JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech. in COMPUTER SCIENCE AND ENGINEERING
COURSE STRUCTURE & SYLLABUS (R18)

Applicable From 2018-19 Admitted Batch

I YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA101BS</td>
<td>Mathematics - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CH102BS</td>
<td>Chemistry</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EE103ES</td>
<td>Basic Electrical Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ME105ES</td>
<td>Engineering Workshop</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>EN105HS</td>
<td>English</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>CH106BS</td>
<td>Engineering Chemistry Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>EN107HS</td>
<td>English Language and Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>EE108ES</td>
<td>Basic Electrical Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Induction Programme

Total Credits 12 2 10 19

I YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA201BS</td>
<td>Mathematics - II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>AP202BS</td>
<td>Applied Physics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>CS203ES</td>
<td>Programming for Problem Solving</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ME204ES</td>
<td>Engineering Graphics</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>AP205BS</td>
<td>Applied Physics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>CS206ES</td>
<td>Programming for Problem Solving Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>*MC209ES</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits 13 3 10 18

II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CS301ES</td>
<td>Analog and Digital Electronics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CS302PC</td>
<td>Data Structures</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>MA303BS</td>
<td>Computer Oriented Statistical Methods</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>CS304PC</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>CS305PC</td>
<td>Object Oriented Programming using C++</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>CS306ES</td>
<td>Analog and Digital Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>CS307PC</td>
<td>Data Structures Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>CS308PC</td>
<td>IT Workshop Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>9</td>
<td>CS309PC</td>
<td>C++ Programming Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>*MC309</td>
<td>Gender Sensitization Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits 14 2 12 21
II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CS401PC</td>
<td>Discrete Mathematics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>SM402MS</td>
<td>Business Economics & Financial Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CS403PC</td>
<td>Operating Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CS404PC</td>
<td>Database Management Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>CS405PC</td>
<td>Java Programming</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>CS406PC</td>
<td>Operating Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>CS407PC</td>
<td>Database Management Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>CS408PC</td>
<td>Java Programming Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*MC409</td>
<td>Constitution of India</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>18</td>
<td>2</td>
<td>8</td>
<td>21</td>
</tr>
</tbody>
</table>

III YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CS501PC</td>
<td>Formal Languages & Automata Theory</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CS502PC</td>
<td>Software Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CS503PC</td>
<td>Computer Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CS504PC</td>
<td>Web Technologies</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Professional Elective-I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Professional Elective -II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>CS505PC</td>
<td>Software Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>CS506PC</td>
<td>Computer Networks & Web Technologies Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>9</td>
<td>EN508HS</td>
<td>Advanced Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>*MC510</td>
<td>Intellectual Property Rights</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>21</td>
<td>0</td>
<td>8</td>
<td>22</td>
</tr>
</tbody>
</table>

III YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CS601PC</td>
<td>Machine Learning</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CS602PC</td>
<td>Compiler Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>CS603PC</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Professional Elective – III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Open Elective-I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>CS604PC</td>
<td>Machine Learning Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>CS605PC</td>
<td>Compiler Design Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Professional Elective-III Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*MC609</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>18</td>
<td>3</td>
<td>8</td>
<td>22</td>
</tr>
</tbody>
</table>

*MC609 - Environmental Science – Should be Registered by Lateral Entry Students Only.
IV YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CS701PC</td>
<td>Cryptography & Network Security</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CS702PC</td>
<td>Data Mining</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Professional Elective - IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Professional Elective - V</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Open Elective - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>CS703PC</td>
<td>Cryptography & Network Security Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>CS704PC</td>
<td>Industrial Oriented Mini Project/ Summer Internship</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2*</td>
</tr>
<tr>
<td>8</td>
<td>CS705PC</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>CS706PC</td>
<td>Project Stage - I</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>14</td>
<td>0</td>
<td>10</td>
<td>21</td>
</tr>
</tbody>
</table>

IV YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SM801MS</td>
<td>Organizational Behaviour</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Professional Elective - VI</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Open Elective - III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CS802PC</td>
<td>Project Stage - II</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>9</td>
<td>0</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

*MC – Satisfactory/Unsatisfactory

Note: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

Professional Elective - I

- CS511PE Information Theory & Coding
- CS512PE Advanced Computer Architecture
- CS513PE Data Analytics
- CS514PE Image Processing
- CS515PE Principles of Programming Languages

Professional Elective - II

- CS521PE Computer Graphics
- CS522PE Advanced Operating Systems
- CS523PE Informational Retrieval Systems
- CS524PE Distributed Databases
- CS525PE Natural Language Processing

Professional Elective - III

- CS611PE Concurrent Programming
- CS612PE Network Programming
- CS613PE Scripting Languages
- CS614PE Mobile Application Development
- CS615PE Software Testing Methodologies

Courses in PE - III and PE - III Lab must be in 1-1 correspondence.
Professional Elective - IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS711PE</td>
<td>Graph Theory</td>
</tr>
<tr>
<td>CS712PE</td>
<td>Introduction to Embedded Systems</td>
</tr>
<tr>
<td>CS713PE</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>CS714PE</td>
<td>Cloud Computing</td>
</tr>
<tr>
<td>CS715PE</td>
<td>Ad-hoc & Sensor Networks</td>
</tr>
</tbody>
</table>

Professional Elective - V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS721PE</td>
<td>Advanced Algorithms</td>
</tr>
<tr>
<td>CS722PE</td>
<td>Real Time Systems</td>
</tr>
<tr>
<td>CS723PE</td>
<td>Soft Computing</td>
</tr>
<tr>
<td>CS724PE</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>CS725PE</td>
<td>Software Process & Project Management</td>
</tr>
</tbody>
</table>

Professional Elective – VI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS811PE</td>
<td>Computational Complexity</td>
</tr>
<tr>
<td>CS812PE</td>
<td>Distributed Systems</td>
</tr>
<tr>
<td>CS813PE</td>
<td>Neural Networks & Deep Learning</td>
</tr>
<tr>
<td>CS814PE</td>
<td>Human Computer Interaction</td>
</tr>
<tr>
<td>CS815PE</td>
<td>Cyber Forensics</td>
</tr>
</tbody>
</table>
MA101BS: MATHEMATICS - I

B.Tech. I Year I Sem. | L | T | P | C |
 | 3 | 1 | 0 | 4 |

Course Objectives: To learn
- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of Eigen values and eigenvectors and to reduce the quadratic form to canonical form.
- Concept of Sequence.
- Concept of nature of the series.
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.

Course Outcomes: After learning the contents of this paper the student must be able to
- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- Find the Eigen values and Eigen vectors
- Reduce the quadratic form to canonical form using orthogonal transformations.
- Analyse the nature of sequence and series.
- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions
- Find the extreme values of functions of two variables with/ without constraints.

UNIT-I: Matrices
Matrices: Types of Matrices, Symmetric; Hermitian; Skew-symmetric; Skew-Hermitian; orthogonal matrices; Unitary Matrices; rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method; System of linear equations; solving system of Homogeneous and Non-Homogeneous equations. Gauss elimination method; Gauss Seidel Iteration Method.

UNIT-II: Eigen values and Eigen vectors
Linear Transformation and Orthogonal Transformation: Eigen values and Eigenvectors and their properties: Diagonalization of a matrix; Cayley-Hamilton Theorem (without proof); finding inverse and power of a matrix by Cayley-Hamilton Theorem; Quadratic forms and Nature of the Quadratic Forms; Reduction of Quadratic form to canonical forms by Orthogonal Transformation

UNIT-III: Sequences & Series
Sequence: Definition of a Sequence, limit; Convergent, Divergent and Oscillatory sequences.
Series: Convergent, Divergent and Oscillatory Series; Series of positive terms; Comparison test, p-test, D-Alembert’s ratio test; Raabe’s test; Cauchy’s Integral test; Cauchy’s root test; logarithmic test. Alternating series: Leibnitz test; Alternating Convergent series: Absolute and Conditionally Convergence.

UNIT-IV: Calculus
Mean value theorems: Rolle’s theorem, Lagrange’s Mean value theorem with their Geometrical Interpretation and applications, Cauchy’s Mean value Theorem. Taylor’s Series.
Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT-V: Multivariable calculus (Partial Differentiation and applications)
Definitions of Limit and continuity.
Partial Differentiation; Euler’s Theorem; Total derivative; Jacobian; Functional dependence & independence, Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

TEXTBOOKS:

REFERENCES:
CH102BS/CH202BS: CHEMISTRY

B.Tech. I Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
- To bring adaptability to the concepts of chemistry and to acquire the required skills to become a perfect engineer.
- To impart the basic knowledge of atomic, molecular and electronic modifications which makes the student to understand the technology based on them.
- To acquire the knowledge of electrochemistry, corrosion and water treatment which are essential for the Engineers and in industry.
- To acquire the skills pertaining to spectroscopy and to apply them for medical and other fields.
- To impart the knowledge of stereochemistry and synthetic aspects useful for understanding reaction pathways.

Course Outcomes: The basic concepts included in this course will help the student to gain:
- The knowledge of atomic, molecular and electronic changes, band theory related to conductivity.
- The required principles and concepts of electrochemistry, corrosion and in understanding the problem of water and its treatments.
- The required skills to get clear concepts on basic spectroscopy and application to medical and other fields.
- The knowledge of configurational and conformational analysis of molecules and reaction mechanisms.

UNIT - I:
Molecular structure and Theories of Bonding: Atomic and Molecular orbitals. Linear Combination of Atomic Orbitals (LCAO), molecular orbitals of diatomic molecules, molecular orbital energy level diagrams of N₂, O₂ and F₂ molecules. π molecular orbitals of butadiene and benzene.

UNIT - II:

UNIT - III:
UNIT - IV:

UNIT - V:
Spectroscopic techniques and applications: Principles of spectroscopy, selection rules and applications of electronic spectroscopy, vibrational and rotational spectroscopy. Basic concepts of Nuclear magnetic resonance Spectroscopy, chemical shift. Introduction to Magnetic resonance imaging.

TEXT BOOKS:
1. Physical Chemistry, by P.W. Atkins
3. Fundamentals of Molecular Spectroscopy, by C.N. Banwell
6. Engineering Chemistry (NPTEL Web-book), by B.L. Tembe, Kamaluddin and M.S. Krishnan
EE103ES/EE203ES: BASIC ELECTRICAL ENGINEERING

B.Tech. I Year I Sem. L T P C
 3 0 0 3

Course Objectives:
- To introduce the concepts of electrical circuits and its components
- To understand magnetic circuits, DC circuits and AC single phase & three phase circuits
- To study and understand the different types of DC/AC machines and Transformers.
- To import the knowledge of various electrical installations.
- To introduce the concept of power, power factor and its improvement.

Course Outcomes:
- To analyze and solve electrical circuits using network laws and theorems.
- To understand and analyze basic Electric and Magnetic circuits
- To study the working principles of Electrical Machines
- To introduce components of Low Voltage Electrical Installations

UNIT-I: D.C. Circuits
Time-domain analysis of first-order RL and RC circuits.

UNIT-II: A.C. Circuits
Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit.
Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III: Transformers
Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV: Electrical Machines
Construction and working of synchronous generators.

UNIT-V: Electrical Installations
Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT BOOKS/REFERENCE BOOKS:
ME105ES/ME205ES: ENGINEERING WORKSHOP

B.Tech. I Year I Sem.

L T P C
1 0 3 2.5

Pre-requisites: Practical skill

Course Objectives:
- To study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

Course Outcomes: At the end of the course, the student will be able to:
- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including plumbing, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

1. TRADES FOR EXERCISES:
At least two exercises from each trade:
I. Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
II. Fitting – (V-Fit, Dovetail Fit & Semi-circular fit)
III. Tin-Smithy – (Square Tin, Rectangular Tray & Conical Funnel)
IV. Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern)
V. Welding Practice – (Arc Welding & Gas Welding)
VI. House-wiring – (Parallel & Series, Two-way Switch and Tube Light)
VII. Black Smithy – (Round to Square, Fan Hook and S-Hook)

2. TRADES FOR DEMONSTRATION & EXPOSURE:
Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working

TEXT BOOKS:
1. Workshop Practice /B. L. Juneja / Cengage

REFERENCE BOOKS:
2. Workshop Manual / Venkat Reddy/ BSP
INTRODUCTION

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire language skills, the syllabus of English has been designed to develop linguistic, communicative and critical thinking competencies of Engineering students.

In English classes, the focus should be on the skills development in the areas of vocabulary, grammar, reading and writing. For this, the teachers should use the prescribed text for detailed study. The students should be encouraged to read the texts leading to reading comprehension and different passages may be given for practice in the class. The time should be utilized for working out the exercises given after each excerpt, and also for supplementing the exercises with authentic materials of a similar kind, for example, newspaper articles, advertisements, promotional material etc. The focus in this syllabus is on skill development, fostering ideas and practice of language skills in various contexts and cultures.

Learning Objectives: The course will help to

- Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- Equip students to study academic subjects more effectively and critically using the theoretical and practical components of English syllabus.
- Develop study skills and communication skills in formal and informal situations.

Course Outcomes: Students should be able to

- Use English Language effectively in spoken and written forms.
- Comprehend the given texts and respond appropriately.
- Communicate confidently in various contexts and different cultures.
- Acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

SYLLABUS

UNIT –I
‘The Raman Effect’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary Building: The Concept of Word Formation --The Use of Prefixes and Suffixes.
Grammar: Identifying Common Errors in Writing with Reference to Articles and Prepositions.
Reading: Reading and Its Importance- Techniques for Effective Reading.

UNIT –II
‘Ancient Architecture in India’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary: Synonyms and Antonyms.
Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-verb Agreement.
Reading: Improving Comprehension Skills – Techniques for Good Comprehension
UNIT –III
‘Blue Jeans’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Acquaintance with Prefixes and Suffixes from Foreign Languages in English to form Derivatives-Words from Foreign Languages and their Use in English.
Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.
Reading: Sub-skills of Reading- Skimming and Scanning
Writing: Nature and Style of Sensible Writing- Defining- Describing Objects, Places and Events – Classifying- Providing Examples or Evidence

UNIT –IV
‘What Should You Be Eating’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Standard Abbreviations in English
Grammar: Redundancies and Clichés in Oral and Written Communication.
Reading: Comprehension- Intensive Reading and Extensive Reading
Writing: Writing Practices- Writing Introduction and Conclusion - Essay Writing-Précis Writing.

UNIT –V
‘How a Chinese Billionaire Built Her Fortune’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Technical Vocabulary and their usage
Grammar: Common Errors in English
Reading: Reading Comprehension-Exercises for Practice
Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing aReport.

TEXT BOOK:

REFERENCE BOOKS:
Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering students. The student will learn:

- Estimation of hardness and chloride content in water to check its suitability for drinking purpose.
- To determine the rate constant of reactions from concentrations as a function of time.
- The measurement of physical properties like adsorption and viscosity.
- To synthesize the drug molecules and check the purity of organic molecules by thin layer chromatographic (TLC) technique.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness and chloride content in water.
- Estimation of rate constant of a reaction from concentration – time relationships.
- Determination of physical properties like adsorption and viscosity.
- Calculation of R_f values of some organic molecules by TLC technique.

List of Experiments:

1. Determination of total hardness of water by complexometric method using EDTA
2. Determination of chloride content of water by Argentometry
3. Estimation of an HCl by Conductometric titrations
4. Estimation of Acetic acid by Conductometric titrations
5. Estimation of HCl by Potentiometric titrations
6. Estimation of Fe^{2+} by Potentiometry using KMnO$_4$
7. Determination of rate constant of acid catalysed hydrolysis of methyl acetate
8. Synthesis of Aspirin and Paracetamol
9. Thin layer chromatography calculation of R_f values. e.g. ortho and para nitro phenols
10. Determination of acid value of coconut oil
11. Verification of freundlich adsorption isotherm-adsorption of acetic acid on charcoal
12. Determination of viscosity of castor oil and ground nut oil by using Ostwald’s viscometer.
13. Determination of partition coefficient of acetic acid between n-butanol and water.

REFERENCE BOOKS:

1. Senior practical physical chemistry, B.D. Khosla, A. Gulati and V. Garg (R. Chand & Co., Delhi)
2. An introduction to practical chemistry, K.K. Sharma and D. S. Sharma (Vikas publishing, N. Delhi)
EN107HS/EN207HS: ENGLISH LANGUAGE
AND COMMUNICATION SKILLS LAB

B.Tech. I Year I Sem.

The **Language Lab** focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Course Objectives:
- To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- To sensitize students to the nuances of English speech sounds, word accent, intonation and rhythm
- To bring about a consistent accent and intelligibility in students’ pronunciation of English by providing an opportunity for practice in speaking
- To improve the fluency of students in spoken English and neutralize their mother tongue influence
- To train students to use language appropriately for public speaking and interviews

Learning Outcomes: Students will be able to attain
- Better understanding of nuances of English language through audio-visual experience and group activities
- Neutralization of accent for intelligibility
- Speaking skills with clarity and confidence which in turn enhances their employability skills

Syllabus

English Language and Communication Skills Lab (ELCS) shall have two parts:
- a. Computer Assisted Language Learning (CALL) Lab
- b. Interactive Communication Skills (ICS) Lab

Listening Skills

Objectives
1. To enable students develop their listening skills so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills

Objectives
1. To involve students in speaking activities in various contexts
2. To enable students express themselves fluently and appropriately in social and professional contexts
 - Oral practice: Just A Minute (JAM) Sessions
• Describing objects/situations/people
• Role play – Individual/Group activities

The following course content is prescribed for the English Language and Communication Skills Lab based on Unit-6 of AICTE Model Curriculum 2018 for B.Tech First English. As the syllabus is very limited, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning and timesaving in the Lab)

Exercise – I
CALL Lab:
Understand: Listening Skill - Its importance – Purpose- Process- Types- Barriers of Listening.

ICS Lab:
Understand: Communication at Work Place - Spoken vs. Written language.

Exercise – II
CALL Lab:
Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms in Context.

