JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech. in Civil Engineering Syllabus

JNTU HYDERABAD

Course Structure & Syllabus (R18)

Applicable From 2018-19 Admitted Batch

I YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA101BS</td>
<td>Mathematics - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PH102BS</td>
<td>Engineering Physics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>CS103ES</td>
<td>Programming for Problem Solving</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ME104ES</td>
<td>Engineering Graphics</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PH105BS</td>
<td>Engineering Physics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>CS106ES</td>
<td>Programming for Problem Solving Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>*MC109ES</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Induction Programme</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>

I YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA201BS</td>
<td>Mathematics - II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CH202BS</td>
<td>Chemistry</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ME203ES</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ME205ES</td>
<td>Engineering Workshop</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>EN205HS</td>
<td>English</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>CH206BS</td>
<td>Engineering Chemistry Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>EN207HS</td>
<td>English Language and Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>3</td>
<td>8</td>
<td>19.0</td>
</tr>
</tbody>
</table>

II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE301PC</td>
<td>Surveying and Geomatics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CE302PC</td>
<td>Engineering Geology</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>CE303PC</td>
<td>Strength of Materials - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>MA304BS</td>
<td>Probability and Statistics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>CE305PC</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>CE306PC</td>
<td>Surveying Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>CE307PC</td>
<td>Strength of Materials Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>CE308PC</td>
<td>Engineering Geology Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*MC309</td>
<td>Constitution of India</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>3</td>
<td>8</td>
<td>21</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EE401ES</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>S. No.</td>
<td>Course Code</td>
<td>Course Title</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Credits</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>2</td>
<td>CE402ES</td>
<td>Basic Mechanical Engineering for Civil Engineers</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>CE403PC</td>
<td>Building Materials, Construction and Planning</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CE404PC</td>
<td>Strength of Materials - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>CE405PC</td>
<td>Hydraulics and Hydraulic Machinery</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>CE406PC</td>
<td>Structural Analysis - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>CE407PC</td>
<td>Computer aided Civil Engineering Drawing</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>CE409PC</td>
<td>Hydraulics and Hydraulic Machinery Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>9</td>
<td>EE409ES</td>
<td>Basic Electrical and Electronics Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>*MC409</td>
<td>Gender Sensitization Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>17</td>
<td>0</td>
<td>10</td>
<td>21</td>
</tr>
</tbody>
</table>

III YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CE501</td>
<td>Structural Analysis-II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CE502PC</td>
<td>Geotechnical Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CE503PC</td>
<td>Structural Engineering – I (RCC)</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>CE504PC</td>
<td>Transportation Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Professional Elective –I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SM505MS</td>
<td>Engineering Economics and Accountancy</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>CE506PC</td>
<td>Highway Engineering and Concrete Technology Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>CE507PC</td>
<td>Geotechnical Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>9</td>
<td>EN508HS</td>
<td>Advanced Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>*MC509</td>
<td>Intellectual Property Rights</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>20</td>
<td>1</td>
<td>8</td>
<td>22</td>
</tr>
</tbody>
</table>

III YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE601PC</td>
<td>Hydrology & Water Resources Engineering</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>CE602PC</td>
<td>Environmental Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CE603PC</td>
<td>Foundation Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CE604PC</td>
<td>Structural Engineering – II (Steel)</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Professional Elective –II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Open Elective –I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CE605PC</td>
<td>Environmental Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>CE606PC</td>
<td>Computer Aided Design Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*MC609</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>21</td>
<td>2</td>
<td>4</td>
<td>22</td>
</tr>
</tbody>
</table>

MC609 - Environmental Science – Should be Registered by Lateral Entry Students Only.

IV YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE701PC</td>
<td>Estimation, Costing and Project Management</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Professional Elective –III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Professional Elective –IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
IV YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE511PE</td>
<td>Concrete Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CE512PE</td>
<td>Theory of Elasticity</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CE513PE</td>
<td>Rock Mechanics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CE711PE</td>
<td>Remote Sensing & GIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CE712PE</td>
<td>Ground Improvement Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CE713PE</td>
<td>Advanced Structural Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CE721PE</td>
<td>Irrigation and Hydraulic Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CE722PE</td>
<td>Pipeline Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>CE723PE</td>
<td>Ground Water Hydrology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CE811PE</td>
<td>Solid Waste Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>CE812PE</td>
<td>Environmental Impact Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CE813PE</td>
<td>Air pollution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CE821PE</td>
<td>Airports, Railways and Waterways</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>CE822PE</td>
<td>Urban Transportation Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CE823PE</td>
<td>Finite Element Methods for Civil Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*MC – Satisfactory/Unsatisfactory

Note: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.
Course Objectives: To learn

- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of Eigen values and eigenvectors and to reduce the quadratic form to canonical form
- Concept of Sequence.
- Concept of nature of the series.
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.

Course Outcomes: After learning the contents of this paper the student must be able to

- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- Find the Eigen values and Eigen vectors
- Reduce the quadratic form to canonical form using orthogonal transformations.
- Analyse the nature of sequence and series.
- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions
- Find the extreme values of functions of two variables with/ without constraints.

UNIT-I: Matrices
Matrices: Types of Matrices, Symmetric; Hermitian; Skew-symmetric; Skew-Hermitian; orthogonal matrices; Unitary Matrices; rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method; System of linear equations; solving system of Homogeneous and Non-Homogeneous equations. Gauss elimination method; Gauss Seidel Iteration Method.

UNIT-II: Eigen values and Eigen vectors
Linear Transformation and Orthogonal Transformation: Eigen values and Eigenvectors and their properties: Diagonalization of a matrix; Cayley-Hamilton Theorem (without proof); finding inverse and power of a matrix by Cayley-Hamilton Theorem; Quadratic forms and Nature of the Quadratic Forms; Reduction of Quadratic form to canonical forms by Orthogonal Transformation

UNIT-III: Sequences & Series
Sequence: Definition of a Sequence, limit; Convergent, Divergent and Oscillatory sequences. Series: Convergent, Divergent and Oscillatory Series; Series of positive terms; Comparison test, p-test, D-Alembert’s ratio test; Raabe’s test; Cauchy’s Integral test; Cauchy’s root test; logarithmic test. Alternating series: Leibnitz test; Alternating Convergent series: Absolute and Conditionally Convergence.

UNIT-IV: Calculus
Mean value theorems: Rolle’s theorem, Lagrange’s Mean value theorem with their Geometrical Interpretation and applications, Cauchy’s Mean value Theorem. Taylor’s Series.
Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT-V: Multivariable calculus (Partial Differentiation and applications)
Definitions of Limit and continuity.
Partial Differentiation; Euler’s Theorem; Total derivative; Jacobian; Functional dependence & independence, Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

TEXT BOOKS:

REFERENCE BOOKS:
PH102BS: ENGINEERING PHYSICS

Course Objectives:
- The course aims at making students to understand the basic concepts of Principles of Physics in a broader sense with a view to lay foundation for the various engineering courses.
- Students will be able to demonstrate competency and understanding of the concepts found in Mechanics, Harmonic Oscillations, Waves in one dimension, wave Optics, Lasers, Fiber Optics and a broad base of knowledge in physics.
- The main purpose of this course is to equip engineering undergraduates with an understanding of the scientific method, so that they may use the training beneficially in their higher pursuits.
- Today the need is to stress principles rather than specific procedures, to select areas of contemporary interest rather than of past interest, and to condition the student to the atmosphere of change he will encounter during his carrier.

