrical transforms:** Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems
- **2-D viewing:** The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland algorithms, Sutherland –Hodgeman polygon clipping algorithm.

UNIT - III

3-D object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces. Basic illumination models, polygon rendering methods.

UNIT - IV

- **3-D Geometric transformations:** Translation, rotation, scaling, reflection and shear transformations, composite transformations.
- 3-D viewing: Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

UNIT - V

Computer animation: Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications

Visible surface detection methods: Classification, back-face detection, depth-buffer, BSP-tree

methods and area sub-division methods

TEXT BOOKS:

- 1. "Computer Graphics C version", Donald Hearn and M. Pauline Baker, Pearson Education
- 2. "Computer Graphics Principles & practice", second edition in C, Foley, Van Dam, Feiner and Hughes, Pearson Education.
- 3. Computer Graphics, Steven Harrington, TMH

- 1. Procedural elements for Computer Graphics, David F Rogers, Tata Mc Graw hill, 2nd edition.
- 2. Principles of Interactive Computer Graphics", Neuman and Sproul, TMH.
- 3. Principles of Computer Graphics, Shalini Govil, Pai, 2005, Springer.

SOFTWARE TESTING METHODOLOGIES (Professional Elective - II)

B.Tech. III Year I Sem. L T P C 3 0 0 3

Prerequisites: A course on "Software Engineering".

Course Objectives:

- To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
- To develop skills in software test automation and management using latest tools.

Course Outcomes: Design and develop the best test strategies in accordance to the development model.

UNIT - I

Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs. Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT - II

Transaction Flow Testing: transaction flows, transaction flow testing techniques. Dataflow testing: Basics of dataflow testing, strategies in dataflow testing, application of dataflow testing. Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT - III

Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection. Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications.

UNIT - IV

State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.

UNIT - V

Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like JMeter or Win-runner).

TEXT BOOKS:

- 1. Software Testing techniques Baris Beizer, Dreamtech, second edition.
- 2. Software Testing Tools Dr. K. V. K. K. Prasad, Dreamtech.

- 1. The craft of software testing Brian Marick, Pearson Education.
- 2. Software Testing Techniques SPD(Oreille)
- 3. Software Testing in the Real World Edward Kit, Pearson.
- 4. Effective methods of Software Testing, Perry, John Wiley.
- 5. Art of Software Testing Meyers, John Wiley.

INFORMATION RETRIEVAL SYSTEMS (Professional Elective - II)

B.Tech. III Year I Sem. L T P C 3 0 0 3

Prerequisites: Data Structures

Course Objectives:

To learn the important concepts and algorithms in IRS

 To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems.

Course Outcomes:

- Ability to apply IR principles to locate relevant information large collections of data
- Ability to design different document clustering algorithms
- Implement retrieval systems for web search tasks.
- Design an Information Retrieval System for web search tasks.

UNIT - I

Introduction to Information Retrieval Systems: Definition of Information Retrieval System, Objectives of Information Retrieval Systems, Functional Overview, Relationship to Database Management Systems, Digital Libraries and Data Warehouses.

Information Retrieval System Capabilities: Search Capabilities, Browse Capabilities, Miscellaneous Capabilities.

UNIT - II

Cataloging and Indexing: History and Objectives of Indexing, Indexing Process, Automatic Indexing, Information Extraction.

Data Structure: Introduction to Data Structure, Stemming Algorithms, Inverted File Structure, N-Gram Data Structures, PAT Data Structure, Signature File Structure, Hypertext and XML Data Structures, Hidden Markov Models.

UNIT - III

Automatic Indexing: Classes of Automatic Indexing, Statistical Indexing, Natural Language, Concept Indexing, Hypertext Linkages.

Document and Term Clustering: Introduction to Clustering, Thesaurus Generation, Item Clustering, Hierarchy of Clusters.

UNIT - IV

User Search Techniques: Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext.

Information Visualization: Introduction to Information Visualization, Cognition and Perception, Information Visualization Technologies.

UNIT - V

Text Search Algorithms: Introduction to Text Search Techniques, Software Text Search Algorithms, Hardware Text Search Systems.

Multimedia Information Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, Imagery Retrieval, Video Retrieval.

TEXT BOOK:

 Information Storage and Retrieval Systems – Theory and Implementation, Second Edition, Gerald J. Kowalski, Mark T. Maybury, Springer

- Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992.
- 2. Information Storage & Retrieval By Robert Korfhage John Wiley & Sons.
- 3. Modern Information Retrieval By Yates and Neto Pearson Education.

PATTERN RECOGNITION (Professional Elective - II)

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Prerequisites

- Students are expected to have knowledge basic linear algebra, basic probability theory and basic programming techniques;
- A course on "Computational Mathematics"
- A course on "Computer Oriented Statistical Methods"

Course Objectives

- This course introduces fundamental concepts, theories, and algorithms for pattern recognition and machine learning.
- Topics include: Pattern Representation, Nearest Neighbor Based Classifier, Bayes Classifier, Hidden Markov Models, Decision Trees, Support Vector Machines, Clustering, and an application of hand-written digit recognition.

Course Outcomes

- Understand the theory, benefits, inadequacies and possible applications of various machine learning and pattern recognition algorithms
- Identify and employ suitable machine learning techniques in classification, pattern recognition, clustering and decision problems.
- **UNIT I**: Introduction: What is Pattern Recognition, Data Sets for Pattern Recognition, Different Paradigms for Pattern Recognition. Representation: Data Structures for Pattern Representation, Representation of Clusters, Proximity Measures, Size of Patterns, Abstractions of the Data Set, Feature Extraction, Feature Selection, Evaluation of Classifier, Evaluation of Clustering.
- **UNIT II:** Nearest Neighbor Based Classifier: Nearest Neighbor Algorithm, Variants of the NN Algorithm use of the Nearest Neighbor Algorithm for Transaction Databases, Efficient Algorithms, Data Reduction, Prototype Selection. Bayes Classifier: Bayes Theorem, Minimum Error Rate Classifier, Estimation of Probabilities, Comparison with the NNC, Naïve Bayes Classifier, Bayesian Belief Network.
- **UNIT III:** Hidden Markov Models: Markov Models for Classification, Hidden Morkov Models, Classification using HMMs. Decision Trees: Introduction, Decision Tree for Pattern Classification, Construction of Decision Trees, Splitting at the Nodes, Overfitting and Pruning, Examples of Decision Tree Induction.
- **UNIT IV:** Support Vector Machines: Introduction, Learning the Linear Discriminant Functions, Neural Networks, SVM for Classification. Combination of Classifiers: Introduction, Methods for Constructing Ensembles of Classifiers, Methods for Combining Classifiers.
- **UNIT V:** Clustering: Why is Clustering Important, Hierarchical Algorithms, Partitional Clustering, Clustering Large Data Sets. An Application-Hand Written Digit Recognition: Description of the Digit Data, Preprocessing of Data, Classification Algorithms, Selection of Representative Patterns, Results.

TEXT BOOK:

 Pattern Recognition: An Algorithmic Approach: Murty, M. Narasimha, Devi, V. Susheela, Spinger Pub, 1st Ed.

- 1. Machine Learning Mc Graw Hill, Tom M. Mitchell.
- Fundamentals Of Speech Recognition: Lawrence Rabiner and Biing- Hwang Juang. Prentice-Hall Pub.

COMPUTER VISION AND ROBOTICS (Professional Elective - II)

B.Tech. III Year I Sem. L T P C 3 0 0 3

Pre-Requisites: UG level Course in Linear Algebra and Probability.

Course Objectives:

1. To understand the Fundamental Concepts Related To sources, shadows and shading.

2. To understand the The Geometry of Multiple Views.

Course Outcomes:

- 1. Implement fundamental image processing techniques required for computer vision.
- 2. Implement boundary tracking techniques.
- Apply chain codes and other region descriptors, Hough Transform for line, circle, and ellipse detections.
- 4. Apply 3D vision techniques and Implement motion related techniques.
- 5. Develop applications using computer vision techniques.

UNIT - I

CAMERAS: Pinhole Cameras.

Radiometry - Measuring Light: Light in Space, Light Surfaces, Important Special Cases.

Sources, Shadows, And Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric Stereo, Interreflections: Global Shading Models.

Color: The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color.

UNIT - II

Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates.

Edge Detection: Noise, Estimating Derivatives, Detecting Edges.

Texture: Representing Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture.

UNIT - III

The Geometry of Multiple Views: Two Views

Stereopsis: Reconstruction, Human Stereposis, Binocular Fusion, Using More Cameras

Segmentation by Clustering: What Is Segmentation? Human Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering,

UNIT - IV

Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness

Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice.

Tracking With Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples

UNIT - V

Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations.

Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera

Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, An Application: Mobile Robot Localization.

Model-Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Application: Registration In Medical Imaging Systems, Curved Surfaces and Alignment.

TEXT BOOKS:

1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009.

- 1. E. R. Davies: Computer and Machine Vision Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.
- 2. R. C. Gonzalez and R. E. Woods "Digital Image Processing" Addison Wesley 2008.
- 3. Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London Limited 2011.

DATA WAREHOUSING AND BUSINESS INTELLIGENCE (Professional Elective - II)

B.Tech. III Year I Sem.

Course Objectives:

1. This course is concerned with extracting data from the information systems that deal with the day-to-day operations and transforming it into data that can be used by businesses to drive high-level decision making

L T

0

PC

0 3

2. Students will learn how to design and create a data warehouse, and how to utilize the process of extracting, transforming, and loading (ETL) data into data warehouses.

Course Outcomes:

- 1. Understand architecture of data warehouse and OLAP operations.
- 2. Understand Fundamental concepts of BI and Analytics
- 3. Application of BI Key Performance indicators
- 4. Design of Dashboards, Implementation of Web Analytics
- 5. Understand Utilization of Advanced BI Tools and their Implementation.
- 6. Implementation of BI Techniques and BI Ethics.

UNIT - I

DATA WAREHOUSE: Data Warehouse-Data Warehouse Architecture- Multidimensional Data Model-Data cube and OLAP Technology-Data Warehouse Implementation -DBMS schemas for Decision support - Efficient methods for Data cube computation.

LINIT - II

Business Intelligence: Introduction – Definition, Leveraging Data and Knowledge for BI, BI Components, BI Dimensions, Information Hierarchy, Business Intelligence and Business Analytics. BI Life Cycle. Data for BI - Data Issues and Data Quality for BI.

UNIT - III

BI Implementation - Key Drivers, Key Performance Indicators and Performance Metrics, BI Architecture/Framework, Best Practices, Business Decision Making, Styles of BI-vent-Driven alerts-A cyclic process of Intelligence Creation. The value of Business intelligence -Value driven and Information use.

UNIT - IV

Advanced BI – Big Data and BI, Social Networks, Mobile BI, emerging trends, Description of different BI-Tools (Pentaho, KNIME)

UNIT - V

Business intelligence implementation-Business Intelligence and integration implementation-connecting in BI systems- Issues of legality- Privacy and ethics- Social networking and BI.

TEXT BOOKS:

- 1. Data Mining Concepts and Techniques JIAWEI HAN & MICHELINE KAMBER, Elsevier.
- 2. Rajiv Sabherwal "Business Intelligence" Wiley Publications, 2012.

- 1. Efraim Turban, Ramesh Sharda, Jay Aronson, David King, Decision Support and Business Intelligence Systems, 9th Edition, Pearson Education, 2009.
- David Loshin, Business Intelligence The Savy Manager's Guide Getting Onboard with Emerging IT, Morgan Kaufmann Publishers, 2009.
- Philo Janus, Stacia Misner, Building Integrated Business Intelligence Solutions with SQL Server, 2008 R2 & Office 2010, TMH, 2011.
- 4. Business Intelligence Data Mining and Optimization for decision making [Author: Carlo-Verellis] [Publication: (Wiley)]
- Data Warehousing, Data Mining & OLAP- Alex Berson and Stephen J. Smith- Tata McGraw-Hill Edition, Tenth reprint 2007
- 6. Building the Data Warehouse- W. H. Inmon, Wiley Dreamtech India Pvt. Ltd.
- 7. Data Mining Introductory and Advanced topics –MARGARET H DUNHAM, PEA.

MACHINE LEARNING LAB

B.Tech. III Year I Sem.

L T P C 0 0 3 1.5

Course Objective: The objective of this lab is to get an overview of the various machine learning techniques and can able to demonstrate them using python.

Course Outcomes: After the completion of the course the student can able to:

- understand complexity of Machine Learning algorithms and their limitations;
- understand modern notions in data analysis-oriented computing;
- be capable of confidently applying common Machine Learning algorithms in practice and implementing their own;
- Be capable of performing experiments in Machine Learning using real-world data.