ICS Lab:

Exercise - III
CALL Lab:
Understand: Intonation-Errors in Pronunciation-the Influence of Mother Tongue (MTI).
Practice: Common Indian Variants in Pronunciation – Differences in British and American Pronunciation.

ICS Lab:
Understand: How to make Formal Presentations.
Practice: Formal Presentations.

Exercise – IV
CALL Lab:
Understand: Listening for General Details.
Practice: Listening Comprehension Tests.

ICS Lab:
Understand: Public Speaking – Exposure to Structured Talks.
Practice: Making a Short Speech – Extempore.

Exercise – V
CALL Lab:
Understand: Listening for Specific Details.
Practice: Listening Comprehension Tests.

ICS Lab:
Understand: Interview Skills.
Practice: Mock Interviews.
Minimum Requirement of infrastructural facilities for ELCS Lab:

1. **Computer Assisted Language Learning (CALL) Lab:**
 The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self-study by students.

 System Requirement (Hardware component):
 Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:
 - i) Computers with Suitable Configuration
 - ii) High Fidelity Headphones

2. **Interactive Communication Skills (ICS) Lab:**
 The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public-Address System, a LCD and a projector etc.
EE108ES/EE208ES: BASIC ELECTRICAL ENGINEERING LAB

B.Tech. I Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Course Objectives:
- To analyze a given network by applying various electrical laws and network theorems
- To know the response of electrical circuits for different excitations
- To calculate, measure and know the relation between basic electrical parameters.
- To analyze the performance characteristics of DC and AC electrical machines

Course Outcomes:
- Get an exposure to basic electrical laws.
- Understand the response of different types of electrical circuits to different excitations.
- Understand the measurement, calculation and relation between the basic electrical parameters
- Understand the basic characteristics of transformers and electrical machines.

List of experiments/demonstrations:
1. Verification of Ohms Law
2. Verification of KVL and KCL
3. Transient Response of Series RL and RC circuits using DC excitation
4. Transient Response of RLC Series circuit using DC excitation
5. Resonance in series RLC circuit
6. Calculations and Verification of Impedance and Current of RL, RC and RLC series circuits
8. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
9. Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star)
10. Measurement of Active and Reactive Power in a balanced Three-phase circuit
11. Performance Characteristics of a Separately/Self Excited DC Shunt/Compound Motor
12. Torque-Speed Characteristics of a Separately/Self Excited DC Shunt/Compound Motor
13. Performance Characteristics of a Three-phase Induction Motor
14. Torque-Speed Characteristics of a Three-phase Induction Motor
15. No-Load Characteristics of a Three-phase Alternator
MA201BS: MATHEMATICS - II

B.Tech. I Year II Sem.

Course Objectives: To learn
- Methods of solving the differential equations of first and higher order.
- Evaluation of multiple integrals and their applications
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course Outcomes: After learning the contents of this paper the student must be able to
- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real world problems
- Evaluate the multiple integrals and apply the concept to find areas, volumes, centre of mass and Gravity for cubes, sphere and rectangular parallelopiped
- Evaluate the line, surface and volume integrals and converting them from one to another

UNIT-I: First Order ODE
Exact, linear and Bernoulli’s equations; Applications : Newton’s law of cooling, Law of natural growth and decay; Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

UNIT-II: Ordinary Differential Equations of Higher Order
Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type \(e^{ax}, \sin ax, \cos ax \), polynomials in \(x, e^{ax}V(x) \) and \(x V(x) \); method of variation of parameters; Equations reducible to linear ODE with constant coefficients: Legendre’s equation, Cauchy-Euler equation.

UNIT-III: Multivariable Calculus (Integration)
Evaluation of Double Integrals (Cartesian and polar coordinates); change of order of integration (only Cartesian form); Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals. Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals), Centre of mass and Gravity (constant and variable densities) by double and triple integrals (applications involving cubes, sphere and rectangular parallelopiped).

UNIT-IV: Vector Differentiation

UNIT-V: Vector Integration
Line, Surface and Volume Integrals. Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:
REFERENCE BOOKS:
AP102BS/AP202BS: APPLIED PHYSICS

B.Tech. I Year II Sem.	L	T	P	C
3 | 1 | 0 | 4

Course Objectives:
- Students will demonstrate skills in scientific inquiry, problem solving and laboratory techniques.
- Students will be able to demonstrate competency and understanding of the concepts found in Quantum Mechanics, Fiber optics and lasers, Semiconductor physics and Electromagnetic theory and a broad base of knowledge in physics.
- The graduates will be able to solve non-traditional problems that potentially draw on knowledge in multiple areas of physics.
- To study applications in engineering like memory devices, transformer core and electromagnetic machinery.

Course Outcomes: Upon graduation:
- The student would be able to learn the fundamental concepts on Quantum behaviour of matter in its micro state.
- The knowledge of fundamentals of Semiconductor physics, Optoelectronics, Lasers and fibre optics enable the students to apply to various systems like communications, solar cell, photo cells and so on.
- Design, characterization and study of properties of material help the students to prepare new materials for various engineering applications.
- The course also helps the students to be exposed to the phenomena of electromagnetism and also to have exposure on magnetic materials and dielectric materials.

UNIT-I: Quantum Mechanics
Introduction to quantum physics, Black body radiation, Planck’s law, Photoelectric effect, Compton effect, de-Broglie’s hypothesis, Wave-particle duality, Davisson and Germer experiment, Heisenberg’s Uncertainty principle, Born’s interpretation of the wave function, Schrödinger’s time independent wave equation, Particle in one dimensional box.

UNIT-II: Semiconductor Physics
Intrinsic and Extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature, Carrier generation and recombination, Carrier transport: diffusion and drift, Hall effect, p-n junction diode, Zener diode and their V-I Characteristics, Bipolar Junction Transistor (BJT): Construction, Principle of operation.

UNIT-III: Optoelectronics

UNIT-IV: Lasers and Fibre Optics

UNIT-V: Electromagnetism and Magnetic Properties of Materials
Laws of electrostatics, Electric current and the continuity equation, Ampere’s and Faraday’s laws, Maxwell’s equations, Polarisation, Permittivity and Dielectric constant, Internal fields in a solid, Clausius-Mossotti equation, Ferroelectrics and Piezoelectrics. Magnetisation, permeability and
susceptibility, Classification of magnetic materials, Ferromagnetism and ferromagnetic domains, Hysteresis, Applications of magnetic materials.

TEXT BOOKS:
3. A textbook of Engineering Physics, Dr. M. N. Avadhanulu, Dr. P.G. Kshirsagar - S. Chand

REFERENCE BOOKS:
1. Richard Robinett, Quantum Mechanics
3. Online Course: “Optoelectronic Materials and Devices” by Monica Katiyar and Deepak Guptah on NPTEL
CS103ES/CS203ES: PROGRAMMING FOR PROBLEM SOLVING

B.Tech. I Year II Sem.

Course Objectives:
- To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of C programming language.
- To learn the usage of structured programming approach in solving problems.

Course Outcomes: The student will learn
- To write algorithms and to draw flowcharts for solving problems.
- To convert the algorithms/flowcharts to C programs.
- To code and test a given logic in C programming language.
- To decompose a problem into functions and to develop modular reusable code.
- To use arrays, pointers, strings and structures to write C programs.
- Searching and sorting problems.

UNIT - I: Introduction to Programming
Introduction to components of a computer system: disks, primary and secondary memory, processor, operating system, compilers, creating, compiling and executing a program etc., Number systems
Introduction to Algorithms: steps to solve logical and numerical problems. Representation of Algorithm, Flowchart/Pseudo code with examples, Program design and structured programming
Introduction to C Programming Language: variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code, Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments
Bitwise operations: Bitwise AND, OR, XOR and NOT operators
Conditional Branching and Loops: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do-while loops
I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr.
Command line arguments

UNIT - II: Arrays, Strings, Structures and Pointers:
Arrays: one- and two-dimensional arrays, creating, accessing and manipulating elements of arrays
Strings: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings
Structures: Defining structures, initializing structures, unions, Array of structures
Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self-referential structures, usage of self referential structures in linked list (no implementation)
Enumeration data type

UNIT - III: Preprocessor and File handling in C:
Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef
Files: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions.

UNIT - IV: Function and Dynamic Memory Allocation:
Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries
Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions
Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of different data types

UNIT - V: Introduction to Algorithms:
Algorithms for finding roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a number is prime number, etc.
Basic searching in an array of elements (linear and binary search techniques),
Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms),
Basic concept of order of complexity through the example programs

TEXT BOOKS:

REFERENCE BOOKS:
2. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
ME104ES/ME204ES: ENGINEERING GRAPHICS

B.Tech. I Year II Sem. L T P C
 1 0 4 3

Pre-requisites: Nil

Course objectives:
- To provide basic concepts in engineering drawing.
- To impart knowledge about standard principles of orthographic projection of objects.
- To draw sectional views and pictorial views of solids.

Course Outcomes: At the end of the course, the student will be able to:
- Preparing working drawings to communicate the ideas and information.
- Read, understand and interpret engineering drawings.

UNIT – I

UNIT- II

UNIT – III
Projections of Regular Solids – Auxiliary Views - Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views – Sections of Sphere

UNIT – IV
Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone, Intersection of Solids: Intersection of – Prism vs Prism- Cylinder Vs Cylinder

UNIT – V

Introduction to CAD: (For Internal Evaluation Weightage only):
Introduction to CAD Software Package Commands. - Free Hand Sketches of 2D- Creation of 2D Sketches by CAD Package

TEXT BOOKS:
1. Engineering Drawing N.D. Bhatt / Charotar
2. Engineering Drawing / N. S. Parthasarathy and Vela Murali/ Oxford

REFERENCE BOOKS:
1. Engineering Drawing / Basant Agrawal and McAgrawal/ McGraw Hill
2. Engineering Drawing/ M. B. Shah, B.C. Rane / Pearson.
List of Experiments:

1. Energy gap of P-N junction diode:
 To determine the energy gap of a semiconductor diode.

2. Solar Cell:
 To study the V-I Characteristics of solar cell.

3. Light emitting diode:
 Plot V-I and P-I characteristics of light emitting diode.

4. Stewart – Gee’s experiment:
 Determination of magnetic field along the axis of a current carrying coil.

5. Hall effect:
 To determine Hall co-efficient of a given semiconductor.

6. Photoelectric effect:
 To determine work function of a given material.

7. LASER:
 To study the characteristics of LASER sources.

8. Optical fibre:
 To determine the bending losses of Optical fibres.

9. LCR Circuit:
 To determine the Quality factor of LCR Circuit.

10. R-C Circuit:
 To determine the time constant of R-C circuit.

Note: Any 8 experiments are to be performed
CS106ES/CS206ES: PROGRAMMING FOR PROBLEM SOLVING LAB

B.Tech. I Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

[Note: The programs may be executed using any available Open Source/ Freely available IDE
Some of the Tools available are:
CodeLite: https://codelite.org/
Code::Blocks: http://www.codeblocks.org/
DevCpp : http://www.bloodshed.net/devcpp.html
Eclipse: http://www.eclipse.org
This list is not exhaustive and is NOT in any order of preference]

Course Objectives: The students will learn the following:
- To work with an IDE to create, edit, compile, run and debug programs
- To analyze the various steps in program development.
- To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- To Write programs using the Dynamic Memory Allocation concept.
- To create, read from and write to text and binary files

Course Outcomes: The candidate is expected to be able to:
- formulate the algorithms for simple problems
- translate given algorithms to a working and correct program
- correct syntax errors as reported by the compilers
- identify and correct logical errors encountered during execution
- represent and manipulate data with arrays, strings and structures
- use pointers of different types
- create, read and write to and from simple text and binary files
- modularize the code with functions so that they can be reused

Practice sessions:
- a. Write a simple program that prints the results of all the operators available in C (including pre/post increment, bitwise and/or/not, etc.). Read required operand values from standard input.
- b. Write a simple program that converts one given data type to another using auto conversion and casting. Take the values from standard input.

Simple numeric problems:
- a. Write a program for finding the max and min from the three numbers.
- b. Write the program for the simple, compound interest.
- c. Write program that declares Class awarded for a given percentage of marks, where mark <40%= Failed, 40% to <60% = Second class, 60% to <70%=First class, >= 70% = Distinction. Read percentage from standard input.
- d. Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be:
 - 5 x 1 = 5
 - 5 x 2 = 10
 - 5 x 3 = 15
- h. Write a program that shows the binary equivalent of a given positive number between 0 to 255.
Expression Evaluation:

a. A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of the building. Find the time taken by the ball to reach each floor. (Use the formula \(s = ut + \frac{1}{2}at^2 \) where \(u \) and \(a \) are the initial velocity in m/sec (\(= 0 \)) and acceleration in m/sec\(^2\) (\(= 9.8 \text{ m/s}^2 \)).

b. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, % and use Switch Statement)

c. Write a program that finds if a given number is a prime number

d. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.

e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first \(n \) terms of the sequence.

f. Write a C program to generate all the prime numbers between 1 and \(n \), where \(n \) is a value supplied by the user.

g. Write a C program to find the roots of a Quadratic equation.

h. Write a C program to calculate the following, where \(x \) is a fractional value.

i. \(1 - \frac{x}{2} + \frac{x^2}{4} - \frac{x^3}{6} \)

j. Write a C program to read in two numbers, \(x \) and \(n \), and then compute the sum of this geometric progression: \(1+x+x^2+x^3+\ldots\ldots\ldots+x^n \). For example: if \(n \) is 3 and \(x \) is 5, then the program computes \(1+5+25+125 \).

Arrays and Pointers and Functions:

a. Write a C program to find the minimum, maximum and average in an array of integers.

b. Write a functions to compute mean, variance, Standard Deviation, sorting of \(n \) elements in single dimension array.

c. Write a C program that uses functions to perform the following:

d. Addition of Two Matrices

e. ii. Multiplication of Two Matrices

f. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be same.

g. Write C programs that use both recursive and non-recursive functions

h. To find the factorial of a given integer.

i. ii. To find the GCD (greatest common divisor) of two given integers.

j. iii. To find \(x^n \)

k. Write a program for reading elements using pointer into array and display the values using array.

l. Write a program for display values reverse order from array using pointer.

m. Write a program through pointer variable to sum of \(n \) elements from array.

Files:

a. Write a C program to display the contents of a file to standard output device.

b. Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.

c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.

d. Write a C program that does the following:

 It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function)

 Now the program asks for an index and a value from the user and the value at that index should be changed to the new value in the file. (hint: use fseek function)
The program should then read all 10 values and print them back.
e. Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

Strings:
a. Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.
b. Write a C program that converts a number ranging from 1 to 50 to Roman equivalent
c. Write a C program that uses functions to perform the following operations:
d. To insert a sub-string in to a given main string from a given position.
e. ii. To delete n Characters from a given position in a given string.
f. Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)
g. Write a C program that displays the position of a character ch in the string S or – 1 if S doesn't contain ch.
h. Write a C program to count the lines, words and characters in a given text.

Miscellaneous:
a. Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered.
b. Write a C program to construct a pyramid of numbers as follows:

```
1
1 2
1 2 3
```

Sorting and Searching:
a. Write a C program that uses non recursive function to search for a Key value in a given list of integers using linear search method.
b. Write a C program that uses non recursive function to search for a Key value in a given sorted list of integers using binary search method.
c. Write a C program that implements the Bubble sort method to sort a given list of integers in ascending order.
d. Write a C program that sorts the given array of integers using selection sort in descending order

Suggested Reference Books for solving the problems:
i. Byron Gottfried, Schaum’s Outline of Programming with C, McGraw-Hill
iii. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
iv. Hall of India
v. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
*MC109ES/*MC209ES: ENVIRONMENTAL SCIENCE

B.Tech. I Year II Sem.

<table>
<thead>
<tr>
<th>Course Objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding the importance of ecological balance for sustainable development.</td>
</tr>
<tr>
<td>Understanding the impacts of developmental activities and mitigation measures.</td>
</tr>
<tr>
<td>Understanding the environmental policies and regulations</td>
</tr>
</tbody>
</table>

Course Outcomes:
Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT-I
Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT-II
Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT-III
Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT-IV

UNIT-V

TEXT BOOKS:
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:
6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.
CS031ES: ANALOG AND DIGITAL ELECTRONICS

B.TECH II Year I Sem. L T P C
3 0 0 3

Course Objectives:
- To introduce components such as diodes, BJTs and FETs.
- To know the applications of components.
- To give understanding of various types of amplifier circuits
- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand the concepts of combinational logic circuits and sequential circuits.

Course Outcomes: Upon completion of the Course, the students will be able to:
- Know the characteristics of various components.
- Understand the utilization of components.
- Design and analyze small signal amplifier circuits.
- Learn Postulates of Boolean algebra and to minimize combinational functions
- Design and analyze combinational and sequential circuits
- Know about the logic families and realization of logic gates.

UNIT - I
Diodes and Applications: Junction diode characteristics: Open circuited p-n junction, p-n junction as a rectifier, V-I characteristics, effect of temperature, diode resistance, diffusion capacitance, diode switching times, breakdown diodes, Tunnel diodes, photo diode, LED.
Diode Applications - clipping circuits, comparators, Half wave rectifier, Full wave rectifier, rectifier with capacitor filter.

UNIT - II
BJTs: Transistor characteristics: The junction transistor, transistor as an amplifier, CB, CE, CC configurations, comparison of transistor configurations, the operating point, self-bias or Emitter bias, bias compensation, thermal runaway and stability, transistor at low frequencies, CE amplifier response, gain bandwidth product, Emitter follower, RC coupled amplifier, two cascaded CE and multi stage CE amplifiers.

UNIT - III
FETs and Digital Circuits: FETs: JFET, V-I characteristics, MOSFET, low frequency CS and CD amplifiers, CS and CD amplifiers.
Digital Circuits: Digital (binary) operations of a system, OR gate, AND gate, NOT, EXCLUSIVE OR gate, De Morgan Laws, NAND and NOR DTL gates, modified DTL gates, HTL and TTL gates, output stages, RTL and DCTL, CMOS, Comparison of logic families.