Course outcomes: Upon graduation, the graduates will have:
- The knowledge of Physics relevant to engineering is critical for converting ideas into technology.
- An understanding of Physics also helps engineers understand the working and limitations of existing devices and techniques, which eventually leads to new innovations and improvements.
- In the present course, the students can gain knowledge on the mechanism of physical bodies upon the action of forces on them, the generation, transmission and the detection of the waves, Optical Phenomena like Interference, diffraction, the principles of lasers and Fibre Optics.
- Various chapters establish a strong foundation on the different kinds of characters of several materials and pave a way for them to use in at various technical and engineering applications.

UNIT-I: Introduction to Mechanics
Transformation of scalars and vectors under Rotation transformation, Forces in Nature, Newton’s laws and its completeness in describing particle motion, Form invariance of Newton’s second law, Solving Newton’s equations of motion in polar coordinates, Problems including constraints and friction, Extension to cylindrical and spherical coordinates.

UNIT-II: Harmonic Oscillations
Mechanical and electrical simple harmonic oscillators, Complex number notation and phasor representation of simple harmonic motion, Damped harmonic oscillator: heavy, critical and light damping, Energy decay in a damped harmonic oscillator, Quality factor, Mechanical and electrical oscillators, Mechanical and electrical impedance, Steady state motion of forced damped harmonic oscillator, Power observed by oscillator.

UNIT-III: Waves in one dimension
Transverse wave on a string, The wave equation on a string, Harmonic waves, Reflection and transmission of waves at a boundary, Impedance matching, Standing waves and their Eigen frequencies, Longitudinal waves and the wave equations for them, Acoustic waves and speed of sound, Standing sound waves.

UNIT-IV: Wave Optics
Huygen’s principle, Superposition of waves and interference of light by wave front splitting and amplitude splitting, Young’s double slit experiment, Newton’s rings, Michelson’s interferometer, Mach-Zehnder interferometer, Fraunhofer diffraction from a single slit and circular aperture, Diffraction grating- resolving power.
UNIT-V: Lasers and Fibre Optics

TEXT BOOKS:

REFERENCE BOOKS:
2. O. Svelto, “Principles of Lasers”
CS103ES/CS203ES: PROGRAMMING FOR PROBLEM SOLVING

B.Tech. I Year I Sem.

L T P C
3 1 0 4

Course Objectives:
- To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of C programming language.
- To learn the usage of structured programming approach in solving problems.

Course Outcomes:
The student will learn
- To write algorithms and to draw flowcharts for solving problems.
- To convert the algorithms/flowcharts to C programs.
- To code and test a given logic in C programming language.
- To decompose a problem into functions and to develop modular reusable code.
- To use arrays, pointers, strings and structures to write C programs.
- Searching and sorting problems.

UNIT - I: Introduction to Programming
Introduction to components of a computer system: disks, primary and secondary memory, processor, operating system, compilers, creating, compiling and executing a program etc., Number systems
Introduction to Algorithms: steps to solve logical and numerical problems. Representation of Algorithm, Flowchart/Pseudo code with examples, Program design and structured programming
Introduction to C Programming Language: variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code, Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments
Bitwise operations: Bitwise AND, OR, XOR and NOT operators
Conditional Branching and Loops: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do-while loops
I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr.
Command line arguments

UNIT - II: Arrays, Strings, Structures and Pointers:
Arrays: one- and two-dimensional arrays, creating, accessing and manipulating elements of arrays
Strings: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings
Structures: Defining structures, initializing structures, unions, Array of structures
Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self-referential structures, usage of self-referential structures in linked list (no implementation)
Enumeration data type

UNIT - III: Preprocessor and File handling in C:
Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef
Files: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions.

UNIT - IV: Function and Dynamic Memory Allocation:
Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries
Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions
Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of different data types

UNIT - V: Introduction to Algorithms:
Algorithms for finding roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a number is prime number, etc.
Basic searching in an array of elements (linear and binary search techniques),
Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms),
Basic concept of order of complexity through the example programs

TEXT BOOKS:

REFERENCE BOOKS:
2. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
ME104ES/ME204ES: ENGINEERING GRAPHICS

B.Tech. I Year I Sem. L T P C
Pre-requisites: Nil 1 0 4 3

Course objectives:
- To provide basic concepts in engineering drawing.
- To impart knowledge about standard principles of orthographic projection of objects.
- To draw sectional views and pictorial views of solids.

Course Outcomes: At the end of the course, the student will be able to:
- Preparing working drawings to communicate the ideas and information.
- Read, understand and interpret engineering drawings.

UNIT – I

UNIT- II

UNIT – III
Projections of Regular Solids – Auxiliary Views - Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views – Sections of Sphere

UNIT – IV
Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone, Intersection of Solids: Intersection of – Prism vs Prism- Cylinder Vs Cylinder

UNIT – V

Introduction to CAD: (For Internal Evaluation Weightage only):
Introduction to CAD Software Package Commands. - Free Hand Sketches of 2D- Creation of 2D Sketches by CAD Package

TEXT BOOKS:
1. Engineering Drawing N.D. Bhatt / Charotar
2. Engineering Drawing / N. S. Parthasarathy and Vela Murali/ Oxford

REFERENCE BOOKS:
1. Engineering Drawing / Basant Agrawal and McAgrawal/ McGraw Hill
2. Engineering Drawing/ M. B. Shah, B.C. Rane / Pearson.
PH105BS: ENGINEERING PHYSICS LAB

B.Tech. I Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Melde’s experiment:
 To determine the frequency of a vibrating bar or turning fork using Melde’s arrangement.

2. Torsional pendulum:
 To determine the rigidity modulus of the material of the given wire using torsional pendulum.

3. Newton’s rings:
 To determine the radius of curvature of the lens by forming Newton’s rings.

4. Diffraction grating:
 To determine the number of lines per inch of the grating.

5. Dispersive power:
 To determine the dispersive power of prism by using spectrometer.

6. Coupled Oscillator:
 To determine the spring constant by single coupled oscillator.

7. LCR Circuit:
 To determine quality factor and resonant frequency of LCR circuit.

8. LASER:
 To study the characteristics of LASER sources.

9. Optical fibre:
 To determine the bending losses of Optical fibres.

10. Optical fibre:
 To determine the Numerical aperture of a given fibre.

Note: Any 8 experiments are to be performed.
CS106ES/CS206ES: PROGRAMMING FOR PROBLEM SOLVING LAB

B.Tech. I Year I Sem.