List of Experiments

- 1. The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result. (Ans: 15%)
- 2. Extract the data from database using python
- 3. Implement k-nearest neighbours classification using python
- 4. Given the following data, which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of k-means clustering with 3 means (i.e., 3 centroids)

VAR1	VAR2	CLASS
1.713	1.586	0
0.180	1.786	1
0.353	1.240	1
0.940	1.566	0
1.486	0.759	1
1.266	1.106	0
1.540	0.419	1
0.459	1.799	1
0.773	0.186	1

The following training examples map descriptions of individuals onto high, medium and low credit-worthiness.

```
medium skiina desian
                         single twenties no -> highRisk
      golf trading married forties yes -> lowRisk
      speedway transport married thirties yes -> medRisk
medium football banking single thirties yes -> lowRisk
     flying media
                      married fifties yes -> highRisk
hiah
      football security single twenties no -> medRisk
low
medium golf media
                        single thirties yes -> medRisk
medium golf transport married forties yes -> lowRisk
      skiing banking
                       single thirties yes -> highRisk
high
      golf unemployed married forties yes -> highRisk
```

Input attributes are (from left to right) income, recreation, job, status, age-group, home-owner. Find the unconditional probability of `golf' and the conditional probability of `single' given `medRisk' in the dataset?

- 6. Implement linear regression using python.
- 7. Implement Naïve Bayes theorem to classify the English text
- 8. Implement an algorithm to demonstrate the significance of genetic algorithm
- 9. Implement the finite words classification system using Back-propagation algorithm

TEXT BOOK:

1. Machine Learning – Tom M. Mitchell, - MGH.

REFERENCE BOOK:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis.

BIG DATA TECHNOLOGIES LAB

B.Tech. III Year I Sem.

L T P C 0 0 3 1.5

Course Objectives

- The purpose of this course is to provide the students with the knowledge of Big data Analytics principles and techniques.
- This course is also designed to give an exposure of the frontiers of Big data Analytics

Course Outcomes

- Use Excel as an Analytical tool and visualization tool.
- · Ability to program using HADOOP and Map reduce.
- Ability to perform data analytics using ML in R.
- Use cassandra to perform social media analytics.

List of Experiments:

- 1. Implement a simple map-reduce job that builds an inverted index on the set of input documents (Hadoop)
- 2. Process big data in HBase
- 3. Store and retrieve data in Pig
- 4. Perform Social media analysis using cassandra
- 5. Buyer event analytics using Cassandra on suitable product sales data.
- 6. Using Power Pivot (Excel) Perform the following on any dataset
 - a. Big Data Analytics
 - b. Big Data Charting
- 7. Use R-Project to carry out statistical analysis of big data
- 8. Use R-Project for data visualization of social media data

TEXT BOOKS:

- 1. Big Data Analytics, Seema Acharya, Subhashini Chellappan, Wiley 2015.
- Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiley CIO Series, 2013.
- 3. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O"Reilly Media, 2012.
- 4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.

- 1. Big Data and Business Analytics, Jay Liebowitz, Auerbach Publications, CRC press (2013)
- Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop, Tom Plunkett, Mark Hornick, McGraw-Hill/Osborne Media (2013), Oracle press.
- Professional Hadoop Solutions, Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, Wiley, ISBN: 9788126551071, 2015.
- 4. Understanding Big data, Chris Eaton, Dirk deroos et al., McGraw Hill, 2012.
- 5. Intelligent Data Analysis, Michael Berthold, David J. Hand, Springer, 2007.
- 6. Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, Bill Franks, 1st Edition, Wiley and SAS Business Series, 2012.

ADVANCED COMMUNICATION SKILLS LAB

B.Tech. III Year I Sem. L T P C 0 0 2 1

1. INTRODUCTION:

The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context.

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

2. OBJECTIVES:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

- Activities on Fundamentals of Inter-personal Communication and Building Vocabulary Starting a conversation responding appropriately and relevantly using the right body language
 Role Play in different situations & Discourse Skills- using visuals Synonyms and antonyms, word
 roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary,
 analogy, idioms and phrases, collocations & usage of vocabulary.
- Activities on Reading Comprehension –General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading& effective googling.
- Activities on Writing Skills Structure and presentation of different types of writing letter writing/Resume writing/ e-correspondence/Technical report writing/ – planning for writing – improving one's writing.
- Activities on Presentation Skills Oral presentations (individual and group) through JAM sessions/seminars/<u>PPTs</u> and written presentations through posters/projects/reports/ e-mails/assignments etc.
- Activities on Group Discussion and Interview Skills Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4. MINIMUM REQUIREMENT:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM–512 MB Minimum, Speed 2.8 GHZ
- T. V, a digital stereo & Camcorder
- Headphones of High quality

5. SUGGESTED SOFTWARE:

The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dream tech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

TEXT BOOKS:

- Effective Technical Communication by M Asharaf Rizvi. McGraw Hill Education (India) Pvt. Ltd. 2nd Edition
- 2. Academic Writing: A Handbook for International Students by Stephen Bailey, Routledge, 5th Edition.

- 1. Learn Correct English A Book of Grammar, Usage and Composition by Shiv K. Kumar and Hemalatha Nagarajan. Pearson 2007
- 2. Professional Communication by Aruna Koneru, McGraw Hill Education (India) Pvt. Ltd, 2016.
- 3. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press
- 4. Technical Communication by Paul V. Anderson. 2007. Cengage Learning pvt. Ltd. New Delhi.
- 5. English Vocabulary in Use series, Cambridge University Press 2008.
- 6. Handbook for Technical Communication by David A. McMurrey & Joanne Buckley. 2012. Cengage Learning.
- 7. Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009.
- 8. Job Hunting by Colm Downes, Cambridge University Press 2008.
- 9. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata Mc Graw-Hill 2009.

INTELLECTUAL PROPERTY RIGHTS

B.Tech. III Year I Sem.

L T P C 3 0 0 0

UNIT - I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT - II

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT - III

Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT - IV

Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

UNIT - V

New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

TEXT & REFERENCE BOOKS:

- 1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
- 2. Intellectual property right Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd.

KNOWLEDGE REPRESENTATION AND REASONING

B.Tech. III Year II Sem.

L T P C 3 1 0 4

Course Objectives:

- To investigate the key concepts of knowledge representation (KR) techniques and different notations.
- To integrate the KR view as a knowledge engineering approach to model organizational knowledge.
- To introduce the study of ontologies as a KR paradigm and applications of ontologies.
- To understand various KR techniques.
- To understand process, knowledge acquisition and sharing of ontology.

Course Outcomes:

- Analyze and design knowledge based systems intended for computer implementation.
- Acquire theoretical knowledge about principles for logic-based representation and reasoning.
- Ability to understand knowledge-engineering process
- · Ability to implement production systems, frames, inheritance systems and approaches to
- handle uncertain or incomplete knowledge.

UNIT - I:

The Key Concepts: Knowledge, Representation, Reasoning, Why knowledge representation and reasoning, Role of logic

Logic: Historical background, Representing knowledge in logic, Varieties of logic, Name, Type, Measures, Unity Amidst diversity

UNIT - II:

Ontology: Ontological categories, Philosophical background, Top-level categories, Describing physical entities, Defining abstractions, Sets, Collections, Types and Categories, Space and Time

UNIT - III:

Knowledge Representations: Knowledge Engineering, Representing structure in frames, Rules and data, Object-oriented systems, Natural language Semantics, Levels of representation

UNIT - IV:

Processes: Times, Events and Situations, Classification of processes, Procedures, Processes and Histories, Concurrent processes, Computation, Constraint satisfaction,

Change Contexts: Syntax of contexts, Semantics of contexts, First-order reasoning in contexts, Modal reasoning in contexts, Encapsulating objects in contexts.

UNIT - V:

Knowledge Soup: Vagueness, Uncertainty, Randomness and Ignorance, Limitations of logic, Fuzzy logic, Nonmonotonic Logic, Theories, Models and the world, Semiotics Knowledge Acquisition and Sharing: Sharing Ontologies, Conceptual schema, Accommodating multiple paradigms, Relating different knowledge representations, Language patterns, Tools for knowledge acquisition

TEXT BOOKS:

- Knowledge Representation logical, Philosophical, and Computational Foundations by John F. Sowa, Thomson Learning.
- Knowledge Representation and Reasoning by Ronald J. Brachman, Hector J. Levesque, Elsevier.

DATA ANALYTICS

B.Tech. III Year II Sem.

L T P C 3 1 0 4

Prerequisites:

- A course on "Database Management Systems".
- Knowledge of probability and statistics.

Course Objectives:

- 1. To explore the fundamental concepts of data analytics.
- 2. To learn the principles and methods of statistical analysis
- Discover interesting patterns, analyze supervised and unsupervised models and estimate the accuracy of the algorithms.
- 4. To understand the various search methods and visualization techniques.

Course Outcomes: After completion of this course students will be able to:

- 1. Understand the impact of data analytics for business decisions and strategy
- 2. Carry out data analysis/statistical analysis
- 3. To carry out standard data visualization and formal inference procedures
- 4. Design Data Architecture; Understand various Data Sources

UNIT - I

Data Management: Design Data Architecture and manage the data for analysis, understand various sources of Data like Sensors/Signals/GPS etc. Data Management, Data Quality (noise, outliers, missing values, duplicate data) and Data Processing & Processing.

UNIT - II

Data Analytics: Introduction to Analytics, Introduction to Tools and Environment, Application of Modeling in Business, Databases & Types of Data and Variables, Data Modeling Techniques, Missing Imputations etc. Need for Business Modeling.

UNIT - III

Regression – Concepts, Blue property assumptions, Least Square Estimation, Variable Rationalization, and Model Building etc.

Logistic Regression: Model Theory, Model fit Statistics, Model Construction, Analytics applications to various Business Domains etc.

UNIT - IV

Object Segmentation: Regression Vs Segmentation – Supervised and Unsupervised Learning, Tree Building – Regression, Classification, Overfitting, Pruning and Complexity, Multiple Decision Trees etc. **Time Series Methods:** Arima, Measures of Forecast Accuracy, STL approach, Extract features from generated model as Height, Average Energy etc and Analyze for prediction

UNIT - V

Data Visualization: Pixel-Oriented Visualization Techniques, Geometric Projection Visualization Techniques, Icon-Based Visualization Techniques, Hierarchical Visualization Techniques, Visualizing Complex Data and Relations.

TEXT BOOKS:

- 1. Student's Handbook for Associate Analytics II, III.
- Data Mining Concepts and Techniques, Han, Kamber, 3rd Edition, Morgan Kaufmann Publishers.

- 1. Introduction to Data Mining, Tan, Steinbach and Kumar, Addision Wisley, 2006.
- 2. Data Mining Analysis and Concepts, M. Zaki and W. Meira
- 3. Mining of Massive Datasets, Jure Leskovec Stanford Univ. Anand Rajaraman Milliway Labs Jeffrey D Ullman Stanford Univ.

COMPUTER NETWORKS

B.Tech. III Year II Sem.

L T P C 3 1 0 4

Prerequisites

- 1. A course on "Programming for problem solving".
- 2. A course on "Data Structures".

Course Objectives

- 1. The objective of the course is to equip the students with a general overview of the concepts and fundamentals of computer networks.
- 2. Familiarize the students with the standard models for the layered approach to communication between machines in a network and the protocols of the various layers.

Course Outcomes

- 1. Gain the knowledge of the basic computer network technology.
- 2. Gain the knowledge of the functions of each layer in the OSI and TCP/IP reference model.
- 3. Obtain the skills of subnetting and routing mechanisms.
- 4. Familiarity with the essential protocols of computer networks, and how they can be applied in network design and implementation.

UNIT - I

Network hardware, Network software, OSI, TCP/IP Reference models, Example Networks: ARPANET, Internet

Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless transmission.

UNIT - II

Data link layer: Design issues, framing, Error detection and correction.

Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channel.

Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols.

Medium Access sub layer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

UNIT - III

Network Layer: Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet.

UNIT - IV

Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

UNIT - V

Application Layer –Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

TEXT BOOK:

 Computer Networks -- Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI

- 1. An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education.
- 2. Data Communications and Networking Behrouz A. Forouzan. Third Edition TMH.

NATURAL LANGUAGE PROCESSING (Professional Elective - III)

B.Tech. III Year II Sem. L T P C 3 0 0 3

Prerequisites: Data structures, finite automata and probability theory

Course Objectives:

 Introduce to some of the problems and solutions of NLP and their relation to linguistics and statistics.

Course Outcomes:

- Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems
- Able to manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- Able to design, implement, and analyze NLP algorithms
- Able to design different language modeling Techniques.

UNIT - I

Finding the Structure of Words: Words and Their Components, Issues and Challenges, Morphological Models

Finding the Structure of Documents: Introduction, Methods, Complexity of the Approaches, Performances of the Approaches

UNIT - II

Syntax Analysis: Parsing Natural Language, Treebanks: A Data-Driven Approach to Syntax, Representation of Syntactic Structure, Parsing Algorithms, Models for Ambiguity Resolution in Parsing, Multilingual Issues

UNIT - III

Semantic Parsing: Introduction, Semantic Interpretation, System Paradigms, Word Sense Systems, Software.

UNIT - IV

Predicate-Argument Structure, Meaning Representation Systems, Software.