UNIT - IV

UNIT - V
Sequential Logic Circuits: Sequential Circuits, Storage Elements: Latches and flip flops, Analysis of Clocked Sequential Circuits, State Reduction and Assignment, Shift Registers, Ripple Counters, Synchronous Counters, Random-Access Memory, Read-Only Memory.

TEXTBOOKS:

REFERENCE BOOKS:
CS302PC: DATA STRUCTURES

B.TECH II Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisites: A course on “Programming for Problem Solving”.

Course Objectives:
- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms

Course Outcomes:
- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I
Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues-operations, array and linked representations.

UNIT - II
Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.
Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

UNIT - IV
Graphs: Graph Implementation Methods. Graph Traversal Methods.
Sorting: Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT - V
Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

REFERENCE BOOK:
MA303BS: COMPUTER ORIENTED STATISTICAL METHODS

B.TECH II Year I Sem. L T P C
3 1 0 4

Pre-requisites: Mathematics courses of first year of study.

Course Objectives: To learn
- The theory of Probability, and probability distributions of single and multiple random variables
- The sampling theory and testing of hypothesis and making inferences
- Stochastic process and Markov chains.

Course Outcomes: After learning the contents of this paper the student must be able to
- Apply the concepts of probability and distributions to some case studies
- Correlate the material of one unit to the material in other units
- Resolve the potential misconceptions and hazards in each topic of study.

UNIT - I

UNIT - II
Mathematical Expectation: Mean of a Random Variable, Variance and Covariance of Random Variables, Means and Variances of Linear Combinations of Random Variables, Chebyshev’s Theorem.

UNIT - III
Continuous Probability Distributions: Continuous Uniform Distribution, Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial, Gamma and Exponential Distributions.

UNIT - IV

UNIT - V

TEXT BOOKS:

REFERENCE BOOKS:
CS304PC: COMPUTER ORGANIZATION AND ARCHITECTURE

B.TECH II Year I Sem.

L T P C
3 0 0 3

Co-requisite: A Course on “Digital Logic Design and Microprocessors”.

Course Objectives:
- The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.
- It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations.
- Topics include computer arithmetic, instruction set design, microprogrammed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors.

Course Outcomes:
- Understand the basics of instructions sets and their impact on processor design.
- Demonstrate an understanding of the design of the functional units of a digital computer system.
- Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
- Design a pipeline for consistent execution of instructions with minimum hazards.
- Recognize and manipulate representations of numbers stored in digital computers.

UNIT - I
Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.
Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT - II
Microprogrammed Control: Control memory, Address sequencing, micro program example, design of control unit.
Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT - III
Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.

UNIT - IV
Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT - V
Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.
Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor.

Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence.

TEXT BOOK:

REFERENCE BOOKS:
CS305PC: OBJECT ORIENTED PROGRAMMING USING C++

B.TECH II Year I Sem. L T P C
 2 0 0 2

Prerequisites: A course on “Programming for Problem Solving using C”.

Course Objectives:
- Introduces Object Oriented Programming concepts using the C++ language.
- Introduces the principles of data abstraction, inheritance and polymorphism;
- Introduces the principles of virtual functions and polymorphism
- Introduces handling formatted I/O and unformatted I/O
- Introduces exception handling

Course Outcomes:
- Able to develop programs with reusability
- Develop programs for file handling
- Handle exceptions in programming
- Develop applications for a range of problems using object-oriented programming techniques

UNIT - I
Object-Oriented Thinking: Different paradigms for problem solving, need for OOP paradigm, differences between OOP and Procedure oriented programming, Overview of OOP concepts- Abstraction, Encapsulation, Inheritance and Polymorphism.

C++ Basics: Structure of a C++ program, Data types, Declaration of variables, Expressions, Operators, Operator Precedence, Evaluation of expressions, Type conversions, Pointers, Arrays, Pointers and Arrays, Strings, Structures, References. Flow control statement- if, switch, while, for, do, break, continue, goto statements. Functions - Scope of variables, Parameter passing, Default arguments, inline functions, Recursive functions, Pointers to functions. Dynamic memory allocation and deallocation operators-new and delete, Preprocessor directives.

UNIT - II
C++ Classes and Data Abstraction: Class definition, Class structure, Class objects, Class scope, this pointer, Friends to a class, Static class members, Constant member functions, Constructors and Destructors, Dynamic creation and destruction of objects, Data abstraction, ADT and information hiding.

UNIT - III
Inheritance: Defining a class hierarchy, Different forms of inheritance, Defining the Base and Derived classes, Access to the base class members, Base and Derived class construction, Destructors, Virtual base class.

Virtual Functions and Polymorphism: Static and Dynamic binding, virtual functions, Dynamic binding through virtual functions, Virtual function call mechanism, Pure virtual functions, Abstract classes, Implications of polymorphic use of classes, Virtual destructors.

UNIT - IV
C++ I/O: I/O using C functions, Stream classes hierarchy, Stream I/O, File streams and String streams, Overloading operators, Error handling during file operations, Formatted I/O.

UNIT - V
Exception Handling: Benefits of exception handling, Throwing an exception, The try block, Catching an exception, Exception objects, Exception specifications, Stack unwinding, Rethrowing an exception, Catching all exceptions.
TEXT BOOKS:

REFERENCE BOOKS:
CS306ES: ANALOG AND DIGITAL ELECTRONICS LAB

B.TECH II Year I Sem. L T P C
0 0 2 1

Course Objectives
- To introduce components such as diodes, BJTs and FETs.
- To know the applications of components.
- To give understanding of various types of amplifier circuits
- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand the concepts of combinational logic circuits and sequential circuits.

Course Outcomes: Upon completion of the Course, the students will be able to:
- Know the characteristics of various components.
- Understand the utilization of components.
- Design and analyze small signal amplifier circuits.
- Postulates of Boolean algebra and to minimize combinational functions
- Design and analyze combinational and sequential circuits
- Known about the logic families and realization of logic gates.

List of Experiments
1. Full Wave Rectifier with & without filters
2. Common Emitter Amplifier Characteristics
3. Common Base Amplifier Characteristics
4. Common Source amplifier Characteristics
5. Measurement of h-parameters of transistor in CB, CE, CC configurations
6. Input and Output characteristics of FET in CS configuration
7. Realization of Boolean Expressions using Gates
8. Design and realization logic gates using universal gates
9. generation of clock using NAND / NOR gates
10. Design a 4 – bit Adder / Subtractor
11. Design and realization a Synchronous and Asynchronous counter using flip-flops
12. Realization of logic gates using DTL, TTL, ECL, etc.
CS307PC: DATA STRUCTURES LAB

B.TECH II Year I Sem. L T P C

0 0 3 1.5

Prerequisites: A Course on “Programming for problem solving”.

Course Objectives:
- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:
- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists.
- Ability to Implement searching and sorting algorithms

List of Experiments
1. Write a program that uses functions to perform the following operations on singly linked list:
 i) Creation ii) Insertion iii) Deletion iv) Traversal
2. Write a program that uses functions to perform the following operations on doubly linked list:
 i) Creation ii) Insertion iii) Deletion iv) Traversal
3. Write a program that uses functions to perform the following operations on circular linked list:
 i) Creation ii) Insertion iii) Deletion iv) Traversal
4. Write a program that implement stack (its operations) using
 i) Arrays ii) Pointers
5. Write a program that implement Queue (its operations) using
 i) Arrays ii) Pointers
6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order
 i) Bubble sort ii) Selection sort iii) Insertion sort
7. Write a program that use both recursive and non recursive functions to perform the following searching operations for a Key value in a given list of integers:
 i) Linear search ii) Binary search
8. Write a program to implement the tree traversal methods.
9. Write a program to implement the graph traversal methods.

TEXT BOOKS:

REFERENCE BOOK:
Course Objectives:
The IT Workshop for engineers is a training lab course spread over 60 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel, Power Point and Publisher.

PC Hardware introduces the students to a personal computer and its basic peripherals, the process of assembling a personal computer, installation of system software like MS Windows, Linux and the required device drivers. In addition hardware and software level troubleshooting process, tips and tricks would be covered. The students should work on working PC to disassemble and assemble to working condition and install Windows and Linux on the same PC. Students are suggested to work similar tasks in the Laptop scenario wherever possible. Internet & World Wide Web module introduces the different ways of hooking the PC on to the internet from home and workplace and effectively usage of the internet. Usage of web browsers, email, newsgroups and discussion forums would be covered. In addition, awareness of cyber hygiene, i.e., protecting the personal computer from getting infected with the viruses, worms and other cyber attacks would be introduced. Productivity tools module would enable the students in crafting professional word documents, excel spread sheets, power point presentations and personal web sites using the Microsoft suite of office tools and LaTeX.

PC Hardware
Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both windows and Linux. Lab instructors should verify the installation and follow it up with a Viva.

Task 5: Hardware Troubleshooting: Students have to be given a PC which does not boot due to improper assembly or defective peripherals. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

Task 6: Software Troubleshooting: Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

Internet & World Wide Web
Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students
should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task 3: Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to first install an antivirus software, configure their personal firewall and windows update on their computer. Then they need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office 2007/ equivalent (FOSS) tool word: Importance of LaTeX and MS office 2007/ equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 2: Using LaTeX and Word to create project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

Task 3: Creating project abstract Features to be covered:- Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Task 4: Creating a Newsletter: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Excel Orientation: The mentor needs to tell the importance of MS office 2007/ equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

Task 2: Calculating GPA - Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP

Task 3: Performance Analysis - Features to be covered:- Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

LaTeX and MS/equivalent (FOSS) tool Power Point
Task 1: Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this week includes: - PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in both LaTeX and PowerPoint. Students will be given model power point presentation which needs to be replicated (exactly how it’s asked).

Task 2: Second week helps students in making their presentations interactive. Topic covered during this week includes: Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Concentrating on the in and out of Microsoft power point and presentations in LaTeX. Helps them learn best practices in designing and preparing power point presentation. Topic covered during this week includes: - Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides.

REFERENCE BOOKS:
1. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech
3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
4. PC Hardware - A Handbook – Kate J. Chase PHI (Microsoft)
5. LaTeX Companion – Leslie Lamport, PHI/Pearson.
CS309PC: C++ PROGRAMMING LAB

B.TECH II Year I Sem.

Prerequisites: A course on “Programming for Problem Solving”.

Course Objectives:
- Introduces object-oriented programming concepts using the C++ language.
- Introduces the principles of data abstraction, inheritance and polymorphism;
- Introduces the principles of virtual functions and polymorphism
- Introduces handling formatted I/O and unformatted I/O
- Introduces exception handling

Course Outcome:
- Ability to develop applications for a range of problems using object-oriented programming techniques

List of Experiments
1. Write a C++ Program to display Names, Roll No., and grades of 3 students who have appeared in the examination. Declare the class of name, Roll No. and grade. Create an array of class objects. Read and display the contents of the array.

2. Write a C++ program to declare Struct. Initialize and display contents of member variables.

3. Write a C++ program to declare a class. Declare pointer to class. Initialize and display the contents of the class member.

4. Given that an EMPLOYEE class contains following members: data members: Employee number, Employee name, Basic, DA, IT, Net Salary and print data members.

5. Write a C++ program to read the data of N employee and compute Net salary of each employee (DA=52% of Basic and Income Tax (IT) =30% of the gross salary).

6. Write a C++ to illustrate the concepts of console I/O operations.

7. Write a C++ program to use scope resolution operator. Display the various values of the same variables declared at different scope levels.

8. Write a C++ program to allocate memory using new operator.

9. Write a C++ program to create multilevel inheritance. (Hint: Classes A1, A2, A3)

10. Write a C++ program to create an array of pointers. Invoke functions using array objects.

11. Write a C++ program to use pointer for both base and derived classes and call the member function. Use Virtual keyword.
COURSE DESCRIPTION
This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines—such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies—to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course:
- To develop students’ sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes:
- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT - I: UNDERSTANDING GENDER
UNIT – II: GENDER ROLES AND RELATIONS
Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles-
Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences-
Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

UNIT – III: GENDER AND LABOUR
Division and Valuation of Labour-Housework: The Invisible Labor- “My Mother doesn’t Work.” “Share
- Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming

UNIT – IV: GENDER - BASED VIOLENCE
The Concept of Violence- Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No! -Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: “Chupulu”.

UNIT – V: GENDER AND CULTURE
Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals
Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks-
The Brave Heart.

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

- Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on “Gender”.

ASSESSMENT AND GRADING:
- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%
CS401PC: DISCRETE MATHEMATICS

B.TECH II Year II Sem. L T P C

3 0 0 3

Prerequisites: An understanding of Mathematics in general is sufficient.

Course Objectives:
- Introduces the elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations, graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Course Outcomes:
- Ability to understand and construct precise mathematical proofs
- Ability to use logic and set theory to formulate precise statements
- Ability to analyze and solve counting problems on finite and discrete structures
- Ability to describe and manipulate sequences
- Ability to apply graph theory in solving computing problems

UNIT - I

UNIT - II
Basic Structures, Sets, Functions, Sequences, Sums, Matrices and Relations Sets, Functions, Sequences & Summations, Cardinality of Sets and Matrices Relations, Relations and Their Properties, n-ary Relations and Their Applications, Representing Relations, Closures of Relations, Equivalence Relations, Partial Orderings.

UNIT - III
Induction and Recursion: Mathematical Induction, Strong Induction and Well-Ordering, Recursive Definitions and Structural Induction, Recursive Algorithms, Program Correctness

UNIT - IV
Discrete Probability and Advanced Counting Techniques: An Introduction to Discrete Probability, Probability Theory, Bayes' Theorem, Expected Value and Variance
Advanced Counting Techniques: Recurrence Relations, Solving Linear Recurrence Relations, Divide-and-Conquer Algorithms and Recurrence Relations, Generating Functions, Inclusion-Exclusion, Applications of Inclusion-Exclusion

UNIT - V
Graphs: Graphs and Graph Models, Graph Terminology and Special Types of Graphs, Representing Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest-Path Problems, Planar Graphs, Graph Coloring.
Trees: Introduction to Trees, Applications of Trees, Tree Traversal, Spanning Trees, Minimum Spanning Trees

TEXT BOOK:

REFERENCES BOOKS:

1. Discrete Mathematical Structures with Applications to Computer Science-J.P. Tremblay and R. Manohar, TMH,
SM402MS/SM305MS: BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

B.TECH II Year II Sem.

L T P C
3 0 0 3

Prerequisites: None

Course Objective: To learn the basic Business types, impact of the Economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm’s financial position by analysing the Financial Statements of a Company.

UNIT – I
Introduction to Business and Economics:

UNIT - II
Demand and Supply Analysis:
Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

UNIT - III
Production, Cost, Market Structures & Pricing:
Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.
Cost analysis: Types of Costs, Short run and Long run Cost Functions.
Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition.

UNIT - IV

UNIT - V
TEXT BOOKS:

REFERENCE BOOKS:
CS403PC: OPERATING SYSTEMS

B.TECH II Year II Sem. L T P C

Prerequisites:
- A course on “Computer Programming and Data Structures”.
- A course on “Computer Organization and Architecture”.

Course Objectives:
- Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- Introduce the issues to be considered in the design and development of operating system
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:
- Will be able to control access to a computer and the files that may be shared
- Demonstrate the knowledge of the components of computer and their respective roles in computing.
- Ability to recognize and resolve user problems with standard operating environments.
- Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

UNIT - I

UNIT - II
System call interface for process management-fork, exit, wait, waitpid, exec

UNIT - III
Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock
Process Management and Synchronization - The Critical Section Problem, Synchronization Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors
Interprocess Communication Mechanisms: IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV

UNIT - V
TEXT BOOKS:

REFERENCE BOOKS:
2. Operating System A Design Approach- Crowley, TMH.
4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.
CS404PC: DATABASE MANAGEMENT SYSTEMS

B.TECH II Year II Sem.

Prerequisites: A course on “Data Structures”.

Course Objectives:
- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:
- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I
Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS
Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II
Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering tables and views.
Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III
SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active data bases.

UNIT - IV

UNIT - V
TEXT BOOKS:

REFERENCE BOOKS:
3. Introduction to Database Systems, C. J. Date, *Pearson Education*
Course Objectives:
- To introduce the object-oriented programming concepts.
- To understand object-oriented programming concepts, and apply them in solving problems.
- To introduce the principles of inheritance and polymorphism; and demonstrate how they relate to the design of abstract classes.
- To introduce the implementation of packages and interfaces.
- To introduce the concepts of exception handling and multithreading.
- To introduce the design of Graphical User Interface using applets and swing controls.

Course Outcomes:
- Able to solve real world problems using OOP techniques.
- Able to understand the use of abstract classes.
- Able to solve problems using java collection framework and I/o classes.
- Able to develop multithreaded applications with synchronization.
- Able to develop applets for web applications.
- Able to design GUI based applications.

UNIT - I
Object-Oriented Thinking- A way of viewing world – Agents and Communities, messages and methods, Responsibilities, Classes and Instances, Class Hierarchies- Inheritance, Method binding, Overriding and Exceptions, Summary of Object-Oriented concepts. Java buzzwords, An Overview of Java, Data types, Variables and Arrays, operators, expressions, control statements, Introducing classes, Methods and Classes, String handling.

Inheritance– Inheritance concept, Inheritance basics, Member access, Constructors, Creating Multilevel hierarchy, super uses, using final with inheritance, Polymorphism-ad hoc polymorphism, pure polymorphism, method overriding, abstract classes, Object class, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance.

UNIT - II
Packages- Defining a Package, CLASSPATH, Access protection, importing packages.
Interfaces- defining an interface, implementing interfaces, Nested interfaces, applying interfaces, variables in interfaces and extending interfaces.
Stream based I/O (java.io) – The Stream classes-Byte streams and Character streams, Reading console Input and Writing Console Output, File class, Reading and writing Files, Random access file operations, The Console class, Serialization, Enumerations, auto boxing, generics.

UNIT - III
Exception handling - Fundamentals of exception handling, Exception types, Termination or resumptive models, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws and finally, built- in exceptions, creating own exception sub classes.
Multithreading- Differences between thread-based multitasking and process-based multitasking, Java thread model, creating threads, thread priorities, synchronizing threads, inter thread communication.