[Note: The programs may be executed using any available Open Source/ Freely available IDE
Some of the Tools available are:
CodeLite: https://codelite.org/
Code::Blocks: http://www.codeblocks.org/
DevCpp : http://www.bloodshed.net/devcpp.html
Eclipse: http://www.eclipse.org
This list is not exhaustive and is NOT in any order of preference]

Course Objectives: The students will learn the following:
- To work with an IDE to create, edit, compile, run and debug programs
- To analyze the various steps in program development.
- To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- To Write programs using the Dynamic Memory Allocation concept.
- To create, read from and write to text and binary files

Course Outcomes: The candidate is expected to be able to:
- formulate the algorithms for simple problems
- translate given algorithms to a working and correct program
- correct syntax errors as reported by the compilers
- identify and correct logical errors encountered during execution
- represent and manipulate data with arrays, strings and structures
- use pointers of different types
- create, read and write to and from simple text and binary files
- modularize the code with functions so that they can be reused

Practice sessions:
- Write a simple program that prints the results of all the operators available in C (including pre/post increment, bitwise and/or/not, etc.). Read required operand values from standard input.
- Write a simple program that converts one given data type to another using auto conversion and casting. Take the values form standard input.

Simple numeric problems:
- Write a program for finding the max and min from the three numbers.
- Write the program for the simple, compound interest.
- Write program that declares Class awarded for a given percentage of marks, where mark <40% = Failed, 40% to <60% = Second class, 60% to <70% = First class, >= 70% = Distinction. Read percentage from standard input.
- Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be:
 - 5 x 1 = 5
 - 5 x 2 = 10
 - 5 x 3 = 15
- Write a program that shows the binary equivalent of a given positive number between 0 to 255.
Expression Evaluation:

a. A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of the building. Find the time taken by the ball to reach each floor. (Use the formula \(s = ut + \frac{1}{2}at^2 \) where \(u \) and \(a \) are the initial velocity in m/sec (= 0) and acceleration in m/sec^2 (= 9.8 m/s^2)).

b. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, % and use Switch Statement)

c. Write a program that finds if a given number is a prime number

d. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.

e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first \(n \) terms of the sequence.

f. Write a C program to generate all the prime numbers between 1 and \(n \), where \(n \) is a value supplied by the user.

g. Write a C program to find the roots of a Quadratic equation.

h. Write a C program to calculate the following, where \(x \) is a fractional value.
 i. \(1 - \frac{x}{2} + \frac{x^2}{4} - \frac{x^3}{6} \)

j. Write a C program to read in two numbers, \(x \) and \(n \), and then compute the sum of this geometric progression: \(1+x+x^2+x^3+\ldots+\ldots+x^n \). For example: if \(n \) is 3 and \(x \) is 5, then the program computes 1+5+25+125.

Arrays and Pointers and Functions:

a. Write a C program to find the minimum, maximum and average in an array of integers.

b. Write a functions to compute mean, variance, Standard Deviation, sorting of \(n \) elements in single dimension array.

c. Write a C program that uses functions to perform the following:

 d. Addition of Two Matrices

 e. ii. Multiplication of Two Matrices

 f. iii. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be same.

g. Write C programs that use both recursive and non-recursive functions

h. To find the factorial of a given integer.

 i. ii. To find the GCD (greatest common divisor) of two given integers.

 j. iii. To find \(x^n \)

k. Write a program for reading elements using pointer into array and display the values using array.

l. Write a program for display values reverse order from array using pointer.

m. Write a program through pointer variable to sum of \(n \) elements from array.

Files:

a. Write a C program to display the contents of a file to standard output device.

b. Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.

c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.

d. Write a C program that does the following:

 It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function)

 Now the program asks for an index and a value from the user and the value at that index should be changed to the new value in the file. (hint: use fseek function)

 The program should then read all 10 values and print them back.
e. Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

Strings:
 a. Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.
 b. Write a C program that converts a number ranging from 1 to 50 to Roman equivalent
 c. Write a C program that uses functions to perform the following operations:
 d. To insert a sub-string in to a given main string from a given position.
 e. ii. To delete n Characters from a given position in a given string.
 f. Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)
 g. Write a C program that displays the position of a character ch in the string S or – 1 if S doesn't contain ch.
 h. Write a C program to count the lines, words and characters in a given text.

Miscellaneous:
 a. Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered.
 b. Write a C program to construct a pyramid of numbers as follows:

```
    1
   1 2
  1 2 3
1 2 3 * * * 4 5 6
   3 3 3 * * * * * 4 4 4
       4 4 4 4
         *
```

Sorting and Searching:
 a. Write a C program that uses non recursive function to search for a Key value in a given list of integers using linear search method.
 b. Write a C program that uses non recursive function to search for a Key value in a given sorted list of integers using binary search method.
 c. Write a C program that implements the Bubble sort method to sort a given list of integers in ascending order.
 d. Write a C program that sorts the given array of integers using selection sort in descending order
 e. Write a C program that sorts the given array of integers using insertion sort in ascending order
 f. Write a C program that sorts a given array of names

Suggested Reference Books for solving the problems:
 i. Byron Gottfried, Schaum’s Outline of Programming with C, McGraw-Hill
 iii. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
 iv. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
MC109ES: ENVIRONMENTAL SCIENCE

B.Tech. I Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives:
- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations.

Course Outcomes:
- Based on this course, the Engineering graduate will understand/evaluate/develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development.

UNIT-I

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT-II

Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT-III

Biodiversity and Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT-IV

UNIT-V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio-

TEXT BOOKS:
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:
6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.
MA201BS: MATHEMATICS - II

B.Tech. I Year II Sem.

<table>
<thead>
<tr>
<th>Course Objectives: To learn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods of solving the differential equations of first and higher order.</td>
</tr>
<tr>
<td>Evaluation of multiple integrals and their applications</td>
</tr>
<tr>
<td>The physical quantities involved in engineering field related to vector valued functions</td>
</tr>
<tr>
<td>The basic properties of vector valued functions and their applications to line, surface and volume integrals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Outcomes: After learning the contents of this paper the student must be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify whether the given differential equation of first order is exact or not</td>
</tr>
<tr>
<td>Solve higher differential equation and apply the concept of differential equation to real world problems</td>
</tr>
<tr>
<td>Evaluate the multiple integrals and apply the concept to find areas, volumes, centre of mass and Gravity for cubes, sphere and rectangular parallelopiped</td>
</tr>
<tr>
<td>Evaluate the line, surface and volume integrals and converting them from one to another</td>
</tr>
</tbody>
</table>

UNIT-I: First Order ODE
Exact, linear and Bernoulli’s equations; Applications: Newton’s law of cooling, Law of natural growth and decay; Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

UNIT-II: Ordinary Differential Equations of Higher Order
Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type $e^{ax}, \sin ax, \cos ax$, polynomials in $x, e^{ax}V(x)$ and $x V(x)$; method of variation of parameters; Equations reducible to linear ODE with constant coefficients: Legendre's equation, Cauchy-Euler equation.

UNIT-III: Multivariable Calculus (Integration)
Evaluation of Double Integrals (Cartesian and polar coordinates); change of order of integration (only Cartesian form); Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals. Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals), Centre of mass and Gravity (constant and variable densities) by double and triple integrals (applications involving cubes, sphere and rectangular parallelopiped).