UNIT - V

Discourse Processing: Cohension, Reference Resolution, Discourse Cohension and Structure **Language Modeling:** Introduction, N-Gram Models, Language Model Evaluation, Parameter Estimation, Language Model Adaptation, Types of Language Models, Language-Specific Modeling Problems, Multilingual and Crosslingual Language Modeling

TEXT BOOKS:

- Multilingual natural Language Processing Applications: From Theory to Practice Daniel M. Bikel and Imed Zitouni, Pearson Publication
- 2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary

REFERENCE BOOK:

 Speech and Natural Language Processing - Daniel Jurafsky & James H Martin, Pearson Publications

DATA MINING (Professional Elective - III)

B.Tech. III Year II Sem.

L T P C 3 0 0 3

Pre-Requisites:

- A course on "Database Management Systems"
- Knowledge of probability and statistics

Course Objectives:

- It presents methods for mining frequent patterns, associations, and correlations.
- It then describes methods for data classification and prediction, and data-clustering approaches.
- It covers mining various types of data stores such as spatial, textual, multimedia, streams.

Course Outcomes:

- Ability to understand the types of the data to be mined and present a general classification of tasks and primitives to integrate a data mining system.
- Apply preprocessing methods for any given raw data.
- Extract interesting patterns from large amounts of data.
- Discover the role played by data mining in various fields.
- Choose and employ suitable data mining algorithms to build analytical applications
- Evaluate the accuracy of supervised and unsupervised models and algorithms.

UNIT - I

Data Mining: Data—Types of Data—, Data Mining Functionalities— Interestingness Patterns—Classification of Data Mining systems— Data mining Task primitives—Integration of Data mining system with a Data warehouse—Major issues in Data Mining—Data Preprocessing.

UNIT - II

Association Rule Mining: Mining Frequent Patterns–Associations and correlations – Mining Methods– Mining Various kinds of Association Rules– Correlation Analysis– Constraint based Association mining. Graph Pattern Mining, SPM.

UNIT - III

Classification: Classification and Prediction – Basic concepts–Decision tree induction–Bayesian classification, Rule–based classification, Lazy learner.

UNIT - IV

Clustering and Applications: Cluster analysis—Types of Data in Cluster Analysis—Categorization of Major Clustering Methods— Partitioning Methods, Hierarchical Methods— Density—Based Methods, Grid—Based Methods, Outlier Analysis.

UNIT - V

Advanced Concepts: Basic concepts in Mining data streams–Mining Time–series data—Mining sequence patterns in Transactional databases– Mining Object– Spatial– Multimedia–Text and Web data – Spatial Data mining– Multimedia Data mining–Text Mining– Mining the World Wide Web.

TEXT BOOKS:

- Data Mining Concepts and Techniques Jiawei Han & Micheline Kamber, 3rd Edition Elsevier.
- 2. Data Mining Introductory and Advanced topics Margaret H Dunham, PEA.

REFERENCE BOOK:

1. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques (Second Edition), Morgan Kaufmann, 2005.

INTERNET OF THINGS (Professional Elective - III)

B.Tech. III Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- To introduce the terminology, technology and its applications.
- To introduce the concept of M2M (machine to machine) with necessary protocols.
- To introduce the Python Scripting Language which is used in many IoT devices.
- To introduce the Raspberry PI platform, that is widely used in IoT applications.
- To introduce the implementation of web-based services on IoT devices.

Course Outcomes:

- Interpret the impact and challenges posed by IoT networks leading to new architectural models.
- Compare and contrast the deployment of smart objects and the technologies to connect them to network.
- Appraise the role of IoT protocols for efficient network communication.
- Elaborate the need for Data Analytics and Security in IoT.
- Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in Industry.

UNIT - I

Introduction to Internet of Things –Definition and Characteristics of IoT, Physical Design of IoT – IoT Protocols, IoT communication models, Iot Communication APIs IoT enabled Technologies – Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Templates Domain Specific IoTs – Home, City, Environment, Energy, Retail, Logistics, Agriculture, Industry, health and Lifestyle

UNIT - II

IoT and M2M – Software defined networks, network function virtualization, difference between SDN and NFV for IoT Basics of IoT System Management with NETCOZF, YANG- NETCONF, YANG, SNMP NETOPEER

UNIT - III

Introduction to Python - Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, data/time operations, classes, Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib

UNIT - IV

IoT Physical Devices and Endpoints - Introduction to Raspberry PI-Interfaces (serial, SPI, I2C) Programming – Python program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input from pins.

UNIT - V

IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication APIs Webserver – Web server for IoT, Cloud for IoT, Python web application framework Designing a RESTful web API

TEXT BOOKS:

- 1. Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547.
- Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759.

MOBILE APPLICATION DEVELOPMENT (Professional Elective - III)

B.Tech. III Year II Sem.

L T P C 3 0 0 3

Prerequisites

- 1. Acquaintance with JAVA programming.
- 2. A Course on DBMS.

Course Objectives

- To demonstrate their understanding of the fundamentals of Android operating systems.
- To improves their skills of using Android software development tools.
- To demonstrate their ability to develop software with reasonable complexity on mobile platform.
- To demonstrate their ability to deploy software to mobile devices.
- To demonstrate their ability to debug programs running on mobile devices.

Course Outcomes

- Student understands the working of Android OS Practically.
- Student will be able to develop Android user interfaces
- Student will be able to develop, deploy and maintain the Android Applications.

UNIT - I

Introduction to Android Operating System: Android OS design and Features – Android development framework, SDK features, Installing and running applications on Android Studio, Creating AVDs, Types of Android applications, Best practices in Android programming, Android tools

Android application components – Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes Android Application Lifecycle – Activities, Activity lifecycle, activity states, monitoring state changes

UNIT - II

Android User Interface: Measurements – Device and pixel density independent measuring UNIT - s Layouts – Linear, Relative, Grid and Table Layouts

User Interface (UI) Components – Editable and non-editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers

Event Handling – Handling clicks or changes of various UI components

Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

UNIT - III

Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS

Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity

Notifications - Creating and Displaying notifications, Displaying Toasts

UNIT - IV

Persistent Storage: Files – Using application specific folders and files, creating files, reading data from files, listing contents of a directory Shared Preferences – Creating shared preferences, saving and retrieving data using Shared Preference

UNIT - V

Database – Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and etindelg data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

TEXT BOOKS:

- 1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012.
- 2. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013.

REFERENCE BOOK:

1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013.

WEB TECHNOLOGIES (Professional Elective - III)

B.Tech. III Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- 1. To introduce PHP language for server-side scripting
- 2. To introduce XML and processing of XML Data with Java
- 3. To introduce Server-side programming with Java Servlets and JSP
- 4. To introduce Client-side scripting with Javascript and AJAX.

Course Outcomes:

- 1. Gain knowledge of client-side scripting, validation of forms and AJAX programming
- 2. Understand server-side scripting with PHP language
- 3. Understand what is XML and how to parse and use XML Data with Java
- 4. To introduce Server-side programming with Java Servlets and JSP

UNIT-I

Introduction to PHP: Declaring variables, data types, arrays, strings, operators, expressions, control structures, functions, Reading data from web form controls like text boxes, radio buttons, lists etc., Handling File Uploads. Connecting to database (MySQL as reference), executing simple queries, handling results, Handling sessions and cookies

File Handling in PHP: File operations like opening, closing, reading, writing, appending, deleting etc. on text and binary files, listing directories.

UNIT- II

HTML Common tags- List, Tables, images, forms, Frames; Cascading Style sheets;

XML: Introduction to XML, Defining XML tags, their attributes and values, Document Type Definition, XML Schemes, Document Object Model, XHTML Parsing XML Data – DOM and SAX Parsers in java.

UNIT - III

Introduction to Servlets: Common Gateway Interface (CGt), Life cycle of a Servlet, deploying a servlet, The Servlet API, Reading Servlet parameters, Reading Initialization parameters, Handling Http Request & Responses, Using Cookies and Sessions, connecting to a database using JDBC.

UNIT - IV

Introduction to JSP: The Anatomy of a JSP Page, JSP Processing, Declarations, Directives, Expressions, Code Snippets, implicit objects, Using Beans in JSP Pages, Using Cookies and session for session tracking, connecting to database in JSP.

UNIT - V

Client-side Scripting: Introduction to Javascript, Javascript language – declaring variables, scope of variables, functions. event handlers (onclick, onsubmit etc.), Document Object Model, Form validation.

TEXT BOOKS:

- 1. Web Technologies, Uttam K Roy, Oxford University Press
- 2. The Complete Reference PHP Steven Holzner, Tata McGraw-Hill

- 1. Web Programming, building internet applications, Chris Bates 2nd" edition, Wiley Dreamtech
- 2. Java Server Pages Hans Bergsten, SPD O'Reilly,
- 3. Java Script, D. Flanagan
- 4. Beginning Web Programming-Jon Duckett WROX.
- 5. Programming world wide web, R.W. Sebesta, Fourth Edition, Pearson.
- 6. Internet and World Wide Web How to program. Dietel and Nieto, Pearson.

FUNDAMENTALS OF AI (Open Elective - I)

B.Tech. III Year II Sem.

L T P C 3 0 0 3

Course Objective:

- 1. To learn the difference between optimal reasoning Vs human like reasoning
- 2. To understand the notions of state space representation, exhaustive search, heuristic search along with the time and space complexities
- 3. To learn different knowledge representation techniques
- 4. To understand the applications of Al namely, Game Playing, Theorem Proving, Expert Systems, Machine Learning and Natural Language Processing

Course Outcomes:

- 1. Possess the ability to formulate an efficient problem space for a problem expressed in English
- 2. Possess the ability to select a search algorithm for a problem and characterize its time and space complexities.
- 3. Possess the skill for representing knowledge using the appropriate technique
- 4. Possess the ability to apply AI techniques to solve problems of Game Playing, Expert Systems and Machine Learning.

UNIT - I

Foundations of AI: What is AI, History of AI, Strong and weak AI, The State of the Art. Intelligent Agents: Agents and Environments, Good Behavior: The Concept of Rationality, The Nature of Environments, The Structure of Agents.

UNIT - II

Solving Problems by Searching: Problem – Solving Agents, Example Problems, Searching for Solutions, uniformed search Strategies, Informed (Heuristic) Search Strategies, Heuristic Functions.

UNIT - III

Knowledge Representation: Ontological Engineering, Categories and Objects, Events, Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information, The Internet Shopping World.

UNIT - IV

Learning from Examples: Forms of Learning, Supervised Learning, Learning Decision Trees, Evaluating and Choosing the Best Hypothesis, The Theory of Learning, Regression and Classification with Learner Models, Nonparametric Models, Support Vector Machines, Ensemble Learning, Practical Machine Learning.

UNIT - V

Learning Probabilistic Models: Statistical Learning, Learning with Complete data, Learning with Hidden variables: The EM Algorithm.

TEXT BOOKS:

- 1. "Artificial Intelligence A Modern Approach", Stuart J. Russell & Peter Norvig Pearson.
- 2. "Artificial Intelligence", Elaine Rich, Kevin Knight & Shivashankar B Nair McGraw Hill Education.

- 1. Artificial Intelligence, 3rd Edn, E. Rich and K.Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education

MACHINE LEARNING BASICS (Open Elective - I)

B.Tech. III Year II Sem.

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand pattern classification algorithms to classify multivariate data
- To understand the Implementation of genetic algorithms
- To gain knowledge about Q-Learning
- To create new machine learning techniques.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:

- Develop and apply pattern classification algorithms to classify multivariate data.
- Develop and apply regression algorithms for finding relationships between data variables.
- Develop and apply reinforcement learning algorithms for learning to control complex systems.
- Write scientific reports on computational machine learning methods, results and conclusions.

UNIT - I:

BASICS Learning Problems Perspectives and Issues Concept Learning Version Spaces and Candidate eEliminations – Inductive bias – Decision Tree learning – Representation – Algorithm – Heuristic Space Search

UNIT - II:

Neural Networks and Genetic Algorithms: Neural Network Representation Problems Perceptions Multilayer Networks and Back Propagation Algorithms – Advanced Topics – Genetic Algorithms Hypothesis Space Search– Genetic Programming – Models of Evolutions and Learning.

UNIT - III:

Bayesian and Computational Learning: Bayes Theorem Concept Learning Maximum Likelihood Minimum Description Length Principle Bayes Optimal Classifier Gibbs Algorithm Naïve Bayes Classifier Bayesian Belief Network EM Algorithm Probability Learning Sample Complexity Finite and Infinite Hypothesis Spaces – Mistake Bound Model.

UNIT - IV

Instant Based Learning: K- Nearest Neighbour Learning Locally weighted Regression Radial Bases Functions – Case Based Learning.