UNIT - IV
More Utility classes, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner

UNIT - V
Event Handling - The Delegation event model- Events, Event sources, Event Listeners, Event classes, Handling mouse and keyboard events, Adapter classes, Inner classes, Anonymous Inner classes.

TEXT BOOKS:

REFERENCE BOOKS:
1. An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch, John Wiley & sons
2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
CS406PC: OPERATING SYSTEMS LAB
(Using UNIX/LINUX)

B.TECH II Year II Sem. L T P C
 0 0 3 1.5

Prerequisites:
- A course on “Programming for Problem Solving”.
- A course on “Computer Organization and Architecture”.

Co-requisite:
- A course on “Operating Systems”.

Course Objectives:
- To provide an understanding of the design aspects of operating system concepts through simulation
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:
- Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management.
- Able to implement C programs using Unix system calls

List of Experiments:
1. Write C programs to simulate the following CPU Scheduling algorithms
 a) FCFS b) SJF c) Round Robin d) priority
2. Write programs using the I/O system calls of UNIX/LINUX operating system
 (open, read, write, close, fcntl, seek, stat, opendir, readdir)
3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
4. Write a C program to implement the Producer – Consumer problem using semaphores using UNIX/LINUX system calls.
5. Write C programs to illustrate the following IPC mechanisms
 a) Pipes b) FIFOs c) Message Queues d) Shared Memory
6. Write C programs to simulate the following memory management techniques
 a) Paging b) Segmentation

TEXT BOOKS:

REFERENCE BOOKS:
2. Operating System - A Design Approach-Crowley, TMH.
4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education
CS407PC: DATABASE MANAGEMENT SYSTEMS LAB

B.TECH II Year II Sem. L T P C
 0 0 3 1.5

Co-requisites:
- Co-requisite of course “Database Management Systems”

Course Objectives:
- Introduce ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation

Course Outcomes:
- Design database schema for a given application and apply normalization
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for database applications using procedures, cursors and triggers

List of Experiments:
1. Concept design with E-R Model
2. Relational Model
3. Normalization
4. Practicing DDL commands
5. Practicing DML commands
6. Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.)
7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
8. Triggers (Creation of insert trigger, delete trigger, update trigger)
9. Procedures
10. Usage of Cursors

TEXT BOOKS:

REFERENCES BOOKS:
2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C.J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
CS408PC: JAVA PROGRAMMING LAB

B.TECH II Year II Sem. L T P C
 0 0 2 1

Course Objectives:
- To write programs using abstract classes.
- To write programs for solving real world problems using java collection framework.
- To write multithreaded programs.
- To write GUI programs using swing controls in Java.
- To introduce java compiler and eclipse platform.
- To impart hands on experience with java programming.

Course Outcomes:
- Able to write programs for solving real world problems using java collection framework.
- Able to write programs using abstract classes.
- Able to write multithreaded programs.
- Able to write GUI programs using swing controls in Java.

Note:
1. Use LINUX and MySQL for the Lab Experiments. Though not mandatory, encourage the use of Eclipse platform.
2. The list suggests the minimum program set. Hence, the concerned staff is requested to add more problems to the list as needed.

List of Experiments:
1. Use Eclipse or Net bean platform and acquaint with the various menus. Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.

2. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -, *, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.

3. a) Develop an applet in Java that displays a simple message.
 b) Develop an applet in Java that receives an integer in one text field, and computes its factorial Value and returns it in another text field, when the button named “Compute” is clicked.

4. Write a Java program that creates a user interface to perform integer divisions. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num 2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a Number Format Exception. If Num2 were Zero, the program would throw an Arithmetic Exception. Display the exception in a message dialog box.

5. Write a Java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.

6. Write a Java program for the following:
 Create a doubly linked list of elements.
 Delete a given element from the above list.
Display the contents of the list after deletion.

7. Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with “Stop” or “Ready” or “Go” should appear above the buttons in selected color. Initially, there is no message shown.

8. Write a Java program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle, Triangle, and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.

9. Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas. Write a java program to display the table using Labels in Grid Layout.

10. Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired (Use Adapter classes).

11. Write a Java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab (\t). It takes a name or phone number as input and prints the corresponding other value from the hash table (hint: use hash tables).

12. Write a Java program that correctly implements the producer – consumer problem using the concept of interthread communication.

13. Write a Java program to list all the files in a directory including the files present in all its subdirectories.

14. Write a Java program that implements Quick sort algorithm for sorting a list of names in ascending order

15. Write a Java program that implements Bubble sort algorithm for sorting in descending order and also shows the number of interchanges occurred for the given set of integers.

REFERENCE BOOKS
2. Thinking in Java, Bruce Eckel, Pearson Education.
The Constitution of India is the supreme law of India. Parliament of India cannot make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the “basic structure” of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of “Constitutionalism” – a modern and progressive concept historically developed by the thinkers of “liberalism” – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of “constitutionalism” in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India’s legacy of “diversity”. It has been said that Indian constitution reflects ideals of its freedom movement; however, few critics have argued that it does not truly incorporate our own ancient legal heritage and cultural values. No law can be “static” and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution but also strengthened the same through progressive interpretations of the text of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it “as one of the strongest court in the world”.

Course content
1. Meaning of the constitution law and constitutionalism
2. Historical perspective of the Constitution of India
3. Salient features and characteristics of the Constitution of India
4. Scheme of the fundamental rights
5. The scheme of the Fundamental Duties and its legal status
6. The Directive Principles of State Policy – Its importance and implementation
7. Federal structure and distribution of legislative and financial powers between the Union and the States
8. Parliamentary Form of Government in India – The constitution powers and status of the President of India
9. Amendment of the Constitutional Powers and Procedure
10. The historical perspectives of the constitutional amendments in India
12. Local Self Government – Constitutional Scheme in India
13. Scheme of the Fundamental Right to Equality
14. Scheme of the Fundamental Right to certain Freedom under Article 19
15. Scope of the Right to Life and Personal Liberty under Article 21
Course Objectives

- To provide introduction to some of the central ideas of theoretical computer science from the perspective of formal languages.
- To introduce the fundamental concepts of formal languages, grammars and automata theory.
- Classify machines by their power to recognize languages.
- Employ finite state machines to solve problems in computing.
- To understand deterministic and non-deterministic machines.
- To understand the differences between decidability and undecidability.

Course Outcomes

- Able to understand the concept of abstract machines and their power to recognize the languages.
- Able to employ finite state machines for modeling and solving computing problems.
- Able to design context free grammars for formal languages.
- Able to distinguish between decidability and undecidability.
- Able to gain proficiency with mathematical tools and formal methods.

UNIT - I
Introduction to Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.
Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions. Conversion of NFA to DFA, Moore and Melay machines

UNIT - II
Pumping Lemma for Regular Languages, Statement of the pumping lemma, Applications of the Pumping Lemma.
Closure Properties of Regular Languages: Closure properties of Regular languages, Decision Properties of Regular Languages, Equivalence and Minimization of Automata.

UNIT - III
Push Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final state, Acceptance by empty stack, Deterministic Pushdown Automata. From CFG to PDA, From PDA to CFG.

UNIT - IV
Pumping Lemma for Context-Free Languages: Statement of pumping lemma, Applications
Closure Properties of Context-Free Languages: Closure properties of CFL’s, Decision Properties of CFL’s

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine

UNIT - V

Types of Turing machine: Turing machines and halting

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines, Recursive languages, Properties of recursive languages, Post's Correspondence Problem, Modified Post Correspondence problem, Other Undecidable Problems, Counter machines.

TEXT BOOKS:
2. Theory of Computer Science – Automata languages and computation, Mishra and Chandrashekaran, 2nd edition, PHI.

REFERENCE BOOKS:
1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
CS502PC: SOFTWARE ENGINEERING

Course Objectives

- The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams.

Course Outcomes

- Ability to translate end-user requirements into system and software requirements, using e.g. UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report.

UNIT - I
Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths.
A Generic view of process: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI), process patterns, process assessment, personal and team process models.
Process models: The waterfall model, incremental process models, evolutionary process models, the unified process.

UNIT - II
Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.
Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.
System models: Context models, behavioral models, data models, object models, structured methods.

UNIT - III
Design Engineering: Design process and design quality, design concepts, the design model.
Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT - IV
Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging.
Product metrics: Software quality, metrics for analysis model, metrics for design model, metrics for source code, metrics for testing, metrics for maintenance.

UNIT - V
Metrics for Process and Products: Software measurement, metrics for software quality.
Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM, RMMM plan.
Quality Management: Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:
3. The unified modeling language user guide Grady Booch, James Rumbaugh, Ivar Jacobson, Pearson Education.

REFERENCE BOOKS:
CS503PC: COMPUTER NETWORKS

III Year B.Tech. CSE I-Sem

Prerequisites
1. A course on “Programming for problem solving”
2. A course on “Data Structures”

Course Objectives
1. The objective of the course is to equip the students with a general overview of the concepts and fundamentals of computer networks.
2. Familiarize the students with the standard models for the layered approach to communication between machines in a network and the protocols of the various layers.

Course Outcomes
1. Gain the knowledge of the basic computer network technology.
2. Gain the knowledge of the functions of each layer in the OSI and TCP/IP reference model.
3. Obtain the skills of subnetting and routing mechanisms.
4. Familiarity with the essential protocols of computer networks, and how they can be applied in network design and implementation.

UNIT - I
Network hardware, Network software, OSI, TCP/IP Reference models, Example Networks: ARPANET, Internet.

UNIT - II
Data link layer: Design issues, framing, Error detection and correction.
Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channel.
Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols.
Medium Access sub layer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

UNIT - III

UNIT - IV
Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

UNIT - V
Application Layer – Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

TEXT BOOK:
REFERENCE BOOKS:
CS504PC: WEB TECHNOLOGIES

III Year B.Tech. CSE I-Sem

<table>
<thead>
<tr>
<th>Course Objectives:</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>To introduce PHP language for server-side scripting</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>To introduce XML and processing of XML Data with Java</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To introduce Server-side programming with Java Servlets and JSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To introduce Client-side scripting with Javascript and AJAX.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Outcomes

1. gain knowledge of client-side scripting, validation of forms and AJAX programming
2. understand server-side scripting with PHP language
3. understand what is XML and how to parse and use XML Data with Java
4. To introduce Server-side programming with Java Servlets and JSP

UNIT - I
Introduction to PHP: Declaring variables, data types, arrays, strings, operators, expressions, control structures, functions, Reading data from web form controls like text boxes, radio buttons, lists etc., Handling File Uploads. Connecting to database (MySQL as reference), executing simple queries, handling results, Handling sessions and cookies

File Handling in PHP: File operations like opening, closing, reading, writing, appending, deleting etc. on text and binary files, listing directories.

UNIT - II
HTML Common tags- List, Tables, images, forms, Frames; Cascading Style sheets; XML: Introduction to XML, Defining XML tags, their attributes and values, Document Type Definition, XML Schemes, Document Object Model, XHTML Parsing XML Data – DOM and SAX Parsers in java.

UNIT - III
Introduction to Servlets: Common Gateway Interface (CGI), Life cycle of a Servlet, deploying a servlet, The Servlet API, Reading Servlet parameters, Reading Initialization parameters, Handling Http Request & Responses, Using Cookies and Sessions, connecting to a database using JDBC.

UNIT - IV
Introduction to JSP: The Anatomy of a JSP Page, JSP Processing, Declarations, Directives, Expressions, Code Snippets, implicit objects, Using Beans in JSP Pages, Using Cookies and session for session tracking, connecting to database in JSP.

UNIT - V
Client-side Scripting: Introduction to Javascript, Javascript language – declaring variables, scope of variables, functions. event handlers (onclick, onsubmit etc.), Document Object Model, Form validation.

TEXT BOOKS:
1. Web Technologies, Uttam K Roy, Oxford University Press
2. The Complete Reference PHP — Steven Holzner, Tata McGraw-Hill

REFERENCE BOOKS
2. Java Server Pages —Hans Bergsten, SPD O'Reilly,
3. Java Script, D.Flanagan
4. Beginning Web Programming-Jon Duckett WROX.
CS511PE: INFORMATION THEORY & CODING (Professional Elective - I)

III Year B.Tech. CSE I-Sem

Prerequisite
1. Digital Communications

Course Objectives:
- To acquire the knowledge in measurement of information and errors.
- Understand the importance of various codes for communication systems
- To design encoder and decoder of various codes.
- To known the applicability of source and channel codes

Course Outcomes: Upon completing this course, the student will be able to
- Learn measurement of information and errors.
- Obtain knowledge in designing various source codes and channel codes
- Design encoders and decoders for block and cyclic codes
- Understand the significance of codes in various applications

UNIT - I
Coding for Reliable Digital Transmission and storage
Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.
Source Codes: Shannon-fano coding, Huffman coding

UNIT - II
Linear Block Codes: Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT - III
Cyclic Codes: Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding, Cyclic Hamming Codes, shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT - IV
Convolutional Codes: Encoding of Convolutional Codes- Structural and Distance Properties, state, tree, trellis diagrams, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of Convolutional codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

UNIT - V
BCH Codes: Minimum distance and BCH bounds, Decoding procedure for BCH codes, Syndrome computation and iterative algorithms, Error locations polynomials for single and double error correction.

TEXT BOOKS
REFERENCE BOOKS

2. Introduction to Error Control Codes-Salvatore Gravano-oxford
CS512PE: ADVANCED COMPUTER ARCHITECTURE (Professional Elective - I)

III Year B.Tech. CSE I-Sem

Prerequisites: Computer Organization

Course Objectives
- To impart the concepts and principles of parallel and advanced computer architectures.
- To develop the design techniques of Scalable and multithreaded Architectures.
- To Apply the concepts and techniques of parallel and advanced computer architectures to design modern computer systems

Course Outcomes:
- Gain knowledge of
 - Computational models and Computer Architectures.
 - Concepts of parallel computer models.
 - Scalable Architectures, Pipelining, Superscalar processors, multiprocessors

UNIT - I

UNIT - II
Principals of Scalable performance, Performance metrics and measures, Parallel Processing applications, Speed up performance laws, Scalability Analysis and Approaches, Hardware Technologies, Processes and Memory Hierarchy, Advanced Processor Technology, Superscalar and Vector Processors, Memory Hierarchy Technology, Virtual Memory Technology.

UNIT - III
Bus Cache and Shared memory, Backplane bus systems, Cache Memory organizations, Shared-Memory Organizations, Sequential and weak consistency models, Pipelining and superscalar techniques, Linear Pipeline Processors, Non-Linear Pipeline Processors, Instruction Pipeline design, Arithmetic pipeline design, superscalar pipeline design.

UNIT - IV
Parallel and Scalable Architectures, Multiprocessors and Multicomputers, Multiprocessor system interconnects, cache coherence and synchronization mechanism, Three Generations of Multicomputers, Message-passing Mechanisms, Multivector and SIMD computers, Vector Processing Principals, Multivector Multiprocessors, Compound Vector processing, SIMD computer Organizations, The connection machine CM-5,

UNIT - V
Scalarable, Multithreaded and Dataflow Architectures, Latency-hiding techniques, Principals of Multithreading, Fine-Grain Multicomputers, Scalable and multithreaded Architectures, Dataflow and hybrid Architectures.

TEXT BOOK:

REFERENCE BOOKS:
CS513PE: DATA ANALYTICS (Professional Elective - I)

III Year B.Tech. CSE I-Sem

Prerequisites
1. A course on “Database Management Systems”.
2. Knowledge of probability and statistics.

Course Objectives:
- To explore the fundamental concepts of data analytics.
- To learn the principles and methods of statistical analysis.
- Discover interesting patterns, analyze supervised and unsupervised models and estimate the accuracy of the algorithms.
- To understand the various search methods and visualization techniques.

Course Outcomes: After completion of this course students will be able to
- Understand the impact of data analytics for business decisions and strategy.
- Carry out data analysis/statistical analysis.
- To carry out standard data visualization and formal inference procedures.
- Design Data Architecture.
- Understand various Data Sources.

UNIT - I
Data Management: Design Data Architecture and manage the data for analysis, understand various sources of Data like Sensors/Signals/GPS etc. Data Management, Data Quality (noise, outliers, missing values, duplicate data) and Data Processing & Processing.

UNIT - II
Data Analytics: Introduction to Analytics, Introduction to Tools and Environment, Application of Modeling in Business, Databases & Types of Data and variables, Data Modeling Techniques, Missing Imputations etc. Need for Business Modeling.

UNIT - III
Regression – Concepts, Blue property assumptions, Least Square Estimation, Variable Rationalization, and Model Building etc.
Logistic Regression: Model Theory, Model fit Statistics, Model Construction, Analytics applications to various Business Domains etc.

UNIT - IV
Object Segmentation: Regression Vs Segmentation – Supervised and Unsupervised Learning, Tree Building – Regression, Classification, Overfitting, Pruning and Complexity, Multiple Decision Trees etc.
Time Series Methods: Arima, Measures of Forecast Accuracy, STL approach, Extract features from generated model as Height, Average Energy etc and Analyze for prediction.

UNIT - V
Data Visualization: Pixel-Oriented Visualization Techniques, Geometric Projection Visualization Techniques, Icon-Based Visualization Techniques, Hierarchical Visualization Techniques, Visualizing Complex Data and Relations.

TEXT BOOKS:
1. Student’s Handbook for Associate Analytics – II, III.

REFERENCE BOOKS:
1. Introduction to Data Mining, Tan, Steinbach and Kumar, Addision Wisley, 2006.
2. Data Mining Analysis and Concepts, M. Zaki and W. Meira
CS514PE: IMAGE PROCESSING (Professional Elective - I)

III Year B.Tech. CSE I-Sem

Prerequisites

1. Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of Digital Signal Processing is desirable.
2. A course on “Computational Mathematics”
3. A course on “Computer Oriented Statistical Methods”

Course Objectives

- Provide a theoretical and mathematical foundation of fundamental Digital Image Processing concepts.
- The topics include image acquisition; sampling and quantization; preprocessing; enhancement; restoration; segmentation; and compression.