UNIT-IV: Vector Differentiation

UNIT-V: Vector Integration
Line, Surface and Volume Integrals. Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:
REFERENCE BOOKS:
Course Objectives:

- To bring adaptability to the concepts of chemistry and to acquire the required skills to become a perfect engineer.
- To impart the basic knowledge of atomic, molecular and electronic modifications which makes the student to understand the technology based on them.
- To acquire the knowledge of electrochemistry, corrosion and water treatment which are essential for the Engineers and in industry.
- To acquire the skills pertaining to spectroscopy and to apply them for medical and other fields.
- To impart the knowledge of stereochemistry and synthetic aspects useful for understanding reaction pathways.

Course Outcomes: The basic concepts included in this course will help the student to gain:

- The knowledge of atomic, molecular and electronic changes, band theory related to conductivity.
- The required principles and concepts of electrochemistry, corrosion and in understanding the problem of water and its treatments.
- The required skills to get clear concepts on basic spectroscopy and application to medical and other fields.
- The knowledge of configurational and conformational analysis of molecules and reaction mechanisms.

UNIT - I:
 Molecular structure and Theories of Bonding: Atomic and Molecular orbitals. Linear Combination of Atomic Orbitals (LCAO), molecular orbitals of diatomic molecules, molecular orbital energy level diagrams of \(\text{N}_2 \), \(\text{O}_2 \) and \(\text{F}_2 \) molecules. \(\pi \) molecular orbitals of butadiene and benzene. Crystal Field Theory (CFT): Salient Features of CFT – Crystal Field Splitting of transition metal ion d-orbitals in Tetrahedral, Octahedral and square planar geometries. Band structure of solids and effect of doping on conductance.

UNIT - II:

UNIT - III:
UNIT - IV:

UNIT - V:
Spectroscopic techniques and applications: Principles of spectroscopy, selection rules and applications of electronic spectroscopy. vibrational and rotational spectroscopy. Basic concepts of Nuclear magnetic resonance Spectroscopy, chemical shift. Introduction to Magnetic resonance imaging.

TEXT BOOKS:
1. Physical Chemistry, by P.W. Atkins
3. Fundamentals of Molecular Spectroscopy, by C.N. Banwell
6. Engineering Chemistry (NPTEL Web-book), by B.L. Tembe, Kamaluddin and M.S. Krishnan
ME203ES: ENGINEERING MECHANICS

B.Tech. I Year II Sem.

Course Objectives: The objectives of this course are to
- Explain the resolution of a system of forces, compute their resultant and solve problems using equations of equilibrium
- Perform analysis of bodies lying on rough surfaces.
- Locate the centroid of a body and compute the area moment of inertia and mass moment of inertia of standard and composite sections
- Explain kinetics and kinematics of particles, projectiles, curvilinear motion, centroidal motion and plane motion of rigid bodies.
- Explain the concepts of work-energy method and its applications to translation, rotation and plane motion and the concept of vibrations

Course Outcomes: At the end of the course, students will be able to
- Determine resultant of forces acting on a body and analyse equilibrium of a body subjected to a system of forces.
- Solve problem of bodies subjected to friction.
- Find the location of centroid and calculate moment of inertia of a given section.
- Understand the kinetics and kinematics of a body undergoing rectilinear, curvilinear, rotatory motion and rigid body motion.
- Solve problems using work energy equations for translation, fixed axis rotation and plane motion and solve problems of vibration.

UNIT-I:

UNIT-II:
Friction: Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack; Centroid and Centre of Gravity -Centroid of Lines, Areas and Volumes from first principle, centroid of composite sections; Centre of Gravity and its implications. – Theorem of Pappus

UNIT-III:
Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Product of Inertia, Parallel Axis Theorem, Perpendicular Axis Theorem

UNIT-IV:
Review of particle dynamics- Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton’s 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique).
UNIT-V:
Kinetics of Rigid Bodies - Basic terms, general principles in dynamics; Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D’Alembert’s principle and its applications in plane motion and connected bodies; Work Energy principle and its application in plane motion of connected bodies; Kinetics of rigid body rotation

TEXT BOOKS:

REFERENCE BOOKS:
ME105ES/ME205ES: ENGINEERING WORKSHOP

B.Tech. I Year II Sem. L T P C
1 0 3 2.5

Pre-requisites: Practical skill

Course Objectives:
- To Study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

Course Outcomes: At the end of the course, the student will be able to:
- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including plumbing, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

1. TRADES FOR EXERCISES:
At least two exercises from each trade:
 I. Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
 II. Fitting – (V-Fit, Dovetail Fit & Semi-circular fit)
 III. Tin-Smithy – (Square Tin, Rectangular Tray & Conical Funnel)
 IV. Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern)
 V. Welding Practice – (Arc Welding & Gas Welding)
 VI. House-wiring – (Parallel & Series, Two-way Switch and Tube Light)
 VII. Black Smithy – (Round to Square, Fan Hook and S-Hook)

2. TRADES FOR DEMONSTRATION & EXPOSURE:
Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working

TEXT BOOKS:
1. Workshop Practice /B. L. Juneja / Cengage

REFERENCE BOOKS:
2. Workshop Manual / Venkat Reddy/ BSP
EN105HS/EN205HS: ENGLISH

B.Tech. I Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

INTRODUCTION

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire language skills, the syllabus of English has been designed to develop linguistic, communicative and critical thinking competencies of Engineering students.

In English classes, the focus should be on the skills development in the areas of vocabulary, grammar, reading and writing. For this, the teachers should use the prescribed text for detailed study. The students should be encouraged to read the texts leading to reading comprehension and different passages may be given for practice in the class. The time should be utilized for working out the exercises given after each excerpt, and also for supplementing the exercises with authentic materials of a similar kind, for example, newspaper articles, advertisements, promotional material etc. *The focus in this syllabus is on skill development, fostering ideas and practice of language skills in various contexts and cultures.*

Learning Objectives: The course will help to

- Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- Equip students to study academic subjects more effectively and critically using the theoretical and practical components of English syllabus.
- Develop study skills and communication skills in formal and informal situations.

Course Outcomes: Students should be able to

- Use English Language effectively in spoken and written forms.
- Comprehend the given texts and respond appropriately.
- Communicate confidently in various contexts and different cultures.
- Acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

UNIT –I

‘The Raman Effect’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary Building: The Concept of Word Formation --The Use of Prefixes and Suffixes.

Grammar: Identifying Common Errors in Writing with Reference to Articles and Prepositions.

Reading: Reading and Its Importance- Techniques for Effective Reading.

Basic Writing Skills: Sentence Structures -Use of Phrases and Clauses in Sentences- Importance of Proper Punctuation- Techniques for writing precisely – Paragraph writing – Types, Structures and Features of a Paragraph - Creating Coherence-Organizing Principles of Paragraphs in Documents.

UNIT –II

‘Ancient Architecture in India’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary: Synonyms and Antonyms.

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-verb Agreement.