UNIT - V

Advanced Learning: Learning Sets of Rules Sequential Covering Algorithm Learning Rule Set First Order Rules Sets of First Order Rules Induction on Inverted Deduction Inverting Resolution Analytical Learning Perfect Domain Theories Explanation Base Learning – FOCL Algorithm - Reinforcement Learning Task Learning Temporal Difference Learning

TEXT BOOK:

- 1. Tom M. Mitchell, "Machine Learning", McGraw-Hill, 2010.
- Bishop, Christopher. Neural Networks for Pattern Recognition. New York, NY: Oxford University Press, 1995.

REFERENCE BOOK:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis

DATA ANALYTICS LAB

B.Tech. III Year II Sem.

L T P C 0 0 3 1.5

Course Objectives:

- To explore the fundamental concepts of data analytics.
- To learn the principles and methods of statistical analysis
- Discover interesting patterns, analyze supervised and unsupervised models and estimate the accuracy of the algorithms.
- To understand the various search methods and visualization techniques.

Course Outcomes:

- Understand linear regression and logistic regression.
- · Understand the functionality of different classifiers.
- · Implement visualization techniques using different graphs.
- · Apply descriptive and predictive analytics for different types of data.

List of Experiments:

- 1. Data Preprocessing
 - a. Handling missing values
 - b. Noise detection removal
 - c. Identifying data redundancy and elimination
- 2. Implement any one imputation model
- 3. Implement Linear Regression
- 4. Implement Logistic Regression
- 5. Implement Decision Tree Induction for classification
- 6. Implement Random Forest Classifier
- 7. Implement ARIMA on Time Series data
- 8. Object segmentation using hierarchical based methods
- 9. Perform Visualization techniques (types of maps Bar, Colum, Line, Scatter, 3D Cubes etc)
- 10. Perform Descriptive analytics on Healthcare data
- 11. Perform Predictive analytics on Product Sales data
- 12. Apply Predictive analytics for Weather forecasting.

TEXT BOOKS:

- 1. Student's Handbook for Associate Analytics II, III.
- 2. Data Mining Concepts and Techniques, Han, Kamber, 3rd Edition, Morgan Kaufmann Publishers.

- 1. Introduction to Data Mining, Tan, Steinbach and Kumar, Addison Wesley, 2006.
- 2. Data Mining Analysis and Concepts, M. Zaki and W. Meira
- 3. Mining of Massive Datasets, Jure Leskovec Stanford Univ. Anand Rajaraman Milliway Labs Jeffrey D Ullman Stanford Univ.

COMPUTER NETWORKS LAB

B.Tech. III Year II Sem.

L T P C 0 0 3 1.5

Course Objectives:

- 1. To understand the working principle of various communication protocols.
- 2. To understand the network simulator environment and visualize a network topology and observe its performance
- 3. To analyze the traffic flow and the contents of protocol frames

Course Outcomes:

- 1. Implement data link layer farming methods
- 2. Analyze error detection and error correction codes.
- 3. Implement and analyze routing and congestion issues in network design.
- 4. Implement Encoding and Decoding techniques used in presentation layer
- 5. To be able to work with different network tools

List of Experiments

- 1. Implement the data link layer framing methods such as character, character-stuffing and bit stuffing.
- 2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP
- Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism.
- 4. Implement Dijsktra's algorithm to compute the shortest path through a network
- 5. Take an example subnet of hosts and obtain a broadcast tree for the subnet.
- 6. Implement distance vector routing algorithm for obtaining routing tables at each node.
- 7. Implement data encryption and data decryption
- 8. Write a program for congestion control using Leaky bucket algorithm.
- 9. Write a program for frame sorting techniques used in buffers.
- 10. Wireshark
 - i. Packet Capture Using Wire shark
 - ii. Starting Wire shark
 - iii. Viewing Captured Traffic
 - iv. Analysis and Statistics & Filters.
- 11. How to run Nmap scan
- 12. Operating System Detection using Nmap
- 13. Do the following using NS2 Simulator
 - i. NS2 Simulator-Introduction
 - ii. Simulate to Find the Number of Packets Dropped
 - iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
 - iv. Simulate to Find the Number of Packets Dropped due to Congestion
 - v. Simulate to Compare Data Rate& Throughput.
 - vi. Simulate to Plot Congestion for Different Source/Destination
 - vii. Simulate to Determine the Performance with respect to Transmission of Packets

TEXT BOOK:

1. Computer Networks, Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI

- 1. An Engineering Approach to Computer Networks, S.Keshav, 2nd Edition, Pearson Education
- 2. Data Communications and Networking Behrouz A. Forouzan. 3rd Edition, TMH.

NATURAL LANGUAGE PROCESSING LAB (Professional Elective - III Lab)

B.Tech. III Year II Sem. L T P C 0 0 2 1

Prerequisites: Data structures, finite automata and probability theory

Course Objectives:

• To Develop and explore the problems and solutions of NLP.

Course Outcomes:

- Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- Able to manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- Able to design, implement, and analyze NLP algorithms

List of Experiments:

Implement the following using Python

- 1. Tokenization
- 2. Stemming
- 3. Stop word removal (a, the, are)
- 4. Word Analysis
- 5. Word Generation
- 6. Pos tagging
- 7. Morphology
- 8. chunking
- 9. N-Grams
- 10. N-Grams Smoothing

TEXT BOOKS:

- 1. Multilingual natural Language Processing Applications: From Theory to Practice Daniel M. Bikel and Imed Zitouni, Pearson Publication.
- 2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary.

REFERENCE BOOKS:

1. Speech and Natural Language Processing - Daniel Jurafsky & James H Martin, Pearson Publications.

DATA MINING LAB (Professional Elective - III Lab)

B.Tech. III Year II Sem.

L T P C 0 0 2 1

Prerequisites: A course on "Database Management System

Course Objectives:

- The course is intended to obtain hands-on experience using data mining software.
- Intended to provide practical exposure of the concepts in data mining algorithms

Course Outcomes:

- Apply pre-processing statistical methods for any given raw data.
- Gain practical experience of constructing a data warehouse.
- Implement various algorithms for data mining in order to discover interesting patterns from large amounts of data.
- Apply OLAP operations on data cube construction

LIST OF EXPERIMENTS:

Experiments using Weka & Pentaho Tools

- 1. Data Processing Techniques:
 - (i) Data cleaning (ii) Data transformation Normalization (iii) Data integration
- 2. Partitioning Horizontal, Vertical, Round Robin, Hash based
- 3. Data Warehouse schemas star, snowflake, fact constellation
- 4. Data cube construction OLAP operations
- 5. Data Extraction, Transformations & Loading operations
- 6. Implementation of Attribute oriented induction algorithm
- 7. Implementation of apriori algorithm
- 8. Implementation of FP Growth algorithm
- 9. Implementation of Decision Tree Induction
- 10. Calculating Information gain measures
- 11. Classification of data using Bayesian approach
- 12. Classification of data using K nearest neighbor approach
- 13. Implementation of K means algorithm
- 14. Implementation of BIRCH algorithm
- 15. Implementation of PAM algorithm
- 16. Implementation of DBSCAN algorithm

TEXT BOOKS:

- Data Mining Concepts and Techniques JIAWEI HAN &MICHELINE KAMBER, Elsevier.
- Data Warehousing, Data Mining & OLAP- Alex Berson and Stephen J. Smith- Tata McGraw-Hill Edition, Tenth reprint 2007

REFERENCE BOOKS:

 Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Anuj Karpatne, Introduction to Data Mining, Pearson Education

INTERNET OF THINGS LAB (Professional Elective - III Lab)

B.Tech. III Year II Sem.

L T P C 0 0 2 1

Course Objectives:

- To introduce the raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of distance sensor on IoT devices

Course Outcomes:

- Ability to introduce the concept of M2M (machine to machine) with necessary protocols and get awareness in implementation of distance sensor
- Get the skill to program using python scripting language which is used in many IoT devices

List of Experiments:

- 1. Using raspberry pi
 - a. Calculate the distance using a distance sensor.
 - b. Basic LED functionality.
- 2. Using Arduino
 - a. Calculate the distance using a distance sensor.
 - b. Basic LED functionality.
 - c. Calculate temperature using a temperature sensor.
- 3. Using Node MCU
 - a. Calculate the distance using a distance sensor.
 - b. Basic LED functionality.
 - c. Calculate temperature using a temperature sensor.

TEXT BOOKS:

- Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547
- 2. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759

- 1. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-19157-2, Springer, 2016
- 2. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.

MOBILE APPLICATION DEVELOPMENT LAB (Professional Elective - III Lab)

B.Tech. III Year II Sem. L T P C 0 0 2 1

Prerequisites: --- NIL---

Course Objectives:

• To learn how to develop Applications in an android environment.

- To learn how to develop user interface applications.
- To learn how to develop URL related applications.

Course Outcomes:

- 1. Students understand the working of Android OS Practically.
- Students will be able to develop user interfaces.
- 3. Students will be able to develop, deploy and maintain the Android Applications.

List of Experiments:

- Create an Android application that shows Hello + name of the user and run it on an emulator.
 (b) Create an application that takes the name from a text box and shows hello message along with the name entered in the text box, when the user clicks the OK button.
- 2. Create a screen that has input boxes for User Name, Password, Address, Gender (radio buttons for male and female), Age (numeric), Date of Birth (Datepicker), State (Spinner) and a Submit button. On clicking the submit button, print all the data below the Submit Button. Use (a) Linear Layout (b) Relative Layout and (c) Grid Layout or Table Layout.
- 3. Develop an application that shows names as a list and on selecting a name it should show the details of the candidate on the next screen with a "Back" button. If the screen is rotated to landscape mode (width greater than height), then the screen should show list on left fragment and details on the right fragment instead of the second screen with the back button. Use Fragment transactions and Rotation event listeners.
- 4. Develop an application that uses a menu with 3 options for dialing a number, opening a website and to send an SMS. On selecting an option, the appropriate action should be invoked using intents.
- 5. Develop an application that inserts some notifications into Notification area and whenever a notification is inserted, it should show a toast with details of the notification.
- 6. Create an application that uses a text file to store usernames and passwords (tab separated fields and one record per line). When the user submits a login name and password through a screen, the details should be verified with the text file data and if they match, show a dialog saying that login is successful. Otherwise, show the dialog with a Login Failed message.
- 7. Create a user registration application that stores the user details in a database table.
- 8. Create a database and a user table where the details of login names and passwords are stored. Insert some names and passwords initially. Now the login details entered by the user should be verified with the database and an appropriate dialog should be shown to the user.
- 9. Create an admin application for the user table, which shows all records as a list and the admin can select any record for edit or modify. The results should be reflected in the table.

10. Develop an application that shows all contacts of the phone along with details like name, phone number, mobile number etc.

- 11. Create an application that saves user information like name, age, gender etc. in shared preference and retrieves them when the program restarts.
- 12. Create an alarm that rings every Sunday at 8:00 AM. Modify it to use a time picker to set alarm time.
- 13. Create an application that shows the given URL (from a text field) in a browser

TEXT BOOKS:

- 1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012
- 2. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013

REFERENCE BOOK:

1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013

WEB TECHNOLOGIES LAB (Professional Elective - III Lab)

B.Tech. III Year II Sem.

L T P C 0 0 2 1

Course Objectives:

- 1. To introduce PHP language for server-side scripting
- 2. To introduce XML and processing of XML Data with Java
- 3. To introduce Server-side programming with Java Servlets and JSP
- 4. To introduce Client-side scripting with Javascript and AJAX.

Course Outcomes:

- 1. Gain knowledge of client-side scripting, validation of forms and AJAX programming
- 2. Understand server-side scripting with PHP language
- 3. Understand what is XML and how to parse and use XML Data with Java
- 4. To introduce Server-side programming with Java Servlets and JSP

List of Experiments

- 1. Write a PHP script to print prime numbers between 1-50.
- 2. PHP script to
 - a. Find the length of a string.
 - b. Count the number of words in a string.
 - c. Reverse a string.
 - d. Search for a specific string.
- 3. Write a PHP script to merge two arrays and sort them as numbers, in descending order.
- 4. Write a PHP script that reads data from one file and writes into another file.
- 5. Develop static pages (using Only HTML) of an online book store. The pages should resemble: www.amazon.com. The website should consist of the following pages.
 - a) Home page
 - b) Registration and user Login
 - c) User Profile Page
 - d) Books catalog
 - e) Shopping Cart
 - f) Payment By credit card
 - g) Order Confirmation
- Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.
- 7. Create and save an XML document on the server, which contains 10 users' information. Write a program, which takes User Id as an input and returns the user details by taking the user information from the XML document.
- 8. Install TOMCAT web server. Convert the static web pages of assignment 2 into dynamic web pages using servlets and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.
- 9. Redo the previous task using JSP by converting the static web pages of assignment 2 into dynamic web pages. Create a database with user information and books information. The books catalog should be dynamically loaded from the database. Follow the MVC architecture while doing the website.