Course Outcomes

- Demonstrate the knowledge of the basic concepts of two-dimensional signal acquisition, sampling, and quantization.
- Demonstrate the knowledge of filtering techniques.
- Demonstrate the knowledge of 2D transformation techniques.
- Demonstrate the knowledge of image enhancement, segmentation, restoration and compression techniques.

UNIT - I

UNIT - II

UNIT - III

UNIT - IV

Image Segmentation Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region Oriented Segmentation.

UNIT - V

TEXT BOOK:

REFERENCE BOOKS:
CS515PE: PRINCIPLES OF PROGRAMMING LANGUAGES (Professional Elective - I)

III Year B.Tech. CSE I-Sem

Prerequisites
1. A course on “Mathematical Foundations of Computer Science”
2. A course on “Computer Programming and Data Structures”

Course Objectives
- Introduce important paradigms of programming languages
- To provide conceptual understanding of high-level language design and implementation
- Topics include programming paradigms; syntax and semantics; data types, expressions and statements; subprograms and blocks; abstract data types; concurrency; functional and logic programming languages; and scripting languages

Course Outcomes
- Acquire the skills for expressing syntax and semantics in formal notation
- Identify and apply a suitable programming paradigm for a given computing application
- Gain knowledge of and able to compare the features of various programming languages

UNIT - I
Syntax and Semantics: General Problem of Describing Syntax and Semantics, Formal Methods of Describing the Meanings of Programs

UNIT - II
Names, Bindings, and Scopes: Introduction, Names, Variables, Concept of Binding, Scope, Scope and Lifetime, Referencing Environments, Named Constants
Data Types: Introduction, Primitive Data Types, Character String Types, User Defined Ordinal Types, Array, Associative Arrays, Record, Union, Tuple Types, List Types, Pointer and Reference Types, Type Checking, Strong Typing, Type Equivalence
Expressions and Statements: Arithmetic Expressions, Overloaded Operators, Type Conversions, Relational and Boolean Expressions, Short Circuit Evaluation, Assignment Statements, Mixed-Mode Assignment
Control Structures – Introduction, Selection Statements, Iterative Statements, Unconditional Branching, Guarded Commands

UNIT - III
Subprograms and Blocks: Fundamentals of Sub-Programs, Design Issues for Subprograms, Local Referencing Environments, Parameter Passing Methods, Parameters that Are Subprograms, Calling Subprograms Indirectly, Overloaded Subprograms, Generic Subprograms, Design Issues for Functions, User Defined Overloaded Operators, Closures, Coroutines
Implementing Subprograms: General Semantics of Calls and Returns, Implementing Simple Subprograms, Implementing Subprograms with Stack-Dynamic Local Variables, Nested Subprograms, Blocks, Implementing Dynamic Scoping
Abstract Data Types: The Concept of Abstraction, Introductions to Data Abstraction, Design Issues, Language Examples, Parameterized ADT, Encapsulation Constructs, Naming Encapsulations
UNIT - IV

UNIT - V
Functional Programming Languages: Introduction, Mathematical Functions, Fundamentals of Functional Programming Language, LISP, Support for Functional Programming in Primarily Imperative Languages, Comparison of Functional and Imperative Languages
Logic Programming Language: Introduction, an Overview of Logic Programming, Basic Elements of Prolog, Applications of Logic Programming.
Scripting Language: Pragmatics, Key Concepts, Case Study: Python – Values and Types, Variables, Storage and Control, Bindings and Scope, Procedural Abstraction, Data Abstraction, Separate Compilation, Module Library. (Text Book 2)

TEXT BOOKS:

REFERENCE BOOKS:
CS521PE: COMPUTER GRAPHICS (Professional Elective - II)

III Year B.Tech. CSE I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites
1. Familiarity with the theory and use of coordinate geometry and of linear algebra such as matrix multiplication.
2. A course on “Computer Programming and Data Structures”

Course Objectives
- The aim of this course is to provide an introduction of fundamental concepts and theory of computer graphics.
- Topics covered include graphics systems and input devices; geometric representations and 2D/3D transformations; viewing and projections; illumination and color models; animation; rendering and implementation; visible surface detection;

Course Outcomes
- Acquire familiarity with the relevant mathematics of computer graphics.
- Be able to design basic graphics application programs, including animation
- Be able to design applications that display graphic images to given specifications

UNIT - I
Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices
Output primitives: Points and lines, line drawing algorithms (Bresenham’s and DDA Algorithm), mid-point circle and ellipse algorithms
Polygon Filling: Scan-line algorithm, boundary-fill and flood-fill algorithms

UNIT - II
2-D geometrical transforms: Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems
2-D viewing: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland algorithms, Sutherland –Hodgeman polygon clipping algorithm.

UNIT - III
3-D object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces. Basic illumination models, polygon rendering methods.

UNIT - IV
3-D Geometric transformations: Translation, rotation, scaling, reflection and shear transformations, composite transformations.
3-D viewing: Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

UNIT - V
Computer animation: Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications
Visible surface detection methods: Classification, back-face detection, depth-buffer, BSP-tree methods and area sub-division methods

TEXT BOOKS:
3. Computer Graphics, Steven Harrington, TMH

REFERENCE BOOKS:
CS522PE: ADVANCED OPERATING SYSTEMS (Professional Elective - II)

III Year B.Tech. CSE I-Sem

Course Objectives
- To study, learn, and understand the main concepts of advanced operating systems (parallel processing systems, distributed systems, real time systems, network operating systems, and open source operating systems)
- Hardware and software features that support these systems.

Course Outcomes
- Understand the design approaches of advanced operating systems
- Analyze the design issues of distributed operating systems.
- Evaluate design issues of multi processor operating systems.
- Identify the requirements Distributed File System and Distributed Shared Memory.
- Formulate the solutions to schedule the real time applications.

UNIT - I

UNIT - II

UNIT - III

UNIT - IV

UNIT - V
Distributed Scheduling: Issues in Load Distributing, Components of a Load Distributed Algorithm, Stability, Load Distributing Algorithms, Requirements for Load Distributing, Task Migration, Issues in task Migration
Distributed Shared Memory: Architecture and Motivation, Algorithms for Implementing DSM, Memory Coherence, Coherence Protocols, Design Issues
TEXT BOOK:

REFERENCE BOOK:
CS523PE: INFORMATION RETRIEVAL SYSTEMS (Professional Elective - II)

III Year B.Tech. CSE I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites:
1. Data Structures

Course Objectives:
- To learn the important concepts and algorithms in IRS
- To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems.

Course Outcomes:
- Ability to apply IR principles to locate relevant information large collections of data
- Ability to design different document clustering algorithms
- Implement retrieval systems for web search tasks.
- Design an Information Retrieval System for web search tasks.

UNIT - I
Information Retrieval System Capabilities: Search Capabilities, Browse Capabilities, Miscellaneous Capabilities

UNIT - II
Cataloging and Indexing: History and Objectives of Indexing, Indexing Process, Automatic Indexing, Information Extraction

UNIT - III
Automatic Indexing: Classes of Automatic Indexing, Statistical Indexing, Natural Language, Concept Indexing, Hypertext Linkages
Document and Term Clustering: Introduction to Clustering, Thesaurus Generation, Item Clustering, Hierarchy of Clusters

UNIT - IV
User Search Techniques: Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext
Information Visualization: Introduction to Information Visualization, Cognition and Perception, Information Visualization Technologies

UNIT - V
Text Search Algorithms: Introduction to Text Search Techniques, Software Text Search Algorithms, Hardware Text Search Systems
Multimedia Information Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, Imagery Retrieval, Video Retrieval
TEXT BOOK:

REFERENCE BOOKS:
3. Modern Information Retrieval By Yates and Neto Pearson Education.
CS524PE: DISTRIBUTED DATABASES (Professional Elective - II)

III Year B.Tech. CSE I-Sem

Prerequisites:
1. A course on “Database Management Systems”

Course Objectives:
- The purpose of the course is to enrich the previous knowledge of database systems and exposing the need for distributed database technology to confront with the deficiencies of the centralized database systems.
- Introduce basic principles and implementation techniques of distributed database systems.
- Equip students with principles and knowledge of parallel and object-oriented databases.
- Topics include distributed DBMS architecture and design; query processing and optimization; distributed transaction management and reliability; parallel and object database management systems.

Course Outcomes:
- Understand theoretical and practical aspects of distributed database systems.
- Study and identify various issues related to the development of distributed database system.
- Understand the design aspects of object-oriented database system and related development.

UNIT - I
Introduction: Distributed Data Processing, Distributed Database System, Promises of DDBSs, Problem areas.

UNIT - II
Query processing and decomposition: Query processing objectives, characterization of query processors, layers of query processing, query decomposition, localization of distributed data.
Distributed query Optimization: Query optimization, centralized query optimization, distributed query optimization algorithms.

UNIT - III
Transaction Management: Definition, properties of transaction, types of transactions, distributed concurrency control: serializability, concurrency control mechanisms & algorithms, time - stamped & optimistic concurrency control Algorithms, deadlock Management.

UNIT - IV
Distributed DBMS Reliability: Reliability concepts and measures, fault-tolerance in distributed systems, failures in Distributed DBMS, local & distributed reliability protocols, site failures and network partitioning.
Parallel Database Systems: Parallel database system architectures, parallel data placement, parallel query processing, load balancing, database clusters.

UNIT - V
Distributed object Database Management Systems: Fundamental object concepts and models, object distributed design, architectural issues, object management, distributed object storage, object query Processing.
Object Oriented Data Model: Inheritance, object identity, persistent programming languages, persistence of objects, comparison OODBMS and ORDBMS

TEXT BOOKS:
2. Stefano Ceri and Giuseppe Pelagatti: Distributed Databases, McGraw Hill.

REFERENCE BOOK:
CS525PE: NATURAL LANGUAGE PROCESSING (Professional Elective - II)

III Year B.Tech. CSE I-Sem

Prerequisites: Data structures, finite automata and probability theory

Course Objectives:
- Introduce to some of the problems and solutions of NLP and their relation to linguistics and statistics.

Course Outcomes:
- Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems.
- Able to manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- Able to design, implement, and analyze NLP algorithms.
- Able to design different language modeling techniques.

UNIT - I
Finding the Structure of Words: Words and Their Components, Issues and Challenges, Morphological Models
Finding the Structure of Documents: Introduction, Methods, Complexity of the Approaches, Performances of the Approaches

UNIT - II

UNIT - III

UNIT - IV

UNIT - V

TEXT BOOKS:
1. Multilingual natural Language Processing Applications: From Theory to Practice – Daniel M. Bikel and Imed Zitouni, Pearson Publication
2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary

REFERENCE BOOK:
1. Speech and Natural Language Processing - Daniel Jurafsky & James H Martin, Pearson Publications
CS505PC: SOFTWARE ENGINEERING LAB

III Year B.Tech. CSE I-Sem

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Prerequisites
1. A course on “Programming for Problem Solving"

Co-requisite
1. A Course on “Software Engineering"

Course Objectives:
- To have hands on experience in developing a software project by using various software engineering principles and methods in each of the phases of software development.

Course Outcomes:
- Ability to translate end-user requirements into system and software requirements
- Ability to generate a high-level design of the system from the software requirements
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

List of Experiments
Do the following 8 exercises for any two projects given in the list of sample projects or any other projects:
4. Study and usage of any Design phase CASE tool
5. Performing the Design by using any Design phase CASE tools.
6. Develop test cases for unit testing and integration testing
7. Develop test cases for various white box and black box testing techniques.

Sample Projects:
1. Passport automation System
2. Book Bank
3. Online Exam Registration
4. Stock Maintenance System
5. Online course reservation system
6. E-ticketing
7. Software Personnel Management System
8. Credit Card Processing
10. Recruitment system

TEXT BOOKS:
3. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.
CS506PC: COMPUTER NETWORKS AND WEB TECHNOLOGIES LAB

III Year B.Tech. CSE I-Sem

Course Objectives
- To understand the working principle of various communication protocols.
- To understand the network simulator environment and visualize a network topology and observe its performance.
- To analyze the traffic flow and the contents of protocol frames.

Course Outcomes
- Implement data link layer framing methods.
- Analyze error detection and error correction codes.
- Implement and analyze routing and congestion issues in network design.
- Implement Encoding and Decoding techniques used in presentation layer.
- To be able to work with different network tools.

List of Experiments
1. Implement the data link layer framing methods such as character, character-stuffing and bit stuffing.
2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP.
3. Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism.
4. Implement Dijkstra’s algorithm to compute the shortest path through a network.
5. Take an example subnet of hosts and obtain a broadcast tree for the subnet.
6. Implement distance vector routing algorithm for obtaining routing tables at each node.
7. Implement data encryption and data decryption.
8. Write a program for congestion control using Leaky bucket algorithm.
9. Write a program for frame sorting technique used in buffers.
10. Wireshark
 i. Packet Capture Using Wire shark
 ii. Starting Wire shark
 iii. Viewing Captured Traffic
11. How to run Nmap scan.
13. Do the following using NS2 Simulator
 i. NS2 Simulator-Introduction
 ii. Simulate to Find the Number of Packets Dropped
 iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
 iv. Simulate to Find the Number of Packets Dropped due to Congestion
 v. Simulate to Compare Data Rate & Throughput.
 vi. Simulate to Plot Congestion for Different Source/Destination
 vii. Simulate to Determine the Performance with respect to Transmission of Packets.

Web Technologies Experiments
1. Write a PHP script to print prime numbers between 1-50.
2. PHP script to
 a. Find the length of a string.
 b. Count no of words in a string.
 c. Reverse a string.
 d. Search for a specific string.
3. Write a PHP script to merge two arrays and sort them as numbers, in descending order.
4. Write a PHP script that reads data from one file and write into another file.
5. Develop static pages (using Only HTML) of an online book store. The pages should resemble: www.amazon.com. The website should consist the following pages.
 a) Home page
 b) Registration and user Login
 c) User Profile Page
 d) Books catalog
 e) Shopping Cart
 f) Payment By credit card
 g) Order Conformation
6. Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.
7. Create and save an XML document on the server, which contains 10 users information. Write a program, which takes User Id as an input and returns the user details by taking the user information from the XML document.
8. Install TOMCAT web server. Convert the static web pages of assignments 2 into dynamic web pages using servlets and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.
9. Redo the previous task using JSP by converting the static web pages of assignments 2 into dynamic web pages. Create a database with user information and books information. The books catalogue should be dynamically loaded from the database. Follow the MVC architecture while doing the website.

TEXT BOOK:
1. WEB TECHNOLOGIES: A Computer Science Perspective, Jeffrey C. Jackson, Pearson Education

REFERENCE BOOKS:
4. Paul Dietel and Harvey Deitel,” Java How to Program”, Prentice Hall of India, 8th Edition
EN508HS: ADVANCED COMMUNICATION SKILLS LAB

Ill Year B.Tech. CSE I-Sem

1. INTRODUCTION:
The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context.
The proposed course should be a laboratory course to enable students to use ‘good’ English and perform the following:
- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

2. OBJECTIVES:
This Lab focuses on using multi-media instruction for language development to meet the following targets:
- To improve the students’ fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS:
The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:
1. Activities on Fundamentals of Inter-personal Communication and Building Vocabulary - Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals - Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
2. Activities on Reading Comprehension – General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading & effective googling.
4. Activities on Presentation Skills – Oral presentations (individual and group) through JAM sessions/seminars/PPTs and written presentations through posters/projects/reports/ e-mails/assignments etc.
5. Activities on Group Discussion and Interview Skills – Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening
strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4. MINIMUM REQUIREMENT:
The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- T. V, a digital stereo & Camcorder
- Headphones of High quality

5. SUGGESTED SOFTWARE:
The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dream tech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

TEXT BOOKS:

REFERENCE BOOKS:
UNIT – I
Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT – II
Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT – III
Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.
Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT – IV
Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.
Unfair competition: Misappropriation right of publicity, false advertising.

UNIT – V
New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.
International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

TEXT & REFERENCE BOOKS:
1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
2. Intellectual property right – Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd
CS601PC: MACHINE LEARNING

III Year B.Tech. CSE II-Sem

L T P C
3 1 0 4

Prerequisites
1. Data Structures
2. Knowledge on statistical methods

Course Objectives
- This course explains machine learning techniques such as decision tree learning, Bayesian learning etc.
- To understand computational learning theory.
- To study the pattern comparison techniques.

Course Outcomes
- Understand the concepts of computational intelligence like machine learning
- Ability to get the skill to apply machine learning techniques to address the real time problems in different areas
- Understand the Neural Networks and its usage in machine learning application.

UNIT - I
Introduction - Well-posed learning problems, designing a learning system, Perspectives and issues in machine learning
Concept learning and the general to specific ordering – introduction, a concept learning task, concept learning as search, find-S: finding a maximally specific hypothesis, version spaces and the candidate elimination algorithm, remarks on version spaces and candidate elimination, inductive bias.
Decision Tree Learning – Introduction, decision tree representation, appropriate problems for decision tree learning, the basic decision tree learning algorithm, hypothesis space search in decision tree learning, inductive bias in decision tree learning, issues in decision tree learning.

UNIT - II
Artificial Neural Networks-1– Introduction, neural network representation, appropriate problems for neural network learning, perceptions, multilayer networks and the back-propagation algorithm.
Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling theory, a general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithms.

UNIT - III
Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibbs algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief networks, the EM algorithm.
Computational learning theory – Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the mistake bound model of learning.
Instance-Based Learning- Introduction, k-nearest neighbour algorithm, locally weighted regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning.
UNIT- IV
Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis space search, genetic programming, models of evolution and learning, parallelizing genetic algorithms.
Reinforcement Learning – Introduction, the learning task, Q-learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.

UNIT - V
Analytical Learning-1- Introduction, learning with perfect domain theories: PROLOG-EBG, remarks on explanation-based learning, explanation-based learning of search control knowledge.
Analytical Learning-2-Using prior knowledge to alter the search objective, using prior knowledge to augment search operators.
Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis.