Reading: Improving Comprehension Skills – Techniques for Good Comprehension

UNIT –III
‘Blue Jeans’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Acquaintance with Prefixes and Suffixes from Foreign Languages in English to form Derivatives-Words from Foreign Languages and their Use in English.
Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.
Reading: Sub-skills of Reading- Skimming and Scanning
Writing: Nature and Style of Sensible Writing- Defining- Describing Objects, Places and Events – Classifying- Providing Examples or Evidence

UNIT –IV
‘What Should You Be Eating’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Standard Abbreviations in English
Grammar: Redundancies and Clichés in Oral and Written Communication.
Reading: Comprehension- Intensive Reading and Extensive Reading
Writing: Writing Practices- Writing Introduction and Conclusion - Essay Writing-Précis Writing.

UNIT –V
‘How a Chinese Billionaire Built Her Fortune’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Technical Vocabulary and their usage
Grammar: Common Errors in English
Reading: Reading Comprehension-Exercises for Practice
Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing a Report.

TEXT BOOK:

REFERENCE BOOKS:
CH106BS/CH206BS: ENGINEERING CHEMISTRY LAB

B.Tech. I Year II Sem.

Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness and chloride content in water to check its suitability for drinking purpose.
- To determine the rate constant of reactions from concentrations as an function of time.
- The measurement of physical properties like adsorption and viscosity.
- To synthesize the drug molecules and check the purity of organic molecules by thin layer chromatographic (TLC) technique.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness and chloride content in water.
- Estimation of rate constant of a reaction from concentration – time relationships.
- Determination of physical properties like adsorption and viscosity.
- Calculation of Rf values of some organic molecules by TLC technique.

List of Experiments:

1. Determination of total hardness of water by complexometric method using EDTA
2. Determination of chloride content of water by Argentometry
3. Estimation of an HCl by Conductometric titrations
4. Estimation of Acetic acid by Conductometric titrations
5. Estimation of HCl by Potentiometric titrations
6. Estimation of Fe2+ by Potentiometry using KMnO4
7. Determination of rate constant of acid catalysed hydrolysis of methyl acetate
8. Synthesis of Aspirin and Paracetamol
9. Thin layer chromatography calculation of Rf values. eg ortho and para nitro phenols
10. Determination of acid value of coconut oil
11. Verification of freundlich adsorption isotherm-adsorption of acetic acid on charcoal
12. Determination of viscosity of castor oil and ground nut oil by using Ostwald’s viscometer.
13. Determination of partition coefficient of acetic acid between n-butanol and water.

REFERENCE BOOKS:

1. Senior practical physical chemistry, B.D. Khosla, A. Gulati and V. Garg (R. Chand & Co., Delhi)
2. An introduction to practical chemistry, K.K. Sharma and D. S. Sharma (Vikas publishing, N. Delhi)
The **Language Lab** focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Course Objectives:
- To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- To sensitize students to the nuances of English speech sounds, word accent, intonation and rhythm
- To bring about a consistent accent and intelligibility in students’ pronunciation of English by providing an opportunity for practice in speaking
- To improve the fluency of students in spoken English and neutralize their mother tongue influence
- To train students to use language appropriately for public speaking and interviews

Learning Outcomes: Students will be able to attain
- Better understanding of nuances of English language through audio-visual experience and group activities
- Neutralization of accent for intelligibility
- Speaking skills with clarity and confidence which in turn enhances their employability skills

Syllabus

English Language and Communication Skills Lab (ELCS) shall have two parts:
- **a. Computer Assisted Language Learning (CALL) Lab**
- **b. Interactive Communication Skills (ICS) Lab**

Listening Skills

Objectives
1. To enable students develop their listening skills so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.
- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills

Objectives
1. To involve students in speaking activities in various contexts
2. To enable students express themselves fluently and appropriately in social and professional contexts

- Oral practice: Just A Minute (JAM) Sessions
• Describing objects/situations/people
• Role play – Individual/Group activities

➢ The following course content is prescribed for the English Language and Communication Skills Lab based on Unit-6 of AICTE Model Curriculum 2018 for B.Tech First English. As the syllabus is very limited, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning and timesaving in the Lab)

Exercise – I
CALL Lab:
Understand: Listening Skill- Its importance – Purpose- Process- Types- Barriers of Listening.
Practice: Introduction to Phonetics – Speech Sounds – Vowels and Consonants.

ICS Lab:
Understand: Communication at Work Place- Spoken vs. Written language.

Exercise – II
CALL Lab:
Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms in Context.

ICS Lab:
Understand: Features of Good Conversation – Non-verbal Communication.

Exercise - III
CALL Lab:
Understand: Intonation-Errors in Pronunciation-the Influence of Mother Tongue (MTI).
Practice: Common Indian Variants in Pronunciation – Differences in British and American Pronunciation.

ICS Lab:
Understand: How to make Formal Presentations.
Practice: Formal Presentations.

Exercise – IV
CALL Lab:
Understand: Listening for General Details.
Practice: Listening Comprehension Tests.

ICS Lab:
Understand: Public Speaking – Exposure to Structured Talks.
Practice: Making a Short Speech – Extempore.

Exercise – V
CALL Lab:
Understand: Listening for Specific Details.
Practice: Listening Comprehension Tests.

ICS Lab:
Understand: Interview Skills.
Practice: Mock Interviews.
Minimum Requirement of infrastructural facilities for ELCS Lab:

1. Computer Assisted Language Learning (CALL) Lab:
The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self-study by students.

System Requirement (Hardware component):
Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

i) Computers with Suitable Configuration
ii) High Fidelity Headphones

2. Interactive Communication Skills (ICS) Lab:
The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public-Address System, a LCD and a projector etc.
Course Objectives: The object of the course student should have the capability to:

- Know the principle and methods of surveying.
- Measure horizontal and vertical distances and angles.
- Recording of observation accurately.
- Perform calculations based on the observation.
- Identification of source of errors and rectification methods.
- Apply surveying principles to determine areas and volumes and setting out curves.
- Use modern surveying equipment’s for accurate results.

Course Outcomes: Course will enable the student to:

- Apply the knowledge to calculate angles, distances and levels.
- Identify data collection methods and prepare field notes.
- Understand the working principles of survey instruments, measurement errors and corrective measures.
- Interpret survey data and compute areas and volumes, levels by different type of equipment and relate the knowledge to the modern equipment and methodologies.

UNIT - I

Measurement of Distances and Directions
Linear distances- Approximate methods, Direct Methods- Chains- Tapes, ranging, Tape corrections.
Prismatic Compass- Bearings, included angles, Local Attraction, Magnetic Declination and dip.

UNIT - II
Leveling- Types of levels and levelling staves, temporary adjustments, methods of levelling, booking and Determination of levels, Effect of Curvature of Earth and Refraction.
Contouring- Characteristics and uses of Contours, methods of contour surveying.
Areas - Determination of areas consisting of irregular boundary and regular boundary.
Volumes - Determination of volume of earth work in cutting and embankments for level section, volume of borrow pits, capacity of reservoirs.