TEXT BOOK:

1. WEB TECHNOLOGIES: A Computer Science Perspective, Jeffrey C. Jackson, Pearson Education.

- 1. Deitel H.M. and Deitel P.J., "Internet and World Wide Web How to program", Pearson International, 2012, 4th Edition.
- 2. J2EE: The complete Reference By James Keogh, McGraw-Hill.
- 3. Bai and Ekedhi. The Web Warrior Guide to Web Programming. Thomson.
- 4. Paul Dietel and Harvey Deitel," Java How to Program", Prentice Hall of India, 8th Edition.
- 5. Web technologies, Black Book, Dreamtech press.
- 6. Gopalan N.P. and Akilandeswari J., "Web Technology", Prentice Hall of India.

ENVIRONMENTAL SCIENCE

B.Tech. III Year II Sem.

L T P C 3 0 0 0

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- · Understanding the impacts of developmental activities and mitigation measures
- Understanding the environmental policies and regulations

Course Outcomes: Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I

Ecosystems: Definition, Scope and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II

Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT - III

Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT - IV

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management. Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Problems and Global Efforts: C**limate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol.

UNIT-V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socioeconomical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future:** Concept of Sustainable Development, Population and its

explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- 1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2. Environmental Studies by R. Rajagopalan, Oxford University Press.

- 1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- 2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.

DEEP LEARNING

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- To understand complexity of Deep Learning algorithms and their limitations
- To be capable of performing experiments in Deep Learning using real-world data.

Course Outcomes:

- Implement deep learning algorithms, understand neural networks and traverse the layers of data
- Learn topics such as convolutional neural networks, recurrent neural networks, training deep networks and high-level interfaces
- Understand applications of Deep Learning to Computer Vision
- Understand and analyze Applications of Deep Learning to NLP

UNIT - I

Introduction: Feed forward Neural networks, Gradient descent and the back propagation algorithm, Unit saturation, the vanishing gradient problem, and ways to mitigate it. ReIU Heuristics for avoiding bad local minima, Heuristics for faster training, Nestors accelerated gradient descent, Regularization, Dropout

UNIT - II

Convolutional Neural Networks: Architectures, convolution/pooling layers, Recurrent Neural Networks: LSTM, GRU, Encoder Decoder architectures. Deep Unsupervised Learning: Auto encoders, Variational Auto-encoders, Adversarial Generative Networks, Auto-encoder and DBM Attention and memory models, Dynamic Memory Models

UNIT - III

Applications of Deep Learning to Computer Vision: Image segmentation, object detection, automatic image captioning, Image generation with Generative adversarial networks, video to text with LSTM models, Attention Models for computer vision tasks

UNIT - IV

Applications of Deep Learning to NLP: Introduction to NLP and Vector Space Model of Semantics, Word Vector Representations: Continuous Skip-Gram Model, Continuous Bag-of-Words model (CBOW), Glove, Evaluations and Applications in word similarity

UNIT - V

Analogy reasoning: Named Entity Recognition, Opinion Mining using Recurrent Neural Networks: Parsing and Sentiment Analysis using Recursive Neural Networks: Sentence Classification using Convolutional Neural Networks, Dialogue Generation with LSTMs

TEXT BOOKS:

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning. Hastie, R. Tibshirani and J. Friedman, Springer.
- 3. Probabilistic Graphical Models. Koller and N. Friedman, MIT Press.

- 1. Bishop, C. M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G. H., and Van Loan, C.F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

DATA WRANGLING AND DATA VISUALIZATION

B.Tech. IV Year I Sem.

L T P C 2 0 0 2

Course Objectives:

- To learn data wrangling techniques.
- To introduce visual perception and core skills for visual analysis.

Course Outcomes: Upon completion of the course, the students will be able to

- Perform data wrangling
- Explain principles of visual perception
- · Apply core skills for visual analysis
- Apply visualization techniques for various data analysis tasks
- Evaluate visualization techniques

UNIT - I:

Data Wrangling: Need of data cleanup, data clean up basics – formatting, outliers, duplicates, Normalizing and standardizing data.

UNIT - II:

Introduction of visual perception, visual representation of data, Gestalt principles, information overloads. Creating visual representations, visualization reference model, visual mapping, visual analytics, Design of visualization applications.

UNIT - III:

Classification of visualization systems, Interaction and visualization techniques misleading, Visualization of one, two and multi-dimensional data, text and text documents.

UNIT - IV:

Visualization of groups, trees, graphs, clusters, networks, software, Metaphorical visualization

UNIT - V:

Visualization of volumetric data, vector fields, processes and simulations, Visualization of maps, geographic information, GIS systems, collaborative visualizations, evaluating visualizations

TEXT BOOKS:

- 1. Jacqueline Kazil and Katharine Jarmul, Data Wrangling with Python: Tips and Tools to Make Your Life Easier, O'Reilly.
- 2. Ward, Grinstein Keim, Interactive Data Visualization: Foundations, Techniques, and Applications. Natick A K Peters, Ltd.

REFERENCE BOOK:

1. E. Tufte, The Visual Display of Quantitative Information, Graphics Press.

QUANTUM COMPUTING (Professional Elective - IV)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- To introduce the fundamentals of quantum computing
- The problem-solving approach using finite dimensional mathematics

Course Outcomes:

- Understand basics of quantum computing
- Understand physical implementation of Qubit
- Understand Quantum algorithms and their implementation
- Understand the Impact of Quantum Computing on Cryptography

UNIT - I

Introduction to Essential Linear Algebra: Some Basic Algebra, Matrix Math, Vectors and Vector Spaces, Set Theory

Complex Numbers: Definition of Complex Numbers, Algebra of Complex Numbers, Complex Numbers Graphically, Vector Representations of Complex Numbers, Pauli Matrice, Transcendental Numbers

UNIT - II

Basic Physics for Quantum Computing: The Journey to Quantum, Quantum Physics Essentials, Basic Atomic Structure, Hilbert Spaces, Uncertainty, Quantum States, Entanglement

Basic Quantum Theory: Further with Quantum Mechanics, Quantum Decoherence, Quantum Electrodynamics, Quantum Chromodynamics, Feynman Diagram Quantum Entanglement and QKD, Quantum Entanglement, Interpretation, QKE

UNIT - III

Quantum Architecture: Further with Qubits, Quantum Gates, More with Gates, Quantum Circuits, The D-Wave Quantum Architecture

Quantum Hardware: Qubits, How Many Qubits Are Needed? Addressing Decoherence, Topological Quantum Computing, Quantum Essentials

UNIT - IV

Quantum Algorithms: What Is an Algorithm? Deutsch's Algorithm, Deutsch-Jozsa Algorithm, Bernstein-Vazirani Algorithm, Simon's Algorithm, Shor's Algorithm, Grover's Algorithm

UNIT - V

Current Asymmetric Algorithms: RSA, Diffie-Hellman, Elliptic Curve

The Impact of Quantum Computing on Cryptography: Asymmetric Cryptography, Specific Algorithms, Specific Applications

TEXT BOOKS:

- 1. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge University Press
- 2. Dr. Chuck Easttom, Quantum Computing Fundamentals, Pearson

- 1. Quantum Computing for Computer Scientists by Noson S. Yanofsky and Mirco A. Mannucci.
- 2. Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol. Basic Concepts, Vol.
- 3. Basic Tools and Special Topics, World Scientific. Pittenger A. O., An Introduction to Quantum Computing Algorithms.

EXPERT SYSTEMS (Professional Elective - IV)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- Understand the basic techniques of artificial intelligence.
- Understand the Non-monotonic reasoning and statistical reasoning.

Course Outcomes:

- Apply the basic techniques of artificial intelligence.
- Discuss the architecture of an expert system and its tools.
- Understand the importance of building an expert system
- Understand various problems with an expert system

UNIT - I

Introduction to AI programming languages, Blind search strategies, Breadth-first – Depth-first – Heuristic search techniques Hill Climbing – Best first – A Algorithms AO* algorithm – game tress, Minmax algorithms, game playing – Alpha-beta pruning.

UNIT - II

Knowledge representation issues predicate logic – logic programming Semantic nets- frames and inheritance, constraint propagation; Representing Knowledge using rules, Rules-based deduction systems.

UNIT-III

Introduction to Expert Systems, Architecture of expert systems, Representation and organization of knowledge, Basics characteristics, and types of problems handled by expert systems.

UNIT - IV

Expert System Tools: Techniques of knowledge representations in expert systems, knowledge engineering, system-building aids, support facilities, stages in the development of expert systems.

UNIT - V

Building an Expert System: Expert system development, Selection of the tool, Acquiring Knowledge, Building process.

Problems with Expert Systems: Difficulties, common pitfalls in planning, dealing with domain experts, difficulties during development.

TEXT BOOKS:

- 1. Elain Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw-Hill, New Delhi,
- 2. Waterman D.A., "A Guide to Expert Systems", Addison Wesley Longman,

- Stuart Russel and other Peter Norvig, "Artificial Intelligence A Modern Approach", Prentice-Hall.
- 2. Patrick Henry Winston, "Artificial Intelligence", Addison Wesley,
- 3. Patterson, Artificial Intelligence & Expert System, Prentice Hall India, 1999.
- 4. Hayes-Roth, Lenat, and Waterman: Building Expert Systems, Addison Wesley,
- 5. Weiss S.M. and Kulikowski C.A., "A Practical Guide to Designing Expert Systems", Rowman & Allanheld, New Jersey.

CLOUD COMPUTING (Professional Elective - IV)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Pre-requisites: courses on Computer Networks, Operating Systems, Distributed Systems.

Course Objectives:

- This course provides an insight into cloud computing.
- Topics covered include- distributed system models, different cloud service models, serviceoriented architectures, cloud programming and software environments, resource management.

Course Outcomes:

- Ability to understand various service delivery models of a cloud computing architecture.
- Ability to understand the ways in which the cloud can be programmed and deployed.
- Understanding cloud service providers.

UNIT - I

Computing Paradigms: High-Performance Computing, Parallel Computing, Distributed Computing, Cluster Computing, Grid Computing, Cloud Computing, Bio computing, Mobile Computing, Quantum Computing, Optical Computing, Nano computing.

UNIT - II

Cloud Computing Fundamentals: Motivation for Cloud Computing, The Need for Cloud Computing, Defining Cloud Computing, Definition of Cloud computing, Cloud Computing Is a Service, Cloud Computing Is a Platform, Principles of Cloud computing, Five Essential Characteristics, Four Cloud Deployment Models

UNIT - III

Cloud Computing Architecture and Management: Cloud architecture, Layer, Anatomy of the Cloud, Network Connectivity in Cloud Computing, Applications, on the Cloud, Managing the Cloud, Managing the Cloud Infrastructure Managing the Cloud application, Migrating Application to Cloud, Phases of Cloud Migration Approaches for Cloud Migration.

UNIT - IV

Cloud Service Models: Infrastructure as a Service, Characteristics of IaaS. Suitability of IaaS, Pros and Cons of IaaS, Summary of IaaS Providers, Platform as a Service, Characteristics of PaaS, Suitability of PaaS, Pros and Cons of PaaS, Summary of PaaS Providers, Software as a Service, Characteristics of SaaS, Suitability of SaaS, Pros and Cons of SaaS, Summary of SaaS Providers, Other Cloud Service Models.

UNIT V

Cloud Service Providers: EMC, EMC IT, Captiva Cloud Toolkit, Google, Cloud Platform, Cloud Storage, Google Cloud Connect, Google Cloud Print, Google App Engine, Amazon Web Services, Amazon Elastic Compute Cloud, Amazon Simple Storage Service, Amazon Simple Queue ,service, Microsoft, Windows Azure, Microsoft Assessment and Planning Toolkit, SharePoint, IBM, Cloud Models, IBM Smart Cloud, SAP Labs, SAP HANA Cloud Platform, Virtualization Services Provided by SAP, Sales force, Sales Cloud, Service Cloud: Knowledge as a Service, Rack space, VMware, Manjra soft, Aneka Platform

TEXT BOOK:

1. Essentials of cloud Computing: K. Chandrasekhran, CRC press, 2014

- Cloud Computing: Principles and Paradigms by Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011.
- Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012.
- 3. Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif, O'Reilly, SPD, rp 2011.

CRYPTOGRAPHY AND NETWORK SECURITY (Professional Elective - IV)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- Explain the objectives of information security
- Explain the importance and application of each of confidentiality, integrity, authentication and availability
- Understand various cryptographic algorithms.
- Understand the basic categories of threats to computers and networks
- Describe a public-key cryptosystem.
- Describe the enhancements made to IPv4 by IPSec
- Understand Intrusions and intrusion detection
- Discuss the fundamental ideas of public-key cryptography.
- Generate and distribute a PGP key pair and use the PGP package to send an encrypted email message.
- Discuss Web security and Firewalls

Course Outcomes:

- Student will be able to understand basic cryptographic algorithms, message and web authentication and security issues.
- Ability to identify information system requirements for both of them such as client and server.
- Ability to understand the current legal issues towards information security.

UNIT - I

Security Concepts: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security **Cryptography Concepts and Techniques:** Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

UNIT - II

Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4.

Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Elgamal Cryptography, Diffie-Hellman Key Exchange, Knapsack Algorithm.