TEXT BOOK:
1. Machine Learning – Tom M. Mitchell, - MGH

REFERENCE BOOK:
CS602PC: COMPILER DESIGN

III Year B.Tech. CSE II-Sem

Prerequisites
1. A course on “Formal Languages and Automata Theory”
2. A course on “Computer Organization and architecture”
3. A course on “Computer Programming and Data Structures”

Course Objectives:
- Introduce the major concepts of language translation and compiler design and impart the knowledge of practical skills necessary for constructing a compiler.
- Topics include phases of compiler, parsing, syntax directed translation, type checking use of symbol tables, code optimization techniques, intermediate code generation, code generation and data flow analysis.

Course Outcomes:
- Demonstrate the ability to design a compiler given a set of language features.
- Demonstrate the knowledge of patterns, tokens & regular expressions for lexical analysis.
- Acquire skills in using lex tool & yacc tool for developing a scanner and parser.
- Design and implement LL and LR parsers
- Design algorithms to do code optimization in order to improve the performance of a program in terms of space and time complexity.
- Design algorithms to generate machine code.

UNIT - I
Introduction: The structure of a compiler, the science of building a compiler, programming language basics
Lexical Analysis: The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical-Analyzer Generator Lex, Finite Automata, From Regular Expressions to Automata, Design of a Lexical-Analyzer Generator, Optimization of DFA-Based Pattern Matchers.

UNIT - II

UNIT - III
Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD’s, Applications of Syntax-Directed Translation, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD’s.

UNIT - IV
Run-Time Environments: Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management, Introduction to Garbage Collection, Introduction to Trace-Based Collection.
UNIT - V

TEXT BOOK:

REFERENCE BOOKS:
1. Lex & Yacc – John R. Levine, Tony Mason, Doug Brown, O’reilly
CS603PC: DESIGN AND ANALYSIS OF ALGORITHMS

III Year B.Tech. CSE II-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisites:
1. A course on “Computer Programming and Data Structures”
2. A course on “Advanced Data Structures”

Course Objectives:
- Introduces the notations for analysis of the performance of algorithms.
- Introduces the data structure disjoint sets.
- Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate;
- Describes how to evaluate and compare different algorithms using worst-, average-, and best-case analysis.
- Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Course Outcomes:
- Ability to analyze the performance of algorithms
- Ability to choose appropriate data structures and algorithm design methods for a specified application
- Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs

UNIT - I
Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.
Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

UNIT - II
Disjoint Sets: Disjoint set operations, union and find algorithms
Backtracing: General method, applications, n-queen’s problem, sum of subsets problem, graph coloring

UNIT - III
Dynamic Programming: General method, applications- Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

UNIT - IV

UNIT - V
Branch and Bound: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.
NP-Hard and NP-Complete problems: Basic concepts, non deterministic algorithms, NP - Hard and NP-Complete classes, Cook’s theorem.
TEXT BOOK:

REFERENCE BOOKS:
CS611PE: CONCURRENT PROGRAMMING (Professional Elective - III)

III Year B.Tech. CSE II-Sem

Prerequisites
1. A course on “Operating Systems”
2. A course on “Java Programming”

Course Objectives: To explore the abstractions used in concurrent programming

Course Outcomes:
1. Ability to implement the mechanisms for communication and co-ordination among concurrent processes.
2. Ability to understand and reason about concurrency and concurrent objects
3. Ability to implement the locking and non-blocking mechanisms
4. Ability to understand concurrent objects

UNIT - I

UNIT - II

UNIT - III

UNIT - IV
Linked Lists: The Role of Locking, Introduction, List-Based Sets, Concurrent Reasoning, Coarse-Grained Synchronization, Fine-Grained Synchronization, Optimistic Synchronization, Lazy Synchronization, Non-Blocking Synchronization

UNIT - V
Concurrent Queues and the ABA Problem, Concurrent Stacks and Elimination, Transactional Memories

TEXT BOOKS:

REFERENCE BOOKS:
CS612PE: NETWORK PROGRAMMING (Professional Elective - III)

III Year B.Tech. CSE II-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
- To understand inter process and inter-system communication
- To understand socket programming in its entirety
- To understand usage of TCP/UDP / Raw sockets
- To understand how to build network applications

Course Outcomes:
- To write socket API based programs
- To design and implement client-server applications using TCP and UDP sockets
- To analyze network programs

UNIT - I
Introduction to Network Programming: OSI model, Unix standards, TCP and UDP & TCP connection establishment and Format, Buffer sizes and limitation, standard internet services, Protocol usage by common internet application.

Sockets: Address structures, value – result arguments, Byte ordering and manipulation function and related functions Elementary TCP sockets – Socket, connect, bind, listen, accept, fork and exec function, concurrent servers. Close function and related function.

UNIT - II
TCP client server: Introduction, TCP Echo server functions, Normal startup, terminate and signal handling server process termination, Crashing and Rebooting of server host shutdown of server host.

Elementary UDP sockets: Introduction UDP Echo server function, lost datagram, summary of UDP example, Lack of flow control with UDP, determining outgoing interface with UDP.

I/O Multiplexing: I/O Models, select function, Batch input, shutdown function, poll function, TCP Echo server,

UNIT - III
Socket options: getsockopt and setsockopt functions. Socket states, Generic socket option IPV6 socket option ICMPV6 socket option IPV6 socket option and TCP socket options.

UNIT - IV
Elementary name and Address conversions: DNS, gethost by Name function, Resolver option, Function and IPV6 support, uname function, other networking information.

Daemon Processes and inetd Superserver – Introduction, syslogd Daemon, syslog Function, daemon_init Function, inetd Daemon, daemon_inetd Function

Broadcasting- Introduction, Broadcast Addresses, Unicast versus Broadcast, dg_cli Function Using Broadcasting, Race Conditions

Multicasting- Introduction, Multicast Addresses, Multicasting versus Broadcasting on A LAN, Multicasting on a WAN, Multicast Socket Options, mcast_join and Related Functions, dg_cli Function Using Multicasting, Receiving MBone Session Announcements, Sending and Receiving, SNTP: Simple Network Time Protocol, SNTP (Continued)
UNIT - V
Raw Sockets-Introduction, Raw Socket Creation, Raw Socket Output, Raw Socket Input, Ping Program, Traceroute Program, An ICMP Message Daemon,
Datalink Access- Introduction, BPF: BSD Packet Filter, DLPI: Data Link Provider Interface, Linux:
SOCK_PACKET, libpcap: Packet Capture Library, Examining the UDP Checksum Field.
Remote Login: Terminal line disciplines, Pseudo-Terminals, Terminal modes, Control Terminals, rlogin
Overview, RPC Transparency Issues.

TEXT BOOKS:
1. UNIX Network Programming, by W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, Pearson Education

REFERENCE BOOKS:
1. UNIX Systems Programming using C++ T CHAN, PHI.
2. UNIX for Programmers and Users, 3rd Edition Graham GLASS, King abls, Pearson Education
CS613PE: SCRIPTING LANGUAGES (Professional Elective - III)

III Year B.Tech. CSE II-Sem

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites:
1. A course on “Computer Programming and Data Structures”
2. A course on “Object Oriented Programming Concepts”

Course Objectives:
- This course introduces the script programming paradigm
- Introduces scripting languages such as Perl, Ruby and TCL.
- Learning TCL

Course Outcomes:
- Comprehend the differences between typical scripting languages and typical system and application programming languages.
- Gain knowledge of the strengths and weakness of Perl, TCL and Ruby; and select an appropriate language for solving a given problem.
- Acquire programming skills in scripting language

UNIT - I
Introduction: Ruby, Rails, The structure and Execution of Ruby Programs, Package Management with RUBYGEMS, Ruby and web: Writing CGI scripts, cookies, Choice of Webservers, SOAP and webservices
RubyTk – Simple Tk Application, widgets, Binding events, Canvas, scrolling

UNIT - II
Extending Ruby: Ruby Objects in C, the Jukebox extension, Memory allocation, Ruby Type System, Embedding Ruby to Other Languages, Embedding a Ruby Interpreter

UNIT - III
Introduction to PERL and Scripting
Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting Languages. PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes, strings, pattern and regular expressions, subroutines.

UNIT - IV
Advanced perl
Finer points of looping, pack and unpack, filesystem, eval, data structures, packages, modules, objects, interfacing to the operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security Issues.

UNIT - V
TCL
TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output, procedures, strings, patterns, files, Advance TCL- eval, source, exec and uplevel commands, Name spaces, trapping errors, event driven programs, making applications internet aware, Nuts and Bolts Internet Programming, Security Issues, C Interface.

Tk
Tk-Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and Binding, Perl-Tk.
TEXT BOOKS:
1. The World of Scripting Languages, David Barron, Wiley Publications.
2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O’Reilly

REFERENCE BOOKS:
1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J. Lee and B. Ware (Addison Wesley) Pearson Education.
2. Perl by Example, E. Quigley, Pearson Education.
3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O’Reilly, SPD.
4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
CS614PE: MOBILE APPLICATION DEVELOPMENT (Professional Elective - III)

III Year B.Tech. CSE II-Sem

Prerequisites
1. Acquaintance with JAVA programming
2. A Course on DBMS

Course Objectives
- To demonstrate their understanding of the fundamentals of Android operating systems
- To improve their skills of using Android software development tools
- To demonstrate their ability to develop software with reasonable complexity on mobile platform
- To demonstrate their ability to deploy software to mobile devices
- To demonstrate their ability to debug programs running on mobile devices

Course Outcomes
- Student understands the working of Android OS Practically.
- Student will be able to develop Android user interfaces
- Student will be able to develop, deploy and maintain the Android Applications.

UNIT - I
Introduction to Android Operating System: Android OS design and Features – Android development framework, SDK features, Installing and running applications on Android Studio, Creating AVDs, Types of Android applications, Best practices in Android programming, Android tools
Android application components – Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes
Android Application Lifecycle – Activities, Activity lifecycle, activity states, monitoring state changes

UNIT - II
Android User Interface: Measurements – Device and pixel density independent measuring UNIT - s
Layouts – Linear, Relative, Grid and Table Layouts
User Interface (UI) Components – Editable and non-editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers
Event Handling – Handling clicks or changes of various UI components
Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

UNIT - III
Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS
Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity
Notifications – Creating and Displaying notifications, Displaying Toasts

UNIT - IV
Persistent Storage: Files – Using application specific folders and files, creating files, reading data from files, listing contents of a directory Shared Preferences – Creating shared preferences, saving and retrieving data using Shared Preference
UNIT - V
Database – Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and etindelg data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

TEXT BOOKS:
1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012

REFERENCE BOOK:
1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013
CS615PE: SOFTWARE TESTING METHODOLOGIES (Professional Elective - III)

III Year B.Tech. CSE II-Sem

L T P C
3 0 0 3

Prerequisites
1. A course on “Software Engineering”

Course Objectives
- To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
- To develop skills in software test automation and management using latest tools.

Course Outcomes: Design and develop the best test strategies in accordance to the development model.

UNIT - I
Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs
Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT - II
Transaction Flow Testing: transaction flows, transaction flow testing techniques. Dataflow testing: Basics of dataflow testing, strategies in dataflow testing, application of dataflow testing. Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT - III
Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.
Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications.

UNIT - IV
State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.

UNIT - V
Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like JMeter or Win-runner).

TEXT BOOKS:

REFERENCE BOOKS:
1. The craft of software testing - Brian Marick, Pearson Education.
2. Software Testing Techniques – SPD(Oreille)

110
Course Objective: The objective of this lab is to get an overview of the various machine learning techniques and can able to demonstrate them using python.

Course Outcomes: After the completion of the course the student can able to:

- understand complexity of Machine Learning algorithms and their limitations;
- understand modern notions in data analysis-oriented computing;
- be capable of confidently applying common Machine Learning algorithms in practice and implementing their own;
- Be capable of performing experiments in Machine Learning using real-world data.

List of Experiments
1. The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result. (Ans: 15%)

2. Extract the data from database using python

3. Implement k-nearest neighbours classification using python

4. Given the following data, which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of k-means clustering with 3 means (i.e., 3 centroids)

<table>
<thead>
<tr>
<th>VAR1</th>
<th>VAR2</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.713</td>
<td>1.586</td>
<td>0</td>
</tr>
<tr>
<td>0.180</td>
<td>1.786</td>
<td>1</td>
</tr>
<tr>
<td>0.353</td>
<td>1.240</td>
<td>1</td>
</tr>
<tr>
<td>0.940</td>
<td>1.566</td>
<td>0</td>
</tr>
<tr>
<td>1.486</td>
<td>0.759</td>
<td>1</td>
</tr>
<tr>
<td>1.266</td>
<td>1.106</td>
<td>0</td>
</tr>
<tr>
<td>1.540</td>
<td>0.419</td>
<td>1</td>
</tr>
<tr>
<td>0.459</td>
<td>1.799</td>
<td>1</td>
</tr>
<tr>
<td>0.773</td>
<td>0.186</td>
<td>1</td>
</tr>
</tbody>
</table>

5. The following training examples map descriptions of individuals onto high, medium and low credit-worthiness.
 medium skiing design single twenties no -> highRisk
 high golf trading married forties yes -> lowRisk
 low speedway transport married thirties yes -> medRisk
 medium football banking single thirties yes -> lowRisk
 high flying media married fifties yes -> highRisk
 low football security single twenties no -> medRisk
 medium golf media single thirties yes -> medRisk
 medium golf transport married forties yes -> lowRisk
 high skiing banking single thirties yes -> highRisk
 low golf unemployed married forties yes -> highRisk
Input attributes are (from left to right) income, recreation, job, status, age-group, home-owner. Find the unconditional probability of `golf' and the conditional probability of `single' given `medRisk' in the dataset?

6. Implement linear regression using python.
7. Implement Naïve Bayes theorem to classify the English text
8. Implement an algorithm to demonstrate the significance of genetic algorithm
9. Implement the finite words classification system using Back-propagation algorithm
CS605PC: COMPILER DESIGN LAB

III Year B.Tech. CSE II-Sem

Prerequisites
1. A Course on “Objected Oriented Programming through Java”

Co-requisites:
1. A course on “Web Technologies”

Course Objectives:
- To provide hands-on experience on web technologies
- To develop client-server application using web technologies
- To introduce server-side programming with Java servlets and JSP
- To understand the various phases in the design of a compiler.
- To understand the design of top-down and bottom-up parsers.
- To understand syntax directed translation schemes.
- To introduce lex and yacc tools.

Course Outcomes:
- Design and develop interactive and dynamic web applications using HTML, CSS, JavaScript and XML
- Apply client-server principles to develop scalable and enterprise web applications.
- Ability to design, develop, and implement a compiler for any language.
- Able to use lex and yacc tools for developing a scanner and a parser.
- Able to design and implement LL and LR parsers.

List of Experiments
Compiler Design Experiments
1. Write a LEX Program to scan reserved word & Identifiers of C Language
2. Implement Predictive Parsing algorithm
3. Write a C program to generate three address code.
4. Implement SLR(1) Parsing algorithm
5. Design LALR bottom up parser for the given language
<program> ::= <block>
<block> ::= { <variabledefinition> <slist> }
| { <slist> }
<variabledefinition> ::= int <vardeflist> ;
<vardeflist> ::= <vardec> | <vardec> , <vardeflist>
<vardec> ::= <identifier> | <identifier> [<constant>]
<slist> ::= <statement> | <statement> ; <slist>
<statement> ::= <assignment> | <ifstatement> | <whilestatement>
| <block> | <printstatement> | <empty>
<assignment> ::= <identifier> = <expression>
| <identifier> [<expression>] = <expression>
;ifstatement ::= if <bexpression> then <slist> else <slist> endif
| if <bexpression> then <slist> endif
<whilestatement ::= while <bexpression> do <slist> enddo
<printstatement ::= print (<expression>)
<expression> ::= <expression> <addingop> <term> | <term> | <addingop> <term>
<bexpression> ::= <expression> <relop> <expression>
<rel> ::= < | <= | == | >= | > | !=
<addingop> ::= + | -
<term> ::= <term> <multop> <factor> | <factor>
<multop> ::= * | /
<factor> ::= <constant> | <identifier> | <identifier> [<expression>]
 | (<expression>)
<constant> ::= <digit> | <digit> <constant>
<identifier> ::= <identifier> <letterordigit> | <letter>
<letterordigit> ::= <letter> | <digit>
<letter> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
<digit> ::= 0|1|2|3|4|5|6|7|8|9
<empty> has the obvious meaning

Comments (zero or more characters enclosed between the standard C/Java-style comment brackets /*...*/ can be inserted. The language has rudimentary support for 1-dimensional arrays. The declaration int a[3] declares an array of three elements, referenced as a[0], a[1] and a[2]. Note also that you should worry about the scoping of names.