UNIT - III
Theodolite Surveying: Types of Theodolites, Fundamental Lines, temporary adjustments, measurement of horizontal angle by repetition method and reiteration method, measurement of vertical Angle, Trigonometrical levelling when base is accessible and inaccessible.
Traversing: Methods of traversing, traverse computations and adjustments, Omitted measurements.

UNIT - IV
Curves: Types of curves and their necessity, elements of simple, compound, reverse, transition and vertical curves.
Tacheometric Surveying: Principles of Tacheometry, stadia and tangential methods of Tacheometry.
UNIT - V
Photogrammetry Surveying:
Introduction, Basic concepts, perspective geometry of aerial photograph, relief and tilt displacements, terrestrial photogrammetry, flight planning; Stereoscopy, ground control extension for photographic mapping- aerial triangulation, radial triangulation, methods; photographic mapping- mapping using paper prints, mapping using stereoplotting instruments, mosaics, map substitutes.

TEXT BOOKS:

REFERENCE BOOKS:
Course Objectives: The objective of this Course is

- To give the basics knowledge of Geology that is required for constructing various Civil Engineering Structures, basic Geology, Geological Hazardous and Environmental Geology
- To focus on the core activities of engineering geologists – site characterization and geologic hazard identification and mitigation. Planning and construction of major Civil Engineering projects

Course Outcomes: At the end of the course, the student will be able to:

- Site characterization and how to collect, analyze, and report geologic data using standards in engineering practice
- The fundamentals of the engineering properties of Earth materials and fluids.
- Rock mass characterization and the mechanics of planar rock slides and topples

UNIT - I
Introduction: Importance of geology from Civil Engineering point of view. Brief study of case histories of failure of some Civil Engineering constructions due to geological draw backs. Importance of Physical geology, Petrology and Structural geology.

Weathering of Rocks: Its effect over the properties of rocks importance of weathering with reference to dams, reservoirs and tunnels weathering of common rock like “Granite”

UNIT - II
Mineralogy: Definition of mineral, Importance of study of minerals, Different methods of study of minerals. Advantages of study of minerals by physical properties. Role of study of physical properties of minerals in the identification of minerals. Study of physical properties of following common rock forming minerals: Feldspar, Quartz, Flint, Jasper, Olivine, Augite, Hornblende, Muscovite, Biotite, Asbestos, Chlorite, Kyanite, Garnet, Talc, Calcite. Study of other common economics minerals such as Pyrite, Hematite, Magnetite, Chrome, Galena, Pyrolusite, Graphite, Magnesite, and Bauxite.

UNIT - III
Structural Geology: Out crop, strike and dip study of common geological structures associating with the rocks such as folds, faults unconformities, and joints - their important types and case studies. Their importance In situ and drift soils, common types of soils, their origin and occurrence in India, Stabilisation of soils. Ground water, Water table, common types of ground water, springs, cone of depression, geological controls of ground water movement, ground water exploration.

UNIT - IV
Earth Quakes: Causes and effects, shield areas and seismic belts. Seismic waves, Richter scale, precautions to be taken for building construction in seismic areas. Landslides, their causes and effect; measures to be taken to prevent their occurrence.

UNIT - V
Geology of Dams, Reservoirs, and Tunnels: Types of dams and bearing of Geology of site in their selection, Geological Considerations in the selection of a dam site. Analysis of dam failures of the past. Factors contributing to the success of a reservoir. Geological factors influencing water Lightness and life of reservoirs - Purposes of tunneling. Effects of Tunneling on the ground Role of Geological Considerations (i.e. Tithological, structural and ground water) in tunneling over break and lining in tunnels.

TEXT BOOKS:
1. Engineering Geology by N. Chennakesavulu, McMillan, India Ltd. 2005

REFERENCE BOOKS:
4. Engineering Geology for Civil Engineers – P.C. Varghese PHI
CE303PC: STRENGTH OF MATERIALS – I

B.Tech. II Year I Sem.

Pre-Requisites: Engineer Mechanics

Course Objectives: The objective of this Course is

- To understand the nature of stresses developed in simple geometries such as bars, cantilevers and beams for various types of simple loads
- To calculate the elastic deformation occurring in simple members for different types of loading.
- To show the plane stress transformation with a particular coordinate system for different orientation of the plane.
- To know different failure theories adopted in designing of structural members

Course Outcome: On completion of the course, the student will be able to:

- Describe the concepts and principles, understand the theory of elasticity including strain/displacement and Hooke’s law relationships; and perform calculations, related to the strength of structured and mechanical components.
- Recognize various types loads applied on structural components of simple framing geometries and understand the nature of internal stresses that will develop within the components.
- To evaluate the strains and deformation that will result due to the elastic stresses developed within the materials for simple types of loading
- Analyze various situations involving structural members subjected to plane stresses by application of Mohr’s circle of stress;
- Frame an idea to design a system, component, or process

UNIT – I
SIMPLE STRESSES AND STRAINS:

UNIT – II
SHEAR FORCE AND BENDING MOMENT:
Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported including overhanging beams subjected to point loads, uniformly distributed load, uniformly varying load, couple and combination of these loads – Point of contraflexure – Relation between S.F., B.M and rate of loading at a section of a beam.

UNIT – III
FLEXURAL STRESSES:
Theory of simple bending – Assumptions – Derivation of bending equation- Section Modulus Determination of flexural/bending stresses of rectangular and circular sections (Solid and Hollow), I,T, Angle and Channel sections – Design of simple beam sections.

SHEAR STRESSES:
Derivation of formula for shear stress distribution – Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T angle and channel sections.
UNIT – IV
DEFLECTION OF BEAMS:
Slope, deflection and radius of curvature – Differential equation for the elastic line of a beam – Double integration and Macaulay’s methods – Determination of slope and deflection for cantilever and simply supported beams subjected to point loads, U.D.L, Uniformly varying load and couple -Mohr’s theorems – Moment area method – Application to simple cases.

CONJUGATE BEAM METHOD: Introduction – Concept of conjugate beam method - Difference between a real beam and a conjugate beam - Deflections of determinate beams with constant and different moments of inertia.

UNIT – V
PRINCIPAL STRESSES:
Introduction – Stresses on an oblique plane of a bar under axial loading – compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses accompanied by a state of simple shear –Principal stresses – Mohr’s circle of stresses – ellipse of stress - Analytical and graphical solutions.

TEXT BOOKS:
2. Mechanics of Materials by Dr. B.C Punmia, Dr. Ashok Kumar Jain and Dr. Arun Kumar Jain

REFERENCE BOOKS:
1. Mechanics of material by R.C. Hibbeler, Prentice Hall publications
MA304BS: PROBABILITY AND STATISTICS

B.Tech. II Year I Sem.

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To learn

- The ideas of probability and random variables and various discrete and continuous probability distributions and their properties.
- The basic ideas of statistics including measures of central tendency, correlation and regression.
- The statistical methods of studying data samples.

Course outcomes: After learning the contents of this paper the student must be able to

- Formulate and solve problems involving random variables and apply statistical methods for analysing experimental data.