UNIT - III

Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm (SHA-512), **Message authentication codes:** Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme.

Key Management and Distribution: Symmetric Key Distribution Using Symmetric & Asymmetric Encryption, Distribution of Public Keys, Kerberos, X.509 Authentication Service, Public – Key Infrastructure

UNIT - IV

Transport-level Security: Web security considerations, Secure Socket Layer and Transport Layer Security, HTTPS, Secure Shell (SSH)

Wireless Network Security: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN, IEEE 802.11 Wireless LAN Security

UNIT - V

E-Mail Security: Pretty Good Privacy, S/MIME IP Security: IP Security overview, IP Security architecture, Authentication Header, Encapsulating security payload, Combining security associations, Internet Key Exchange

Case Studies on Cryptography and security: Secure Multiparty Calculation, Virtual Elections, Single sign On, Secure Inter-branch Payment Transactions, Cross site Scripting Vulnerability.

TEXT BOOKS:

- 1. Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition
- 2. Cryptography and Network Security: Atul Kahate, Mc Graw Hill, 3rd Edition

- Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
- 2. Cryptography and Network Security: Forouzan Mukhopadhyay, Mc Graw Hill, 3rd Edition
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning

MOBILE COMPUTING (Professional Elective - IV)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Prerequisites: Computer Networks, Distributed Systems / Distributed Operating Systems

Course Objectives:

 To make the student understand the concept of mobile computing paradigm, its novel applications and limitations, the typical mobile networking infrastructure through a popular GSM protocol, the issues and solutions of various layers of mobile networks.

Course Outcomes:

- Understand the concept of mobile computing paradigm, its novel applications and limitations.
- Analyze and develop new mobile applications
- Understand the protocols and platforms related to mobile environment
- Classify data delivery mechanisms

UNIT - I

Introduction: Mobile Communications, Mobile Computing – Paradigm, Promises/Novel Applications and Impediments and Architecture; Mobile and Handheld Devices, Limitations of Mobile and Handheld Devices

GSM – Services, System Architecture, Radio Interfaces, Protocols, Localization, Calling, Handover, Security, New Data Services, GPRS, CSHSD, DECT.

UNIT -II

(Wireless) Medium Access Control (MAC): Motivation for a specialized MAC (Hidden and exposed terminals, Near and far terminals), SDMA, FDMA, TDMA, CDMA, Wireless LAN/(IEEE 802.11)

Mobile Network Layer: IP and Mobile IP Network Layers, Packet Delivery and Handover Management, Location Management, Registration, Tunneling and Encapsulation, Route Optimization, DHCP.

UNIT -III

Mobile Transport Layer: Conventional TCP/IP Protocols, Indirect TCP, Snooping TCP, Mobile TCP, Other Transport Layer Protocols for Mobile Networks.

Database Issues: Database Hoarding & Caching Techniques, Client-Server Computing & Adaptation, Transactional Models, Query processing, Data Recovery Process & QoS Issues.

UNIT - IV

Data Dissemination and Synchronization: Communications Asymmetry, Classification of Data Delivery Mechanisms, Data Dissemination, Broadcast Models, Selective Tuning and Indexing Methods, Data Synchronization – Introduction, Software, and Protocols

UNIT-V

Mobile Ad hoc Networks (MANETs): Introduction, Applications & Challenges of a MANET, Routing, Classification of Routing Algorithms, Algorithms such as DSR, AODV, DSDV, Mobile Agents, Service Discovery.

Protocols and Platforms for Mobile Computing: WAP, Bluetooth, XML, J2ME, JavaCard, PalmOS, Windows CE, SymbianOS, Linux for Mobile Devices, Android.

TEXT BOOKS:

- 1. Jochen Schiller, "Mobile Communications", Addison-Wesley, Second Edition, 2009.
- 2. Raj Kamal, "Mobile Computing", Oxford University Press, 2007, ISBN: 0195686772.

REFERENCE BOOK:

 Asoke K Talukder, Hasan Ahmed, Roopa Yavagal Mobile Computing: Technology, Applications and Service Creation, McGraw Hill Education.

SOCIAL NETWORK ANALYSIS (Professional Elective - V)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Pre-requisites:

- A course on "Web Technologies".
- · A course on "Computer Networks".
- · A course on "Data Warehousing and Data Mining".

Course Objectives:

- It introduces the concepts of social media
- It provides the mechanisms for social network analysis
- Includes the concepts that allow for better visualization and analysis of widely used services such as email, Wikis, Twitter, flickr, YouTube, etc.

Course Outcomes:

- · Ability to construct social network maps easily.
- Gain skills in tracking the content flow through the social media.
- Use NodeXL to perform social network analysis.

UNIT - I:

Introduction: Social Media and Social Networks. **Social Media:** New Technologies of Collaboration.

Social Network Analysis: Measuring, Mapping, and Modelling collections of Connections.

UNIT - II:

NodeXL, Layout, Visual Design, and Labeling, Calculating and Visualising Network Metrics, Preparing Data and Filtering, Clustering and Grouping.

UNIT - III:

Case Studies - I:

Email: The lifeblood of Modern Communication.

Thread Networks: Mapping Message Boards and Email Lists.

Twitter: Conversation, Entertainment and Information.

UNIT - IV:

Case Studies-II: Visualizing and Interpreting Facebook Networks, WWW Hyperlink Networks

UNIT - V:

Case Studies - III:

You Tube: Contrasting Patterns of Content Interaction, and Prominence.

Wiki Networks: Connections of Creativity and Collaboration

TEXT BOOKS:

- Hansen, Derek, Ben Sheiderman, Marc Smith, Analyzing Social Media Networks with NodeXL: Insights from a Connected World, Morgan Kaufmann, 2011.
- 2. Avinash Kaushik, Web Analytics 2.0: The Art of Online Accountability, Sybex, 2009.

REFERENCE BOOK:

 Marshall Sponder, Social Media Analytics: Effective Tools for Building, Interpreting and Using Metrics, 1st Edition, MGH, 2011

FEDERATED MACHINE LEARNING (Professional Elective - V)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Prerequisites: knowledge of machine learning, basic computer systems and programming skills.

Course Objectives:

- Understand the key concepts and issues behind Federated Learning
- Get familiar with key theoretical results of Federated Learning

Course Outcomes:

- Knowledge of the basic concepts, architecture, and applications of FL.
- Understanding of new research and application trends in FL.
- Analyze horizontal federated learning
- Understand the significance of Federated Learning for Vision, Language, and Recommendation

UNIT - I

Introduction: Motivation, Federated Learning as a Solution, The Definition of Federated Learning, Categories of Federated Learning, Current Development in Federated Learning, Research Issues in Federated Learning, Open-Source Projects, Standardization Efforts, The Federated AI Ecosystem. **Background:** Privacy-Preserving Machine Learning, PPML and Secure ML, Threat and Security Models, Privacy Threat Models, Adversary and Security Models, Privacy Preservation Techniques, Secure Multi-Party Computation, Homomorphic Encryption, Differential Privacy.

UNIT - II

Distributed Machine Learning: Introduction to DML, The Definition of DML, DML Platforms, Scalability-Motivated DML, Large-Scale Machine Learning, Scalability-Oriented DML Schemes, Privacy-Motivated DML, Privacy-Preserving Decision Trees, Privacy-Preserving Techniques, Privacy-Preserving DML Schemes, Privacy-Preserving Gradient Descent, Vanilla Federated Learning, Privacy-Preserving Methods.

UNIT - III

Horizontal Federated Learning: The Definition of HFL, Architecture of HFL, The Client- Server Architecture, The Peer-to-Peer Architecture, Global Model Evaluation, The Federated Averaging Algorithm, Federated Optimization, The FedAvg Algorithm, The Secured FedAvg Algorithm, Improvement of the FedAvg Algorithm, Communication Efficiency, Client Selection.

Vertical Federated Learning: The Definition of VFL, Architecture of VFL, Algorithms of VFL, Secure Federated Linear Regression, Secure Federated Tree-Boosting.

UNIT - IV

Federated Transfer Learning: Heterogeneous Federated Learning, Federated Transfer Learning, The FTL Framework, Additively Homomorphic Encryption, The FTL Training Process, The FTL Prediction Process, Security Analysis, Secret Sharing-Based FTL Incentive Mechanism.

Design for Federated Learning: Paying for Contributions, Profit- Sharing Games, Reverse Auctions, A Fairness-Aware Profit-Sharing Framework, Modeling Contribution, Modeling Cost, Modeling Regret, Modeling Temporal Regret, The Policy Orchestrator, Computing Payoff Weightage.

UNIT - V

Federated Learning for Vision, Language, and Recommendation: Federated Learning for Computer Vision, Federated CV, Federated Learning for NLP, Federated NLP, Federated Learning for Recommendation Systems, Recommendation Model, Federated Recommendation System.

Federated Reinforcement Learning: Introduction to Reinforcement Learning, Policy, Reward, Value Function, Model of the Environment, RL Background Example, Reinforcement Learning Algorithms, Distributed Reinforcement Learning, Asynchronous Distributed Reinforcement Learning, Synchronous Distributed Reinforcement Learning, Federated Reinforcement Learning, Background and Categorization.

TEXT BOOK:

1. Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning), Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu 2019.

AUGMENTED REALITY & VIRTUAL REALITY (Professional Elective - V)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- The objective of this course is to provide a foundation to the fast-growing field of AR and make the students aware of the various AR devices.
- To give historical and modern overviews and perspectives on virtual reality. It describes the fundamentals of sensation, perception, technical and engineering aspects of virtual reality systems.

Course Outcomes:

- Describe how AR systems work and list the applications of AR.
- Understand and analyze the hardware requirement of AR.
- Describe how VR systems work and list the applications of VR.
- Understand the design and implementation of the hardware that enables VR systems tobe built.

UNIT - I:

Introduction to Augmented Reality: What Is Augmented Reality - Defining augmented reality, history of augmented reality, The Relationship Between Augmented Reality and Other Technologies-Media, Technologies, Other Ideas Related to the Spectrum Between Real and Virtual Worlds, applications of augmented reality Augmented Reality Concepts- How Does Augmented Reality Work? Concepts Related to Augmented Reality, Ingredients of an Augmented Reality Experience.

UNIT - II:

AR Devices & Components: AR Components – Scene Generator, Tracking system, monitoring system, display, Game scene AR Devices – Optical See- Through HMD, Virtual retinal systems, Monitor bases systems, Projection displays, Video see-through systems

UNIT - III:

Introduction to Virtual Reality: Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality

UNIT - IV:

Representing the Virtual World: Representation of the Virtual World, Visual Representation in VR, Aural Representation in VR and Haptic Representation in VR

Case Study: GHOST (General Haptics Open Software Toolkit) software development toolkit.

UNIT - V:

Visual Perception & Rendering: Visual Perception - Perception of Depth, Perception of Motion, Perception of Color, Combining Sources of Information

Visual Rendering - Ray Tracing and Shading Models, Rasterization, Correcting Optical Distortions, Improving Latency and Frame Rates.

TEXT BOOKS:

- Allan Fowler-AR Game Developmentll, 1st Edition, A press Publications, 2018, ISBN 978-1484236178
- Augmented Reality: Principles & Practice by Schmalstieg / Hollerer, Pearson Education India; First edition (12 October 2016), ISBN-10: 9332578494

- 1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016
- 2. Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002
- 3. Developing Virtual Reality Applications: Foundations of Effective Design, Alan B Craig, William R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009
- 4. Designing for Mixed Reality, Kharis O'Connell Published by O'Reilly Media, Inc., 2016, ISBN: 9781491962381
- 5. Sanni Siltanen- Theory and applications of marker-based augmented reality. Julkaisija Utgivare Publisher. 2012. ISBN 978-951-38-7449-0
- 6. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.

WEB SECURITY (Professional Elective - V)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- Give an Overview of information security.
- Give an overview of Access control of relational databases.

Course Outcomes: Students should be able to

- Understand the Web architecture and applications.
- Understand client side and server-side programming.
- Understand how common mistakes can be bypassed and exploit the application.
- Identify common application vulnerabilities.

UNIT - I

The Web Security, The Web Security Problem, Risk Analysis and Best Practices.

Cryptography and the Web: Cryptography and Web Security, Working Cryptographic Systems and Protocols, Legal Restrictions on Cryptography, Digital Identification.

UNIT - II

The Web's War on Your Privacy, Privacy-Protecting Techniques, Backups and Anti-Theft, Web Server Security, Physical Security for Servers, Host Security for Servers, Securing Web Applications.

UNIT - III

Database Security: Recent Advances in Access Control, Access Control Models for XML, Database Issues in Trust Management and Trust Negotiation, Security in Data Warehouses and OLAP Systems.

UNIT - IV

Security Re-engineering for Databases: Concepts and Techniques, Database Watermarking for Copyright Protection, Trustworthy Records Retention, Damage Quarantine and Recovery in Data Processing Systems, Hippocratic Databases: Current Capabilities.