A simple program written in this language is:

```c
{ int a[3],t1,t2;
t1=2;
a[0]=1; a[1]=2; a[1]=3;
t2=-(a[2]+t1*6)/(a[2]-t1);
if t2>5 then
    print(t2);
else {
    int t3;
t3=99;
t2=25;
    print(-t1+t2*t3); /* this is a comment
                            on 2 lines */
}
endif
}
```
CS621PE: CONCURRENT PROGRAMMING LAB (Professional Elective - III)

III Year B.Tech. CSE II-Sem

List of Experiments:
1. Design and implement Two-thread mutual exclusion algorithm (Peterson’s Algorithm) using multithreaded programming.
2. Design and implement Filter Lock algorithm and check for deadlock-free and starvation-free conditions using multithreaded programming.
3. Design and implement Lamport’s Bakery Algorithm and check for deadlock-free and starvation-free conditions using multithreaded programming.
4. Design and implement Lock-based concurrent FIFO queue data structure using multithreaded programming.
5. Design a consensus object using read–write registers by implementing a deadlock-free or starvation-free mutual exclusion lock. (Use CompareAndSet() Primitive).
6. Design and implement concurrent List queue data structure using multithreaded programming. (Use Atomic Primitives)
7. Design and implement concurrent Stack queue data structure using multithreaded programming. (Use Atomic Primitives)
8. Design and implement concurrent FIFO queue data structure using multithreaded programming. (Use Atomic Primitives)
CS622PE: NETWORK PROGRAMMING LAB (Professional Elective - III)

III Year B.Tech. CSE II-Sem L T P C
 0 0 2 1

Course Objectives:
- To understand inter process and inter-system communication
- To understand socket programming in its entirety
- To understand usage of TCP/UDP / Raw sockets
- To understand how to build network applications

Course Outcomes:
- To write socket API based programs
- To design and implement client-server applications using TCP and UDP sockets
- To analyze network programs

List of Experiments
1. Implement programs for Inter Process Communication using PIPE, Message Queue and Shared Memory.
2. Write a programme to create an integer variable using shared memory concept and increment the variable simultaneously by two processes. Use semaphores to avoid race conditions.
3. Design TCP iterative Client and server application to reverse the given input sentence
4. Design TCP iterative Client and server application to reverse the given input sentence
5. Design TCP client and server application to transfer file
6. Design a TCP concurrent server to convert a given text into upper case using multiplexing system call “select”
7. Design a TCP concurrent server to echo given set of sentences using poll functions
8. Design UDP Client and server application to reverse the given input sentence
9. Design UDP Client server to transfer a file
10. Design using poll client server application to multiplex TCP and UDP requests for converting a given text into upper case.
11. Design a RPC application to add and subtract a given pair of integers

TEXT BOOKS:
CS623PE: SCRIPTING LANGUAGES LAB (Professional Elective - III)

II Year B.Tech. CSE II-Sem

Prerequisites: Any High-level programming language (C, C++)

Course Objectives:
- To Understand the concepts of scripting languages for developing web based projects
- To understand the applications the of Ruby, TCL, Perl scripting languages

Course Outcomes:
- Ability to understand the differences between Scripting languages and programming languages
- Able to gain some fluency programming in Ruby, Perl, TCL

List of Experiments
1. Write a Ruby script to create a new string which is n copies of a given string where n is a non-negative integer
2. Write a Ruby script which accept the radius of a circle from the user and compute the parameter and area.
3. Write a Ruby script which accept the user’s first and last name and print them in reverse order with a space between them
4. Write a Ruby script to accept a filename from the user print the extension of that
5. Write a Ruby script to find the greatest of three numbers
6. Write a Ruby script to print odd numbers from 10 to 1
7. Write a Ruby script to check two integers and return true if one of them is 20 otherwise return their sum
8. Write a Ruby script to check two temperatures and return true if one is less than 0 and the other is greater than 100
9. Write a Ruby script to print the elements of a given array
10. Write a Ruby program to retrieve the total marks where subject name and marks of a student stored in a hash
11. Write a TCL script to find the factorial of a number
12. Write a TCL script that multiplies the numbers from 1 to 10
13. Write a TCL script for Sorting a list using a comparison function
14. Write a TCL script to (i)create a list (ii)append elements to the list (iii)Traverse the list (iv)Concatenate the list
15. Write a TCL script to comparing the file modified times.
16. Write a TCL script to Copy a file and translate to native format.
17. a) Write a Perl script to find the largest number among three numbers.
 b) Write a Perl script to print the multiplication tables from 1-10 using subroutines.
18. Write a Perl program to implement the following list of manipulating functions
 a)Shift
 b)Unshift
 c)Push
19. a) Write a Perl script to substitute a word, with another word in a string.
 b) Write a Perl script to validate IP address and email address.
20. Write a Perl script to print the file in reverse order using command line arguments
CS624PE: MOBILE APPLICATION DEVELOPMENT LAB (Professional Elective - III)

Prerequisites: --- NIL---

Course Objectives:
- To learn how to develop Applications in android environment.
- To learn how to develop user interface applications.
- To learn how to develop URL related applications.

Course Outcomes:
- Student understands the working of Android OS Practically.
- Student will be able to develop user interfaces.
- Student will be able to develop, deploy and maintain the Android Applications.

List of Experiments
1. Create an Android application that shows Hello + name of the user and run it on an emulator. (b) Create an application that takes the name from a text box and shows hello message along with the name entered in text box, when the user clicks the OK button.
2. Create a screen that has input boxes for User Name, Password, Address, Gender (radio buttons for male and female), Age (numeric), Date of Birth (Date Picket), State (Spinner) and a Submit button. On clicking the submit button, print all the data below the Submit Button. Use (a) Linear Layout (b) Relative Layout and (c) Grid Layout or Table Layout.
3. Develop an application that shows names as a list and on selecting a name it should show the details of the candidate on the next screen with a “Back” button. If the screen is rotated to landscape mode (width greater than height), then the screen should show list on left fragment and details on right fragment instead of second screen with back button. Use Fragment transactions and Rotation event listener.
4. Develop an application that uses a menu with 3 options for dialing a number, opening a website and to send an SMS. On selecting an option, the appropriate action should be invoked using intents.
5. Develop an application that inserts some notifications into Notification area and whenever a notification is inserted, it should show a toast with details of the notification.
6. Create an application that uses a text file to store user names and passwords (tab separated fields and one record per line). When the user submits a login name and password through a screen, the details should be verified with the text file data and if they match, show a dialog saying that login is successful. Otherwise, show the dialog with Login Failed message.
7. Create a user registration application that stores the user details in a database table.
8. Create a database and a user table where the details of login names and passwords are stored. Insert some names and passwords initially. Now the login details entered by the user should be verified with the database and an appropriate dialog should be shown to the user.
9. Create an admin application for the user table, which shows all records as a list and the admin can select any record for edit or modify. The results should be reflected in the table.
10. Develop an application that shows all contacts of the phone along with details like name, phone number, mobile number etc.
11. Create an application that saves user information like name, age, gender etc. in shared preference and retrieves them when the program restarts.
12. Create an alarm that rings every Sunday at 8:00 AM. Modify it to use a time picker to set alarm time.
13. Create an application that shows the given URL (from a text field) in a browser.
CS625PE: SOFTWARE TESTING METHODOLOGIES LAB (Professional Elective - III)

III Year B.Tech. CSE II-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites: A basic knowledge of programming.

Course Objectives
- To provide knowledge of Software Testing Methods.
- To develop skills in software test automation and management using latest tools.

Course Outcome
- Design and develop the best test strategies in accordance to the development model.

List of Experiments:
1. Recording in context sensitive mode and analog mode
2. GUI checkpoint for single property
3. GUI checkpoint for single object/window
4. GUI checkpoint for multiple objects
5. a) Bitmap checkpoint for object/window
 a) Bitmap checkpoint for screen area
6. Database checkpoint for Default check
7. Database checkpoint for custom check
8. Database checkpoint for runtime record check
9. a) Data driven test for dynamic test data submission
 b) Data driven test through flat files
 c) Data driven test through front grids
 d) Data driven test through excel test
10. a) Batch testing without parameter passing
 b) Batch testing with parameter passing
11. Data driven batch
12. Silent mode test execution without any interruption
13. Test case for calculator in windows application
MC609: ENVIRONMENTAL SCIENCE

III Year B.Tech. CSE II-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives:
- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures
- Understanding the environmental policies and regulations

Course Outcomes: Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I
Ecosystems: Definition, Scope and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II
Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

UNIT - III
Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT - IV

UNIT - V

TEXT BOOKS:
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:
Course Objectives:
- Explain the objectives of information security
- Explain the importance and application of each of confidentiality, integrity, authentication and availability
- Understand various cryptographic algorithms.
- Understand the basic categories of threats to computers and networks
- Describe public-key cryptosystem.
- Describe the enhancements made to IPv4 by IPSec
- Understand Intrusions and intrusion detection
- Discuss the fundamental ideas of public-key cryptography.
- Generate and distribute a PGP key pair and use the PGP package to send an encrypted e-mail message.
- Discuss Web security and Firewalls

Course Outcomes:
- Student will be able to understand basic cryptographic algorithms, message and web authentication and security issues.
- Ability to identify information system requirements for both of them such as client and server.
- Ability to understand the current legal issues towards information security.

UNIT - I
Cryptography Concepts and Techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

UNIT - II
Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4.

UNIT - III
Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm (SHA-512), Message authentication codes: Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme.

UNIT - IV

122
UNIT - V

E-Mail Security: Pretty Good Privacy, S/MIME

TEXT BOOKS:

REFERENCE BOOKS:
3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning
IV Year B.Tech. CSE I - Sem

CS702PC: DATA MINING (PC)

Pre-Requisites:
- A course on “Database Management Systems”
- Knowledge of probability and statistics

Course Objectives:
- It presents methods for mining frequent patterns, associations, and correlations.
- It then describes methods for data classification and prediction, and data–clustering approaches.
- It covers mining various types of data stores such as spatial, textual, multimedia, streams.

Course Outcomes:
- Ability to understand the types of the data to be mined and present a general classification of tasks and primitives to integrate a data mining system.
- Apply preprocessing methods for any given raw data.
- Extract interesting patterns from large amounts of data.
- Discover the role played by data mining in various fields.
- Choose and employ suitable data mining algorithms to build analytical applications
- Evaluate the accuracy of supervised and unsupervised models and algorithms.

UNIT - I
Data Mining: Data–Types of Data–, Data Mining Functionalities– Interestingness Patterns– Classification of Data Mining systems– Data mining Task primitives –Integration of Data mining system with a Data warehouse–Major issues in Data Mining–Data Preprocessing.

UNIT - II
Association Rule Mining: Mining Frequent Patterns–Associations and correlations – Mining Methods– Mining Various kinds of Association Rules– Correlation Analysis– Constraint based Association mining. Graph Pattern Mining, SPM.

UNIT - III

UNIT - IV
Clustering and Applications: Cluster analysis–Types of Data in Cluster Analysis–Categorization of Major Clustering Methods– Partitioning Methods, Hierarchical Methods– Density–Based Methods, Grid–Based Methods, Outlier Analysis.

UNIT - V

TEXT BOOKS:
1. Data Mining – Concepts and Techniques – Jiawei Han & Micheline Kamber, 3rd Edition Elsevier.
2. Data Mining Introductory and Advanced topics – Margaret H Dunham, PEA.

REFERENCE BOOK:
CS711PE: GRAPH THEORY (Professional Elective - IV)

IV Year B.Tech. CSE I -Sem

Pre-requisites:
1. An understanding of Mathematics in general is sufficient.

Course Outcomes:
- Know some important classes of graph theoretic problems;
- Be able to formulate and prove central theorems about trees, matching, connectivity, colouring and planar graphs;
- Be able to describe and apply some basic algorithms for graphs;
- Be able to use graph theory as a modelling tool.

UNIT - I
Introduction - Discovery of graphs, Definitions, Subgraphs, Isomorphic graphs, Matrix representations of graphs, Degree of a vertex, Directed walks, paths and cycles, Connectivity in digraphs, Eulerian and Hamilton digraphs, Eulerian digraphs, Hamilton digraphs, Special graphs, Complements, Larger graphs from smaller graphs, Union, Sum, Cartesian Product, Composition, Graphic sequences, Graph theoretic model of the LAN problem, Havel-Hakimi criterion, Realization of a graphic sequence.

UNIT - II
Connected graphs and shortest paths - Walks, trails, paths, cycles, Connected graphs, Distance, Cut-vertices and cut-edges, Blocks, Connectivity, Weighted graphs and shortest paths, Weighted graphs, Dijkstra’s shortest path algorithm, Floyd-Warshall shortest path algorithm.

UNIT - III
Trees - Definitions and characterizations, Number of trees, Cayley’s formula, Kirchof’s matrix-tree theorem, Minimum spanning trees, Kruskal’s algorithm, Prim’s algorithm, Special classes of graphs, Bipartite Graphs, Line Graphs, Chordal Graphs, Eulerian Graphs, Fleury’s algorithm, Chinese Postman problem, Hamilton Graphs, Introduction, Necessary conditions and sufficient conditions.

UNIT - IV
Independent sets coverings and matchings - Introduction, Independent sets and coverings: basic equations, Matchings in bipartite graphs, Hall’s Theorem, König’s Theorem, Perfect matchings in graphs, Greedy and approximation algorithms.

UNIT - V

TEXT BOOKS:
2. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.

REFERENCE BOOKS:
1. Lecture Videos: http://nptel.ac.in/courses/111106050/13
2. Introduction to Graph Theory, Douglas B. West, Pearson.
3. Schaum’s Outlines Graph Theory, Balakrishnan, TMH
4. Introduction to Graph Theory, Wilson Robin j, PHI
5. Graph Theory with Applications to Engineering And Computer Science, Narsing Deo, PHI
CS712PE: INTRODUCTION TO EMBEDDED SYSTEMS (Professional Elective - IV)

IV Year B.Tech. CSE I -Sem

Pre-requisites:
1. A course on “Digital Logic Design and Microprocessors”
2. A course on “Computer Organization and Architecture”

Course Objectives:
- To provide an overview of principles of Embedded System
- To provide a clear understanding of role of firmware, operating systems in correlation with hardware systems.

Course Outcomes:
- Expected to understand the selection procedure of processors in the embedded domain.
- Design procedure of embedded firmware.
- Expected to visualize the role of realtime operating systems in embedded systems.
- Expected to evaluate the correlation between task synchronization and latency issues

UNIT - I

UNIT - II

UNIT - III
Embedded Firmware Design and Development: Embedded Firmware Design, Embedded Firmware Development Languages, Programming in Embedded C.

UNIT - IV
RTOS Based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process, Threads, Multiprocessing and Multi-tasking, Task Scheduling, Threads-Processes-Scheduling putting them together, Task Communication, Task Synchronization, Device Drivers, How to choose an RTOS

UNIT - V
Integration and Testing of Embedded Hardware and Firmware: Integration of Hardware and Firmware, Boards Bring up
The Embedded System Development Environment: The Integrated Development Environment (IDE), Types of files generated on Cross-Compilation, Disassembler/Decompiler, Simulators, Emulators and Debugging, Target Hardware Debugging, Boundary Scan.

TEXT BOOK:

REFERENCE BOOKS:
CS713PE: ARTIFICIAL INTELLIGENCE (Professional Elective - IV)

IV Year B.Tech. CSE I -Sem

Prerequisites:

1. A course on “Computer Programming and Data Structures”
2. A course on “Advanced Data Structures”
3. A course on “Design and Analysis of Algorithms”
4. A course on “Mathematical Foundations of Computer Science”
5. Some background in linear algebra, data structures and algorithms, and probability will all be helpful

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning
- To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- Ability to formulate an efficient problem space for a problem expressed in natural language.
- Select a search algorithm for a problem and estimate its time and space complexities.
- Possess the skill for representing knowledge using the appropriate technique for a given problem.
- Possess the ability to apply AI techniques to solve problems of game playing, and machine learning.

UNIT - I

Problem Solving by Search-I: Introduction to AI, Intelligent Agents

UNIT - II

Problem Solving by Search-II and Propositional Logic

Adversarial Search: Games, Optimal Decisions in Games, Alpha–Beta Pruning, Imperfect Real-Time Decisions.

Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems.

Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic.

UNIT - III

Logic and Knowledge Representation

First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic.
Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events. Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

UNIT - IV
Planning

UNIT - V
Uncertain knowledge and Learning
Uncertainty: Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes’ Rule and Its Use,
Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory.

TEXT BOOK:

REFERENCE BOOKS:
1. Artificial Intelligence, 3rd Edn, E. Rich and K.Knight (TMH)
3. Artificial Intelligence, Shivani Goel, Pearson Education.
4. Artificial Intelligence and Expert systems – Patterson, Pearson Education.
CS714PE: CLOUD COMPUTING (Professional Elective - IV)

IV Year B.Tech. CSE I -Sem

Pre-requisites:
1. A course on “Computer Networks”
2. A course on “Operating Systems”
3. A course on “Distributed Systems”

Course Objectives:
- This course provides an insight into cloud computing
- Topics covered include distributed system models, different cloud service models, service-oriented architectures, cloud programming and software environments, resource management.

Course Outcomes:
- Ability to understand various service delivery models of a cloud computing architecture.
- Ability to understand the ways in which the cloud can be programmed and deployed.
- Understanding cloud service providers.

UNIT - I

UNIT - II

UNIT - III

UNIT - IV

UNIT V
TEXT BOOK:

REFERENCE BOOKS:
CS715PE: AD-HOC & SENSOR NETWORKS (Professional Elective - IV)

IV Year B.Tech. CSE I -Sem L T P C
3 0 0 3

Prerequisites
1. A course on “Computer Networks”
2. A course on “Mobile Computing”

Course Objectives:
- To understand the concepts of sensor networks
- To understand the MAC and transport protocols for ad hoc networks
- To understand the security of sensor networks
- To understand the applications of adhoc and sensor networks

Course Outcomes:
- Ability to understand the state-of-the-art research in the emerging subject of Ad Hoc and Wireless Sensor Networks
- Ability to solve the issues in real-time application development based on ASN.
- Ability to conduct further research in the domain of ASN

UNIT - I
Introduction to Ad Hoc Networks - Characteristics of MANETs, Applications of MANETs and Challenges of MANETs.
Routing in MANETs - Criteria for classification, Taxonomy of MANET routing algorithms, Topology-based routing algorithms-Proactive: DSDV; Reactive: DSR, AODV; Hybrid: ZRP; Position-based routing algorithms-Location Services-DREAM, Quorum-based; Forwarding Strategies: Greedy Packet, Restricted Directional Flooding-DREAM, LAR.

UNIT - II
Data Transmission - Broadcast Storm Problem, Rebroadcasting Schemes-Simple-flooding, Probability-based Methods, Area-based Methods, Neighbor Knowledge-based: SBA, Multipoint Relaying, AHB. Multicasting: Tree-based: AMRIS, MAODV; Mesh-based: ODMRP, CAMP; Hybrid: AMRoute, MCEDAR.