UNIT - I: Basic Probability
Probability spaces, conditional probability, independent events, and Bayes’ theorem.
Random variables: Discrete and continuous random variables, Expectation of Random Variables, Moments, Variance of random variables, Chebyshev’s Inequality

UNIT - II: Discrete Probability distributions
Binomial, Poisson, evaluation of statistical parameters for these distributions, Poisson approximation to the binomial distribution

UNIT - III: Continuous Random variable & Distributions
Continuous random variables and their properties, distribution functions and densities, Normal, exponential and gamma distributions, evaluation of statistical parameters for these distributions

UNIT - IV: Applied Statistics
Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves; Correlation and regression – Rank correlation.

UNIT - V: Testing of Hypothesis
Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means; Test for single mean, difference of means for small samples, test for ratio of variances for small samples.

TEXT BOOKS:

REFERENCES:
CE305PC: FLUID MECHANICS

B.Tech. II Year I Sem. L T/P/D C
3 1/0/0 4

Course Objectives: The objectives of the course are to

- Introduce the concepts of fluid mechanics useful in Civil Engineering applications
- Provide a first level exposure to the students to fluid statics, kinematics and dynamics.
- Learn about the application of mass, energy and momentum conservation laws for fluid flows
- Train and analyse engineering problems involving fluids with a mechanistic perspective is essential for the civil engineering students
- To obtain the velocity and pressure variations in various types of simple flows
- To prepare a student to build a good fundamental background useful in the application-intensive courses covering hydraulics, hydraulic machinery and hydrology

Course Outcomes: Upon completion of this course, students should be able to:

- Understand the broad principles of fluid statics, kinematics and dynamics
- Understand definitions of the basic terms used in fluid mechanics and characteristics of fluids and its flow
- Understand classifications of fluid flow
- Be able to apply the continuity, momentum and energy principles

UNIT – I
Properties of Fluid
Distinction between a fluid and a solid; Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; variation of viscosity with temperature, Newton law of viscosity; vapour pressure, boiling point, cavitation; surface tension, capillarity, Bulk modulus of elasticity, compressibility.

Fluid Statics

UNIT - II
Fluid Kinematics
Classification of fluid flow: steady and unsteady flow; uniform and non-uniform flow; laminar and turbulent flow; rotational and irrotational flow; compressible and incompressible flow; ideal and real fluid flow; one, two- and three-dimensional flows; Stream line, path line, streak line and stream tube; stream function, velocity potential function. One, two- and three-dimensional continuity equations in Cartesian coordinates.

Fluid Dynamics
Surface and Body forces -Euler’s and Bernoulli’s equation; Energy correction factor; Momentum equation. Vortex flow – Free and Forced. Bernolli’s equation to real fluid flows.

UNIT - III
Flow Measurement in Pipes
Practical applications of Bernoulli’s equation: venturimeter, orifice meter and pitot tube; Momentum principle; Forces exerted by fluid flow on pipe bend.

Flow Over Notches & Weirs
Flow through rectangular, triangular and trapezoidal notches and weirs; End contractions; Velocity of approach. Broad crested weir.
UNIT – IV
Flow through Pipes
Reynolds experiment, Reynolds number, Loss of head through pipes, Darcy-Wiesbatch equation, minor losses, total energy line, hydraulic grade line, Pipes in series, equivalent pipes, pipes in parallel, siphon, branching of pipes, three reservoir problem, power transmission through pipes. Analysis of pipe networks: Hardy Cross method, water hammer in pipes and control measures.

UNIT - V
Laminar & Turbulent Flow
Laminar flow through: circular pipes, annulus and parallel plates.
Boundary Layer Concepts
Boundary Layer Analysis-Assumption and concept of boundary layer theory. Boundary-layer thickness, displacement, momentum & energy thickness, laminar and Turbulent boundary layers on a flat plate; Laminar sub-layer, smooth and rough boundaries. Local and average friction coefficients. Separation and Control. Definition of Drag and Lift and types drag, magnus effect.

TEXT BOOKS:
3. Fluid Mechanics by R.C. Hibbeler, Pearson India Education Services Pvt. Ltd

REFERENCE BOOKS:
4. Fluid mechanics & Hydraulic Machines, Domkundwar & Domkundwar Dhanpat Rai &Co
CE306PC: SURVEYING LAB

B.Tech. II Year I Sem. L T/P/D C
0 0/3/0 1.5

Pre-Requisites: Surveying Theory

Course Objectives:
- To impart the practical knowledge in the field- measuring distances, directions, angles,
- To determining R.L.’s areas and volumes
- To set out Curves
- To stake out points
- To traverse the area
- To draw Plans and Maps

Course Outcomes: At the end of the course, the student will be able to:
- Apply the principle of surveying for civil Engineering Applications
- Calculation of areas, Drawing plans and contour maps using different measuring equipment at field level
- Write a technical laboratory report

List of Experiments
1. Surveying of an area by chain, and compass survey (closed traverse) & plotting.
2. Determine of distance between two inaccessible points with compass
3. Radiation method, intersection methods by plane table survey.
4. Levelling – Longitudinal and cross-section and plotting
5. Measurement of Horizontal and vertical angle by theodolite
6. Trigonometric leveling using theodolite
7. Height and distances using principles of tachometric surveying
8. Determination of height, remote elevation, distance between inaccessible points using total station
9. Determination of Area using total station and drawing map
10. Traversing using total station for drawing contour map
11. Stake out using total station
12. Setting out Curve using total station
CE307PC: STRENGTH OF MATERIALS LAB

B.Tech. II Year I Sem.

Course Objectives:
- Make measurements of different strains, stress and elastic properties of materials used in Civil Engineering.
- Provide physical observations to complement concepts learnt.
- Introduce experimental procedures and common measurement instruments, equipment, devices.
- Exposure to a variety of established material testing procedures and techniques.
- Different methods of evaluation and inferences drawn from observations.

Course Outcomes: At the end of the course the student will be able to:
- Configure & Operate a data acquisition system using various testing machines of solid materials.
- Compute and Analyze engineering values (e.g. stress or strain) from laboratory measurements.
- Write a technical laboratory report.

List of Experiments:
1. Tension test
2. Bending test on (Steel / Wood) Cantilever beam.
3. Bending test on simple support beam.
4. Torsion test
5. Hardness test
6. Spring test
7. Compression test on wood or concrete
8. Impact test
9. Shear test
10. Verification of Maxwell’s Reciprocal theorem on beams.
11. Use of electrical resistance strain gauges.
CE308PC: ENGINEERING GEOLOGY LAB

B.Tech. II Year I Sem. L T/P/D C
0 0/2/0 1

Pre-Requisites: Engineering Geology Theory

Course Objectives: The objective of this lab is that to provide practical knowledge about physical properties of minerals, rocks, drawing of geological maps, showing faults, uniformities etc.