UNIT - V

Future Trends Privacy in Database Publishing: A Bayesian Perspective, Privacy-enhanced Location Based Access Control, Efficiently Enforcing the Security and Privacy Policies in a Mobile Environment.

TEXT BOOKS:

- 1. Web Security, Privacy and Commerce Simson G Arfinkel, Gene Spafford, O'Reilly.
- 2. Handbook on Database security applications and trends Michael Gertz, Sushil Jajodia.

AD-HOC & SENSOR NETWORKS (Professional Elective - V)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Prerequisites: Courses on Computer Networks, Mobile Computing.

Course Objectives:

- To understand the concepts of sensor networks
- To understand the MAC and transport protocols for ad hoc networks
- To understand the security of sensor networks
- To understand the applications of ad-hoc and sensor networks

Course Outcomes:

- Ability to understand the state-of-the-art research in the emerging subject of Ad Hoc and
- Wireless Sensor Networks
- Ability to solve the issues in real-time application development based on ASN.
- Ability to conduct further research in the domain of ASN

UNIT - I

Introduction to Ad Hoc Networks - Characteristics of MANETs, Applications of MANETs and Challenges of MANETs.

Routing in MANETs - Criteria for classification, Taxonomy of MANET routing algorithms, Topology-based routing algorithms-**Proactive:** DSDV; **Reactive:** DSR, AODV; Hybrid: ZRP; Position-based routing algorithms-Location Services-DREAM, Quorum-based;

Forwarding Strategies: Greedy Packet, Restricted Directional Flooding-DREAM, LAR.

UNIT - II

Data Transmission - Broadcast Storm Problem, **Rebroadcasting Schemes**-Simple-flooding, Probability-based Methods, Area-based Methods, Neighbor Knowledge-based: SBA, Multipoint Relaying, AHBP. **Multicasting**: Tree-based: AMRIS, MAODV; **Mesh-based:** ODMRP, CAMP; Hybrid: AMRoute, MCEDAR.

UNIT - III

Geocasting: Data-transmission Oriented-LBM; Route Creation Oriented-GeoTORA, MGR. TCP over Ad Hoc TCP protocol overview, TCP and MANETs, Solutions for TCP over Ad-hoc.

UNIT - IV

Basics of Wireless, Sensors and Lower Layer Issues: Applications, Classification of sensor networks, Architecture of sensor network, Physical layer, MAC layer, Link layer, Routing Layer.

UNIT-V

Upper Layer Issues of WSN: Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs, Sensor Networks and mobile robots.

TEXT BOOKS:

- 1. Ad Hoc and Sensor Networks Theory and Applications, Carlos Corderio Dharma P. Aggarwal, World Scientific Publications, March 2006, ISBN 981–256–681–3.
- 2. Wireless Sensor Networks: An Information Processing Approach, Feng Zhao, Leonidas Guibas, Elsevier Science, ISBN 978-1-55860-914-3 (Morgan Kauffman).

INTRODUCTION TO NATURAL LANGUAGE PROCESSING (Open Elective - II)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Prerequisites: Data structures, Finite Automata and Probability Theory.

Course Objectives:

 Introduction to some of the problems and solutions of NLP and their relation to linguistics and statistics.

Course Outcomes:

- Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems
- Able to manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- Able to design, implement, and analyze NLP algorithms Able to design different language modeling Techniques.
- Able to design different language modeling Techniques.

UNIT - I

Finding the Structure of Words: Words and Their Components, Issues and Challenges, Morphological Models.

Finding the Structure of Documents: Introduction, Methods, Complexity of the Approaches, Performances of the Approaches.

UNIT - II

Syntax Analysis: Parsing Natural Language, Treebanks: A Data-Driven Approach to Syntax, Representation of Syntactic Structure, Parsing Algorithms.

UNIT - III

Semantic Parsing: Introduction, Semantic Interpretation, System Paradigms, Word Sense Systems.

UNIT - IV

Predicate-Argument Structure, Meaning Representation Systems.

UNIT - V

Language Modeling: Introduction, N-Gram Models, Language Model Evaluation, bayesian parameter estimation, Language Model Adaptation, Language Models- class based, variable length, bayesian topic based, Multilingual and Cross Lingual Language Modeling.

TEXT BOOKS:

1. Multilingual natural Language Processing Applications: From Theory to Practice – Daniel M. Bikel and Imed Zitouni, Pearson Publication

- Speech and Natural Language Processing Daniel Jurafsky & James H Martin, Pearson Publications
- 2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary

AI APPLICATIONS (Open Elective - II)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Course Objectives: To give deep knowledge of Al and how Al can be applied in various fields to make life easy.

Course Outcomes: After completion of course, students would be able to:

- To correlate AI and solutions to modern problems.
- To decide when to use which type of AI technique.
- Understand Robotic Processes Automation
- Analyze Al-Optimized Hardware

UNIT - I

Linguistic aspects of natural language processing, A.I. And Quantum Computing, Applications of Artificial Intelligence (AI) in business.

UNIT - II

Emotion Recognition using human face and body language, Al based system to predict diseases early, Smart Investment analysis, Al in Sales and Customer Support.

UNIT - III

Robotic Processes Automation for supply chain management.

UNIT - IV

Al-Optimized Hardware, Digital Twin i.e. Al Modeling, Information Technology & Security using Al.

UNIT - V

Recent Topics in Al/ML: Al/ML in Smart solutions, Al/ML in Social Problems handling, Block chain and Al.

TEXT BOOKS:

- 1. Sameer Dhanrajani, Al and Analytics, Accelerating Business Decisions, John Wiley & Sons.
- 2. Artificial Intelligence in Practice: How 50 Successful Companies Used Al and Machine Learning to Solve Problems, Bernard Marr, Matt Ward, Wiley.

- 1. Life 3.0: Being Human in the Age of Artificial Intelligence by Max Tegmark, 2018.
- 2. Homo Deus: A Brief History of Tomorrow by Yuval Noah Harari, 2017.

DEEP LEARNING LAB

B.Tech. IV Year I Sem. L T P C 0 0 2 1

Course Objectives:

- To Build the Foundation of Deep Learning.
- To Understand How to Build the Neural Network.
- To enable students to develop successful machine learning concepts.

Course Outcomes: Upon the Successful Completion of the Course, the Students would be able to:

- Learn The Fundamental Principles of Deep Learning.
- Identify The Deep Learning Algorithms for Various Types of Learning Tasks in various domains.
- Implement Deep Learning Algorithms and Solve Real-world problems.

List of Experiments:

- 1. Setting up the Spyder IDE Environment and Executing a Python Program
- 2. Installing Keras, Tensorflow and Pytorch libraries and making use of them
- 3. Applying the Convolution Neural Network on computer vision problems
- 4. Image classification on MNIST dataset (CNN model with Fully connected layer)
- 5. Applying the Deep Learning Models in the field of Natural Language Processing
- 6. Train a sentiment analysis model on IMDB dataset, use RNN layers with LSTM/GRU notes
- 7. Applying the Autoencoder algorithms for encoding the real-world data
- 8. Applying Generative Adversarial Networks for image generation and unsupervised tasks.

TEXT BOOKS:

- 1. Deep Learning by Ian Good fellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning. Hastie, R. Tibshirani, and J. Friedman, Springer.
- 3. Probabilistic Graphical Models. Koller, N. Friedman, MIT Press.

REFERENCE BOOKS:

- 1. Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

Extensive Reading:

- http://www.deeplearning.net
- https://www.deeplearningbook.org/
- https://developers.google.com/machine-learning/crash-course/ml-intro
- www.cs.toronto.edu/~fritz/absps/imagenet.pdf
- http://neuralnetworksanddeeplearning.com/

ORGANIZATIONAL BEHAVIOUR

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objectives: The objective of the course is to provide the students with the conceptual framework and the theories underlying Organizational Behaviour.

UNIT - I:

Introduction to OB - Definition, Nature and Scope – Environmental and organizational context – Impact of IT, globalization, Diversity, Ethics, culture, reward systems and organizational design on Organizational Behavior. Cognitive Processes-I: Perception and Attribution: Nature and importance of Perception – Perceptual selectivity and organization – Social perception – Attribution Theories – Locus of control – Attribution Errors – Impression Management.

UNIT - II:

Cognitive Processes-II: Personality and Attitudes – Personality as a continuum – Meaning of personality - Johari Window and Transactional Analysis - Nature and Dimension of Attitudes – Job satisfaction and organizational commitment-Motivational needs and processes- Work-Motivation Approaches Theories of Motivation- Motivation across cultures - Positive **organizational behavior:** Optimism – Emotional intelligence – Self-Efficacy.

UNIT - III:

Dynamics of OB-I: Communication – types – interactive communication in organizations – barriers to communication and strategies to improve the follow of communication - Decision Making: Participative decision-making techniques – creativity and group decision making. Dynamics of OB –II Stress and Conflict: Meaning and types of stress –Meaning and types of conflict - Effect of stress and intraindividual conflict - strategies to cope with stress and conflict.

UNIT - IV:

Dynamics of OB –III Power and Politics: Meaning and types of power – empowerment - Groups Vs. Teams – Nature of groups – dynamics of informal groups – dysfunctions of groups and teams – teams in the modern workplace.

UNIT - V:

Leading High performance: Job design and Goal setting for High performance- Quality of Work Life Socio technical Design and High-performance work practices - Behavioural performance management: reinforcement and punishment as principles of Learning —Process of Behavioural modification - Leadership theories - Styles, Activities and skills of Great leaders.

TEXT/ REFERENCE BOOKS:

- 1. Luthans, Fred: Organizational Behavior 10/e, McGraw-Hill, 2009
- 2. McShane: Organizational Behavior, 3e, TMH, 2008
- 3. Nelson: Organizational Behavior, 3/e, Thomson, 2008.
- 4. Newstrom W. John & Davis Keith, Organizational Behavior-- Human Behaviour at Work, 12/e, TMH, New Delhi, 2009.
- 5. Pierce and Gardner: Management and Organizational Behavior: An Integrated perspective, Thomson, 2009.
- Robbins, P. Stephen, Timothy A. Judge: Organizational Behavior, 12/e, PHI/Pearson, New Delhi, 2009.
- 7. Pareek Udai: Behavioural Process at Work: Oxford & IBH, New Delhi, 2009.
- 8. Schermerhorn: Organizational Behaviour 9/e, Wiley, 2008.
- 9. Hitt: Organizational Behaviour, Wiley, 2008.

SPEECH AND VIDEO PROCESSING (Professional Elective - VI)

B.Tech. IV Year II Sem. L T P C 3 0 0 3

Course Objectives: Knowledge on speech and video processing techniques.

Course Outcomes:

- Describe the mechanisms of human speech production systems and methods for speech feature extraction.
- 2. Understand basic algorithms of speech analysis and speech recognition.
- Explain basic techniques in digital video processing, including imaging characteristics and sensors.
- 4. Apply motion estimation and object tracking algorithms on video sequence.

UNIT - I:

Speech processing concepts: The speech production mechanism, Discrete time speech signals, Pole-Zero modeling of speech, relevant properties of the fast Fourier transform for speech recognition, convolution, linear and nonlinear filter banks, spectral estimation of speech using DFT. Linear Prediction analysis of speech.

UNIT - II:

Speech recognition: Real and Complex Cepstrum, application of cepstral analysis to speech signal, feature extraction for speech, static and dynamic feature for speech recognition, robustness issues, discrimination in the feature space, feature selection, MFCC, LPCC, Distance measures, vector quantization models.

Gaussian Mixture model, HMM.

UNIT - III:

Basics of Video Processing: Video formation, perception and representation: Principle of color video, video cameras, video display, pinhole model, CAHV model, Camera motion, Shape model, motion model, Scene model, two-dimensional motion models.

Three-Dimensional Rigid Motion, Approximation of projective mapping.

UNIT - IV:

Motion estimation Techniques: Optical flow, motion representation, motion estimation criteria, optimization methods, pixel based motion estimation, Block matching algorithm, gradient Based, Intensity matching, feature matching, frequency domain motion estimation, Depth from motion. Motion analysis applications: Video Summarization, video surveillance.

UNIT - V:

Object Tracking and Segmentation: 2D and 3D video tracking, blob tracking, kernel based counter tracking, feature matching, filtering Mosaicing, video segmentation, mean shift based, active shape model, video short boundary detection. Interframe compression, Motion compensation

TEXT BOOKS:

- 1. Fundamentals of Speech recognition L. Rabiner and B. Juang, Prentice Hall signal processing series.
- 2. Digital Video processing, A Murat Tekalp, Prentice Hall.
- 3. Discrete-time speech signal processing: principles and practice, Thomas F. Quatieri, Coth.
- 4. Video Processing and Communications, Yao Wang, J. Ostermann and Qin Zhang, Pearson.

- 1. "Speech and Audio Signal Processing", B.Gold and N. Morgan, Wiley.
- 2. "Digital image sequence processing, Compression, and analysis", Todd R. Reed, CRC Press.
- 3. "Handbook of Image and Video processing", Al Bovik, Academic press, second Edition.