UNIT - III
Geocasting: Data-transmission Oriented-LBM; Route Creation Oriented-GeoTORA, MGR. TCP over Ad Hoc TCP protocol overview, TCP and MANETs, Solutions for TCP over Ad hoc

UNIT - IV

UNIT - V
Upper Layer Issues of WSN: Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs, Sensor Networks and mobile robots.

TEXT BOOKS:
CS721PE: ADVANCED ALGORITHMS (Professional Elective - V)

IV Year B.Tech. CSE I -Sem

Pre-requisites:
1. A course on “Computer Programming & Data Structures”
2. A course on “Advanced Data Structures & Algorithms”

Course Objectives:
- Introduces the recurrence relations for analyzing the algorithms
- Introduces the graphs and their traversals.
- Describes major algorithmic techniques (divide-and-conquer, greedy, dynamic programming, Brute Force, Transform and Conquer approaches) and mention problems for which each technique is appropriate;
- Describes how to evaluate and compare different algorithms using worst-case, average-case and best-case analysis.
- Introduces string matching algorithms
- Introduces linear programming.

Course Outcomes:
- Ability to analyze the performance of algorithms
- Ability to choose appropriate data structures and algorithm design methods for a specified application
- Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs

UNIT - I

UNIT - II
Greedy Algorithms - Huffman Codes, Activity Selection Problem. Amortized Analysis.

UNIT - III
Sorting Networks: Comparison Networks, Zero-one principle, bitonic Sorting Networks, Merging Network, Sorting Network.
Matrix Operations- Strassen's Matrix Multiplication, Inverting matrices, Solving system of linear Equations

UNIT - IV

UNIT- V
NP-Completeness and Approximation Algorithms: Polynomial time, polynomial time verification, NP-Completeness and reducibility, NP-Complete problems. Approximation Algorithms- Vertex cover Problem, Travelling Sales person problem
TEXT BOOK:

REFERENCE BOOKS:
2. Design and Analysis Algorithms - Parag Himanshu Dave, Himanshu Bhalchandra Dave Publisher: Pearson
CS722PE: REAL TIME SYSTEMS (Professional Elective - V)

IV Year B.Tech. CSE I -Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite: Computer Organization and Operating System

Course Objectives:
- To provide broad understanding of the requirements of Real Time Operating Systems.
- To make the student understand, applications of these Real Time features using case studies.

Course Outcomes:
- Be able to explain real-time concepts such as preemptive multitasking, task priorities, priority inversions, mutual exclusion, context switching, and synchronization, interrupt latency and response time, and semaphores.
- Able describe how a real-time operating system kernel is implemented.
- Able explain how tasks are managed.
- Explain how the real-time operating system implements time management.
- Discuss how tasks can communicate using semaphores, mailboxes, and queues.
- Be able to implement a real-time system on an embedded processor.
- Be able to work with real time operating systems like RT Linux, Vx Works, MicroC /OSII, Tiny Os

UNIT – I
Introduction: Introduction to UNIX/LINUX, Overview of Commands, File I/O,(open, create, close, lseek, read, write), Process Control (fork, vfork, exit, wait, waitpid, exec).

UNIT - II

UNIT - III
Objects, Services and I/O: Pipes, Event Registers, Signals, Other Building Blocks, Component Configuration, Basic I/O Concepts, I/O Subsystem

UNIT - IV

UNIT - V
Case Studies of RTOS: RT Linux, MicroC/OS-II, Vx Works, Embedded Linux, and Tiny OS.

TEXT BOOK:

REFERENCE BOOKS:
1. Embedded Systems- Architecture, Programming and Design by Rajkamal, 2007, TMH.
2. Advanced UNIX Programming, Richard Stevens
3. Embedded Linux: Hardware, Software and Interfacing – Dr. Craig Hollabaugh
CS723PE: SOFT COMPUTING (Professional Elective - V)

IV Year B.Tech. CSE I - Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
- Familiarize with soft computing concepts
- Introduce and use the idea of fuzzy logic and use of heuristics based on human experience
- Familiarize the Neuro-Fuzzy modeling using Classification and Clustering techniques
- Learn the concepts of Genetic algorithm and its applications
- Acquire the knowledge of Rough Sets.

Course Outcomes: On completion of this course, the students will be able to:
- Identify the difference between Conventional Artificial Intelligence to Computational Intelligence.
- Understand fuzzy logic and reasoning to handle and solve engineering problems
- Apply the Classification and clustering techniques on various applications.
- Understand the advanced neural networks and its applications
- Perform various operations of genetic algorithms, Rough Sets.
- Comprehend various techniques to build model for various applications

UNIT - I

UNIT-II

UNIT-III
Fuzzy Decision Making, Particle Swarm Optimization

UNIT-IV

UNIT-V
Rough Sets, Rough Sets, Rule Induction, and Discernibility Matrix, Integration of Soft Computing Techniques.

TEXT BOOK:

REFERENCE BOOKS:
CS724PE: INTERNET OF THINGS (Professional Elective - V)

IV Year B.Tech. CSE I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:

- To introduce the terminology, technology and its applications
- To introduce the concept of M2M (machine to machine) with necessary protocols
- To introduce the Python Scripting Language which is used in many IoT devices
- To introduce the Raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of web based services on IoT devices

Course Outcomes:

- Interpret the impact and challenges posed by IoT networks leading to new architectural models.
- Compare and contrast the deployment of smart objects and the technologies to connect them to network.
- Appraise the role of IoT protocols for efficient network communication.
- Elaborate the need for Data Analytics and Security in IoT.
- Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in Industry.

UNIT - I

UNIT - II
IoT and M2M – Software defined networks, network function virtualization, difference between SDN and NFV for IoT Basics of IoT System Management with NETCOZF, YANG- NETCONF, YANG, SNMP NETOPEER

UNIT - III
Introduction to Python - Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, data/time operations, classes, Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib

UNIT - IV
IoT Physical Devices and Endpoints - Introduction to Raspberry PI-Interfaces (serial, SPI, I2C) Programming – Python program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input from pins.

UNIT - V
IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication APIs Webserver – Web server for IoT, Cloud for IoT, Python web application framework Designing a RESTful web API

TEXT BOOKS:

CS725PE: SOFTWARE PROCESS & PROJECT MANAGEMENT (Professional Elective - V)

Course Objectives:
- To acquire knowledge on software process management
- To acquire managerial skills for software project development
- To understand software economics

Course Outcomes:
- Gain knowledge of software economics, phases in the life cycle of software development, project organization, project control and process instrumentation
- Analyze the major and minor milestones, artifacts and metrics from management and technical perspective
- Design and develop software product using conventional and modern principles of software project management

UNIT - I
Software Process Maturity
Process Reference Models
Capability Maturity Model (CMM), CMMI, PCMM, PSP, TSP).

UNIT - II
Software Project Management Renaissance
Life-Cycle Phases and Process artifacts
Engineering and Production stages, inception phase, elaboration phase, construction phase, transition phase, artifact sets, management artifacts, engineering artifacts and pragmatic artifacts, model-based software architectures.

UNIT - III
Workflows and Checkpoints of process
Software process workflows, Iteration workflows, Major milestones, minor milestones, periodic status assessments.
Process Planning
Work breakdown structures, Planning guidelines, cost and schedule estimating process, iteration planning process, Pragmatic planning.

UNIT - IV
Project Organizations
Line-of- business organizations, project organizations, evolution of organizations, process automation.
Project Control and process instrumentation
The seven-core metrics, management indicators, quality indicators, life-cycle expectations, Pragmatic software metrics, metrics automation.

UNIT - V
CCPDS-R Case Study and Future Software Project Management Practices
TEXT BOOKS:
1. Managing the Software Process, Watts S. Humphrey, Pearson Education
2. Software Project Management, Walker Royce, Pearson Education

REFERENCE BOOKS:
5. Head First PMP, Jennifer Greene & Andrew Stellman, O’Reilly, 2007
CS703PC: CRYPTOGRAPHY AND NETWORK SECURITY LAB (PC)

IV Year B.Tech. CSE I-Sem

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Write a C program that contains a string (char pointer) with a value ‘Hello world’. The program should XOR each character in this string with 0 and displays the result.

2. Write a C program that contains a string (char pointer) with a value ‘Hello world’. The program should AND or and XOR each character in this string with 127 and display the result.

3. Write a Java program to perform encryption and decryption using the following algorithms
 a. Caesar cipher
 b. Substitution cipher
 c. Hill Cipher

4. Write a C/JAVA program to implement the DES algorithm logic.

5. Write a C/JAVA program to implement the Blowfish algorithm logic.

6. Write a C/JAVA program to implement the Rijndael algorithm logic.

7. Write the RC4 logic in Java Using Java cryptography; encrypt the text “Hello world” using Blowfish. Create your own key using Java key tool.

8. Write a Java program to implement RSA algorithm.

10. Calculate the message digest of a text using the SHA-1 algorithm in JAVA.

11. Calculate the message digest of a text using the MD5 algorithm in JAVA.
SM801MS: ORGANIZATIONAL BEHAVIOUR (PC)

IV Year B.Tech. CSE II -Sem

Course Objectives: The objective of the course is to provide the students with the conceptual framework and the theories underlying Organizational Behaviour.

UNIT-I:

UNIT-II:

UNIT- III:

UNIT- IV:

UNIT- V:

REFERENCE BOOKS:
2. McShane: Organizational Behaviour, 3e, TMH, 2008
10. Aswathappa: Organisational Behaviour, 7/e, Himalaya, 2009
IV Year B.Tech. CSE II -Sem

Prerequisites:
1. A course on “Computer Programming and Data Structures”
2. A course on “Discrete Structures and Graph Theory”

Course Objectives:
- Introduces to theory of computational complexity classes
- Discuss about algorithmic techniques and application of these techniques to problems.
- Introduce to randomized algorithms and discuss how effective they are in reducing time and space complexity.
- Discuss about Graph based algorithms and approximation algorithms
- Discuss about search trees

Course Outcomes:
- Ability to classify decision problems into appropriate complexity classes
- Ability to specify what it means to reduce one problem to another, and construct reductions for simple examples.
- Ability to classify optimization problems into appropriate approximation complexity classes
- Ability to choose appropriate data structure for the given problem
- Ability to choose and apply appropriate design method for the given problem

UNIT - I
Computational Complexity: Polynomial time and its justification, Nontrivial examples of polynomial-time algorithms, the concept of reduction (reducibility), Class P Class NP and NP- Completeness, The P versus NP problem and why it’s hard

UNIT - II

UNIT - III

UNIT - IV

UNIT - V
Advanced Data Structures and applications: Decision Trees and Circuits, B-Trees, AVL Trees, Red and Black trees, Dictionaries and tries, Maps, Binomial Heaps, Fibonacci Heaps, Disjoint sets, Union by Rank and Path Compression

TEXT BOOKS:
CS812PE: DISTRIBUTED SYSTEMS (Professional Elective - VI)

IV Year B.Tech. CSE II -Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites
1. A course on “Operating Systems”
2. A course on “Computer Organization & Architecture”

Course Objectives
- This course provides an insight into Distributed systems.
- Topics include- Peer to Peer Systems, Transactions and Concurrency control, Security and Distributed shared memory

Course Outcomes
- Ability to understand Transactions and Concurrency control.
- Ability to understand Security issues.
- Understanding Distributed shared memory.
- Ability to design distributed systems for basic level applications.

UNIT - I
Characterization of Distributed Systems-Introduction, Examples of Distributed systems, Resource sharing and web, challenges, System models -Introduction, Architectural and Fundamental models, Networking and Internetworking, Interprocess Communication, Distributed objects and Remote Invocation-Introduction, Communication between distributed objects, RPC, Events and notifications, Case study-Java RMI.

UNIT - II

UNIT - III
Peer to Peer Systems–Introduction, Napster and its legacy, Peer to Peer middleware, Routing overlays, Overlay case studies-Pastry, Tapestry, Application case studies-Squirrel, OceanStore, Time and Global States-Introduction, Clocks, events and Process states, Synchronizing physical clocks, logical time and logical clocks, global states, distributed debugging, Coordination and Agreement-Introduction, Distributed mutual exclusion, Elections, Multicast communication, consensus and related problems.

UNIT - IV
Transactions and Concurrency Control-Introduction, Transactions, Nested Transactions, Locks, Optimistic concurrency control, Timestamp ordering, Distributed Transactions-Introduction, Flat and Nested Distributed Transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery.

UNIT - V
Replication-Introduction, System model and group communication, Fault tolerant services, Transactions with replicated data, Distributed shared memory, Design and Implementation issues, Consistency models.
TEXT BOOKS:

REFERENCE BOOKS:
CS813PE: NEURAL NETWORKS & DEEP LEARNING (Professional Elective - VI)

IV Year B.Tech. CSE II -Sem

Course Objectives:
- To introduce the foundations of Artificial Neural Networks
- To acquire the knowledge on Deep Learning Concepts
- To learn various types of Artificial Neural Networks
- To gain knowledge to apply optimization strategies

Course Outcomes:
- Ability to understand the concepts of Neural Networks
- Ability to select the Learning Networks in modeling real world systems
- Ability to use an efficient algorithm for Deep Models
- Ability to apply optimization strategies for large scale applications

UNIT-I

UNIT-II

UNIT - III
Introduction to Deep Learning, Historical Trends in Deep learning, Deep Feed-forward networks, Gradient-Based learning, Hidden Units, Architecture Design, Back-Propagation and Other Differentiation Algorithms

UNIT - IV
Regularization for Deep Learning: Parameter norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised learning, Multi-task learning, Early Stopping, Parameter Typing and Parameter Sharing, Sparse Representations, Bagging and other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, tangent Prop and Manifold, Tangent Classifier

UNIT - V

Applications: Large-Scale Deep Learning, Computer Vision, Speech Recognition, Natural Language Processing

TEXT BOOKS:
1. Deep Learning: An MIT Press Book By Ian Goodfellow and Yoshua Bengio and Aaron Courville
CS814PE: HUMAN COMPUTER INTERACTION (Professional Elective - VI)

IV Year B.Tech. CSE II -Sem

Course Objectives: To gain an overview of Human-Computer Interaction (HCI), with an understanding of user interface design in general, and alternatives to traditional “keyboard and mouse” computing; become familiar with the vocabulary associated with sensory and cognitive systems as relevant to task performance by humans; be able to apply models from cognitive psychology to predicting user performance in various human-computer interaction tasks and recognize the limits of human performance as they apply to computer operation; appreciate the importance of a design and evaluation methodology that begins with and maintains a focus on the user; be familiar with a variety of both conventional and non-traditional user interface paradigms, the latter including virtual and augmented reality, mobile and wearable computing, and ubiquitous computing; and understand the social implications of technology and their ethical responsibilities as engineers in the design of technological systems. Finally, working in small groups on a product design from start to finish will provide you with invaluable team-work experience.

Course Outcomes:
- Ability to apply HCI and principles to interaction design.
- Ability to design certain tools for blind or PH people.

UNIT - I
The graphical user interface – popularity of graphics, the concept of direct manipulation, graphical system, Characteristics, Web user – Interface popularity, characteristics- Principles of user interface.

UNIT - II
Design process – Human interaction with computers, importance of human characteristics human consideration, Human interaction speeds, understanding business junctions.

UNIT- III

UNIT- IV

UNIT- V
Cognitive models Goal and task hierarchies Design Focus: GOMS saves money Linguistic models The challenge of display-based systems Physical and device models Cognitive architectures Ubiquitous computing and augmented realities Ubiquitous computing applications research Design Focus: Ambient
Wood – augmenting the physical Virtual and augmented reality Design Focus: Shared experience Design Focus: Applications of augmented reality Information and data visualization Design Focus: Getting the size right.

TEXT BOOKS:
1. The essential guide to user interface design, Wilbert O Galitz, Wiley Dream Tech. Units 1, 2, 3

REFERENCE BOOKS:
1. Designing the user interface. 3rd Edition Ben Shneidermann, Pearson Education Asia.
CS815PE: CYBER FORENSICS (Professional Elective - VI)

IV Year B.Tech. CSE II -Sem

Prerequisites: Network Security

Course Objectives:
- A brief explanation of the objective is to provide digital evidences which are obtained from digital media.
- In order to understand the objectives of computer forensics, first of all, people have to recognize the different roles computer plays in a certain crime.
- According to a snippet from the United States Security Service, the functions computer has in different kinds of crimes.

Course Outcomes:
- Students will understand the usage of computers in forensic, and how to use various forensic tools for a wide variety of investigations.
- It gives an opportunity to students to continue their zeal in research in computer forensics

UNIT- I

UNIT-II
Initial Response and forensic duplication, Initial Response & Volatile Data Collection from Windows system -Initial Response & Volatile Data Collection from Unix system – Forensic Duplication: Forensic Duplicates as Admissible Evidence, Forensic Duplication Tool Requirements, Creating a Forensic Duplicate/Qualified Forensic Duplicate of a Hard Drive

UNIT - III
Forensics analysis and validation: Determining what data to collect and analyze, validating forensic data, addressing data-hiding techniques, performing remote acquisitions
Network Forensics: Network forensics overview, performing live acquisitions, developing standard procedures for network forensics, using network tools, examining the honeynet project.

UNIT - IV
Current Forensic tools: evaluating computer forensic tool needs, computer forensics software tools, computer forensics hardware tools, validating and testing forensics software E-Mail Investigations: Exploring the role of e-mail in investigation, exploring the roles of the client and server in e-mail, investigating e-mail crimes and violations, understanding e-mail servers, using specialized e-mail forensic tools.
Cell phone and mobile device forensics: Understanding mobile device forensics, understanding acquisition procedures for cell phones and mobile devices.

UNIT- V
Working with Windows and DOS Systems: understanding file systems, exploring Microsoft File Structures, Examining NTFS disks, Understanding whole disk encryption, windows registry, Microsoft startup tasks, MS-DOS startup tasks, virtual machines.

TEXT BOOKS:

REFERENCE BOOKS:
1. Real Digital Forensics by Keith J. Jones, Richard Bejtlich, Curtis W. Rose, Addison- Wesley Pearson Education