ROBOTIC PROCESS AUTOMATION (Professional Elective - VI)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objectives: To make learners familiar with the concepts of Robotic Process Automation.

Course Outcomes:

- Describe RPA, where it can be applied and how it's implemented.
- Identify and understand Web Control Room and Client Introduction
- Understand how to handle various devices and the workload
- Understand Bot creators, Web recorders and task editors

UNIT - I

Introduction to Robotic Process Automation & Bot Creation Introduction to RPA and Use cases – Automation Anywhere Enterprise Platform – Advanced features and capabilities – Ways to create Bots

UNIT - II

Web Control Room and Client Introduction - Features Panel - Dashboard (Home, Bots, Devices, Audit, Workload, Insights) - Features Panel - Activity (View Tasks in Progress and Scheduled Tasks) - Bots (View Bots Uploaded and Credentials)

UNIT - III

Devices (View Development and Runtime Clients and Device Pools) - Workload (Queues and SLA Calculator) - Audit Log (View Activities Logged which are associated with Web CR) - Administration (Configure Settings, Users, Roles, License and Migration) - Demo of Exposed API's - Conclusion - Client introduction and Conclusion.

UNIT - IV

Bot Creator Introduction – Recorders – Smart Recorders – Web Recorders – Screen Recorders - Task Editor – Variables - Command Library – Loop Command – Excel Command – Database Command - String Operation Command - XML Command

UNIT - V

Terminal Emulator Command - PDF Integration Command - FTP Command - PGP Command - Object Cloning Command - Error Handling Command - Manage Windows Control Command - Workflow Designer - Report Designer

TEXT BOOK:

 Learning Robotic Process Automation: Create Software robots and automate business processes with the leading RPA tool - UiPath: Create Software robots. with the leading RPA tool - UiPath Kindle Edition

REFERENCE BOOK:

1. Robotic Process Automation A Complete Guide - 2020 Edition Kindle Edition

RANDOMIZED ALGORITHMS (Professional Elective - VI)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objective: To introduce the power of randomization in the design and analysis of algorithms.

Course Outcomes:

- Appreciate the fundamentals of randomized algorithm design.
- Understand the fundamentals of Markov chains and the Monte Carlo method.
- Apply high probability analysis to selected randomized algorithms.
- Understand the Comparison of Fingerprinting Techniques and Pattern Matching

UNIT - I

Introduction, A Min - Cut algorithm, Las Vegas and Monte Carlo, Binary Planar Partitions, A Probabilistic Recurrence

Game - Theoretic Techniques: Game Tree Evaluation, The Minimax Principle

UNIT - II

Moments and Deviations: Occupancy Problems, The Markov and Chebyshev Inequalities, Randomized Selection

Markov Chains and Random Walks: A 2-SAT example, Markov Chains, Random Walks on Graphs, Graph Connectivity

Unit - III

Algebraic Techniques: Fingerprinting and Freivald's Technique, Verifying Polynomial Identities, Perfect Matching in Graphs, Verifying Equality of Strings, A Comparison of Fingerprinting Techniques, Pattern Matching

UNIT - IV

Data Structures: The Fundamental Data-structuring Problem, Random Treaps, Skip Lists, Hashtables, Hashing with O(1) Search Time

Graph Algorithms: All Pairs Shortest Paths, The Min- Cut Problem, Minimum Spanning Trees

UNIT-V

Geometric Algorithms: Randomized Incremental Construction, Convex Hulls in the Plane, Duality, Half-Space Intersections, Dalaunay Triangulations, Trapezoidal Decompositions

Parallel and Distributed Algorithms: The PRAM Model, Sorting on a PRAM, Maximal Independent Sets, Perfect Matchings

TEXT BOOKS:

- 1. Randomized Algorithms: Rajeev Motwani, Prabhakar Raghavan
- Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis by Eli Upfal and Michael Mitzenmacher.

REFERENCE BOOK:

1. Rajeev Motwani, Prabhakar Raghavan, Randomized Algorithms, cambridge University Press

COGNITIVE COMPUTING (Professional Elective - VI)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Prerequisites: Probability theory

Course Objectives:

 To provide an understanding of the central challenges in realizing aspects of human cognition.

To provide a basic exposition to the goals and methods of human cognition.

- To develop algorithms that use AI and machine learning along with human interaction and feedback to help humans make choices/decisions.
- To support human reasoning by evaluating data in context and presenting relevant findings along with the evidence that justifies the answers.

Course Outcomes:

- Understand what cognitive computing is, and how it differs from traditional approaches.
- Plan and use the primary tools associated with cognitive computing.
- Plan and execute a project that leverages cognitive computing.
- Understand and develop the business implications of cognitive computing.

UNIT - I

Introduction to Cognitive Science: Understanding Cognition, IBM's Watson, Design for Human Cognition, Augmented Intelligence, Cognition Modeling Paradigms: Declarative/ logic-based computational cognitive modeling, connectionist models of cognition, Bayesian models of cognition, a dynamical systems approach to cognition

UNIT - II

Cognitive Models of memory and language, computational models of episodic and semantic memory, modeling psycholinquistics

UNIT - III

Cognitive Modeling: modeling the interaction of language, memory and learning, Modeling select aspects of cognition classical models of rationality, symbolic reasoning and decision making

UNIT - IV

Formal models of inductive generalization, causality, categorization and similarity, the role of analogy in problem solving, Cognitive Development Child concept acquisition. Cognition and Artificial cognitive architectures such as ACT-R, SOAR, OpenCog, CopyCat, Memory Networks

UNIT - V

DeepQA Architecture, Unstructured Information Management Architecture (UIMA), Structured Knowledge, Business Implications, Building Cognitive Applications, Application of Cognitive Computing and Systems

TEXT BOOKS:

- The Cambridge Handbook of Computational Psychology by Ron Sun (ed.), Cambridge University Press.
- Formal Approaches in Categorization by Emmanuel M. Pothos, Andy J. Wills, Cambridge University Press.

- Judith S. Hurwitz, Marcia Kaufman, Adrian Bowles Cognitive Computing and Big Data Analytics, Wiley
- 2. Vijay V Raghavan, Venkat N. Gudivada, Venu Govindaraju, Cognitive Computing: Theory and Applications: Volume 35 (Handbook of Statistics), North Holland.

SEMANTIC WEB (Professional Elective - VI)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- To learn Web Intelligence
- To learn Knowledge Representation for the Semantic Web
- To learn Ontology Engineering
- To learn Semantic Web Applications, Services and Technology

Course Outcomes:

- Understand the characteristics of Semantic Web
- Apply SOAP and UDDI to web services
- Handle multiple web services using Orchestration
- · Create documents using XML
- Construct and use Ontologies

UNIT - I

Introduction: Introduction to Semantic Web, the Business Case for the Semantic Web, XML and Its Impact on the Enterprise.

UNIT - II

Web Services: Uses, Basics of Web Services, SOAP, UDDI, Orchestrating Web Services, Securing Web Services, Grid Enabled and Semantic Web of Web Services.

UNIT - III

Resource Description Framework: Features, Capturing Knowledge with RDF.

XML Technologies: XPath, The Style Sheet Family: XSL, XSLT, and XSL FO, XQuery, XLink, XPointer, XInclude, XMLBase, XHTML, XForms, SVG.

UNIT - IV

Taxonomies and Ontologies: Overview of Taxonomies, Defining the Ontology Spectrum, Topic Maps, Overview of Ontologies, Syntax, Structure, Semantics, and Pragmatics, Expressing Ontologies Logically, Knowledge Representation.

UNIT - V

Semantic Web Application: Semantic Web Services, e-Learning, Semantic Bioinformatics, Enterprise Application Integration, Knowledge Base.

Semantic Search Technology: Search Engines, Semantic Search, Semantic Search Technology, Web Search Agents, Semantic Methods, Latent Semantic Index Search, TAP, Swoogle

TEXT BOOK:

1. Thinking on the Web - Berners Lee, Godel and Turing, Wiley Interscience

- 1. The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge Management by Michael C. Daconta, Leo J. Obrst, Kevin T. Smith, Wiley Publishing, Inc.
- Semantic Web Technologies, Trends and Research in Ontology Based Systems, J. Davies, R. Studer, P. Warren, John Wiley & Sons.
- 3. Semantic Web and Semantic Web Services Liyang Lu Chapman and Hall/CRC Publishers, (Taylor & Francis Group)
- 4. Information Sharing on the semantic Web Heiner Stuckenschmidt; Frank Van Harmelen, Springer Publications.
- 5. Programming the Semantic Web, T. Segaran, C. Evans, J. Taylor, O' Reilly, SPD.

CHATBOTS (Open Elective - III)

B.Tech. IV Year II Sem.

L T P C 3 0 3

Course Objectives: Knowledge on concepts of chatbots and understanding the developer environment botframework.

Course Outcomes:

- Understand basic concepts of chatbots
- Analyze different entities in building bots
- Understand the concepts of advanced bot building
- Discuss different types of chatbot use cases

UNIT-I

Introduction to Chatbots: Definition of chatbots, Journey of Chatbots, Rise of Chatbots, Messaging Platforms.

UNIT-II:

Setting Up the Developer Environment Botframework: Local Installation, Installing NodeJS, Following the Development Pipeline, Storing Messages in Database.

UNIT - III:

Basics of Bot Building- Intents, Entities.

UNIT IV:

Advanced Bot Building: Design Principles, Showing Product Results, Saving Messages, Building Your Own Intent Classifier.

UNIT - V:

Business and Monetization: Analytics, Chatbot Use Cases- Modes of Communication- Business-to-Business (B2B), ChapBusiness-to-Consumer (B2C) Consumer-to-Consumer (C2C) Business-to-Employee (B2E), Employee-to-Employee (E2E), Chatbots by Industry Vertical.

TEXT BOOK:

1. Rashid Khan, Anik Das, Build Better Chatbots: A Complete Guide to Getting Started with Chatbots, Apress.

GENETIC ALGORITHMS & FUZZY LOGIC (Open Elective - III)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objectives: Knowledge on concepts of fundamentals of genetic algorithms, genetic technology and fuzzy logic

Course Outcomes:

- Understand the Fundamentals of genetic algorithm.
- Discuss Knowledge based techniques in Genetic Algorithm and techniques in genetic search
- Understand genetics-based machine learning.
- Analyze and Understand Classical Relations and Fuzzy Relations.

UNIT - I

Fundamentals of genetic algorithm: A brief history of evolutionary computation, biological terminology, search space encoding, reproduction elements of genetic algorithm genetic modeling, comparison of GA and traditional search methods. The Fundamental Theorem, Schema Processing at work, Two-armed and k-armed Bandit problem, The Building block hypothesis.

UNIT - II

Genetic Technology: steady state algorithm, fitness scaling, inversion. Genetic Programming: Genetic Algorithm in problem solving, Implementing a Genetic Algorithm: computer implementation, operator (reproduction, crossover and Mutation, Fitness Scaling, Coding, Discretization). Knowledge based techniques in Genetic Algorithm. Advanced operators and techniques in genetic search: Dominance, Diploidy and Abeyance. Inversion and other reordering operators, Niche and speciation.

UNIT - III

Introduction to genetics - based machine learning: Classifier system, Rule and Message system, Apportionment of credit, Knowledge based Techniques, Genetic Algorithms and parallel. processors.

UNIT - IV

Introduction: Background, Uncertainty and imprecision, Statistics and random processes, Uncertainty in information, Fuzzy sets and membership, Chance versus ambiguity, Classical sets - operations on classical sets to functions, Fuzzy sets-fuzzy set operations, Properties of fuzzy sets, sets as points in hypercube.

UNIT - V

Classical Relations And Fuzzy Relations: Cartesian product, Crisp relations-cardinality of crisp relations, Operations on crisp relations, Properties of crisp relations, Compositions, Fuzzy relations cardinality of fuzzy relations, Operations on fuzzy relations, Properties of fuzzy relations, Fuzzy Cartesian product and composition, Non interactive fuzzy sets, Tolerance and equivalence relations-crisp equivalence relation, Crisp tolerance relation, Fuzzy tolerance, Max-min Method, other similarity methods.

TEXT BOOKS:

- 1. David E. Goldberg, "Genetic Algorithms in search, Optimization & Machine Learning".
- 2. Neural Networks and Fuzzy Logic System by Bart Kosko, PHI Publications.

- 1. William B. Langdon, Riccardo Poli, "Foundations of Genetic Programming".
- 2. P. J. Fleming, A. M. S. Zalzala "Genetic Algorithms in Engineering Systems ".
- 3. David A. Coley, "An Introduction to Genetic Algorithms for Scientists and Engineers".
- 4. Melanie Mitchell- 'An introduction to Genetic Algorithm'- Prentice-Hall of India.
- 5. Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications by Rajasekharan and Rai PHI Publication.
- Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems by Lotfi A. Zadeh Fuzzy logic with engineering application by Timothy J. Ross-wiley.