Course Outcomes: At the end of the course, the student will be able to:
- Understands the method and ways of investigations required for Civil Engg projects
- Identify the various rocks, minerals depending on geological classifications
- Will able to learn to couple geologic expertise with the engineering properties of rock and unconsolidated materials in the characterization of geologic sites for civil work projects and the quantification of processes such as rock slides and settlement.
- Write a technical laboratory report

List of Experiments
1. Study of physical properties of minerals.
2. Study of different group of minerals.
3. Study of Crystal and Crystal system.
4. Identification of minerals: Silica group: Quartz, Amethyst, Opal; Feldspar group: Orthoclase, Plagioclase; Cryptocrystalline group: Jasper; Carbonate group: Calcite; Element group: Graphite; Pyroxene group: Talc; Mica group: Muscovite; Amphibole group: Asbestos, Olivine, Hornblende, Magnetite, Hematite, Corundum, Kyanite, Garnet, Galena, Gypsum.
9. Simple structural Geology Problems (Folds, Faults & Unconformities)

LAB EXAMINATION PATTERN:
1. Description and identification of SIX minerals
2. Description and identification of Six (including igneous, sedimentary and metamorphic rocks)
3. Interpretation of a Geological map along with a geological section.
4. Simple strike and Dip problems.
5. Microscopic identification of rocks.
The Constitution of India is the supreme law of India. Parliament of India cannot make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the “basic structure” of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of “Constitutionalism” – a modern and progressive concept historically developed by the thinkers of “liberalism” – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of “constitutionalism” in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India’s legacy of “diversity”. It has been said that Indian constitution reflects ideals of its freedom movement; however, few critics have argued that it does not truly incorporate our own ancient legal heritage and cultural values. No law can be “static” and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution but also strengthened the same through progressive interpretations of the text of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it “as one of the strongest court in the world”.

Course content
1. Meaning of the constitution law and constitutionalism
2. Historical perspective of the Constitution of India
3. Salient features and characteristics of the Constitution of India
4. Scheme of the fundamental rights
5. The scheme of the Fundamental Duties and its legal status
6. The Directive Principles of State Policy – Its importance and implementation
7. Federal structure and distribution of legislative and financial powers between the Union and the States
8. Parliamentary Form of Government in India – The constitution powers and status of the President of India
9. Amendment of the Constitutional Powers and Procedure
10. The historical perspectives of the constitutional amendments in India
12. Local Self Government – Constitutional Scheme in India
13. Scheme of the Fundamental Right to Equality
14. Scheme of the Fundamental Right to certain Freedom under Article 19
15. Scope of the Right to Life and Personal Liberty under Article 21
EE401ES: BASIC ELECTRICAL & ELECTRONICS ENGINEERING

B.Tech. II Year II Sem.

Course Objectives:
- To introduce the concepts of electrical circuits and its components
- To understand magnetic circuits, DC circuits and AC single phase & three phase circuits
- To study and understand the different types of DC/AC machines and Transformers.
- To import the knowledge of various electrical installations.
- To introduce the concept of power, power factor and its improvement.
- To introduce the concepts of diodes & transistors, and
- To impart the knowledge of various configurations, characteristics and applications.

Course Outcomes:
- To analyze and solve electrical circuits using network laws and theorems.
- To understand and analyze basic Electric and Magnetic circuits
- To study the working principles of Electrical Machines
- To introduce components of Low Voltage Electrical Installations
- To identify and characterize diodes and various types of transistors.

UNIT - I:
D.C. CIRCUITS
Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation.

A.C. CIRCUITS
Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits , Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT - II:
ELECTRICAL INSTALLATIONS
Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

UNIT - III:
ELECTRICAL MACHINES

UNIT - IV:
P-N JUNCTION AND ZENER DIODE: Principle of Operation Diode equation, Volt-Ampere characteristics, Temperature dependence, Ideal versus practical, Static and dynamic resistances, Equivalent circuit, Zener diode characteristics and applications.
RECTIFIERS AND FILTERS: P-N junction as a rectifier - Half Wave Rectifier, Ripple Factor - Full Wave Rectifier, Bridge Rectifier, Harmonic components in Rectifier Circuits, Filters – Inductor Filters, Capacitor Filters, L- section Filters, π- section Filters.
UNIT - V:

FIELD EFFECT TRANSISTOR (FET): Construction, Principle of Operation, Comparison of BJT and FET, Biasing FET.

TEXT BOOKS:
1. Basic Electrical and electronics Engineering – M S Sukija TK Nagasarkar Oxford University

REFERENCE BOOKS:
6. Network Theory by Sudhakar, Shyam Mohan Palli, TMH.
CE402ES: BASIC MECHANICAL ENGINEERING FOR CIVIL ENGINEERS

B.Tech. II Year II Sem.

Course Objectives: To familiarize civil engineering students with the
- Basic machine elements,
- Sources of Energy and Power Generation,
- Various manufacturing processes,
- Power transmission elements, material handling equipment.

Course Outcome: At the end of the course Student will able
- To understand the mechanical equipment for the usage at civil engineering systems,
- To familiarize with the general principles and requirement for refrigeration, manufacturing,
- To realize the techniques employed to construct civil engineering systems.

UNIT - I:
Machine Elements: Cams: Types of cams and followers
Introduction to engineering materials - Metals, ceramics, composites - Heat treatment of metals

UNIT - II:
Material Handling equipment: Introduction to Belt conveyors, cranes, industrial trucks, bull dozers

UNIT - III:
Refrigeration: Mechanical Refrigeration and types – units of refrigeration – Air Refrigeration system, details and principle of operation – calculation of COP
Modes and mechanisms of heat transfer – Basic laws of heat transfer – General discussion about applications of heat transfer.

UNIT - IV:
Casting: Types, equipments, applications

UNIT - V:
Machine Tools: Introduction to lathe, drilling machine, milling machine, grinding machine-Operations performed

TEXT BOOK:
REFERENCE BOOKS:

CE403PC: BUILDING MATERIALS, CONSTRUCTION AND PLANNING

B.Tech. II Year II Sem.

Course Objectives: The objectives of the course is to
- List the construction material.
- Explain different construction techniques
- Understand the building bye-laws
- Highlight the smart building materials

Course Outcomes: After the completion of the course student should be able to
- Define the Basic terminology that is used in the industry
- Categorize different building materials, properties and their uses
- Understand the Prevention of damage measures and good workmanship
- Explain different building services

UNIT - I
Stones and Bricks, Tiles: Building stones – classifications and quarrying – properties – structural requirements – dressing.
Brick – Composition of Brick earth – manufacture and structural requirements, Fly ash, Ceramics.

UNIT - II
Admixtures – mineral & chemical admixtures – uses.

UNIT - III

UNIT - IV
Mortars, Masonry and Finishing’s Mortars: Lime and Cement Mortars Brick masonry – types – bonds; Stone masonry – types; Composite masonry – Brick-stone composite; Concrete, Reinforced brick.
Finishers: Plastering, Pointing, Painting, Claddings – Types – Tiles – ACP.
Form work: Types: Requirements – Standards – Scaffolding – Design; Shoring, Underpinning.

UNIT – V
Building Planning: Principles of Building Planning, Classification of buildings and Building by laws.

TEXT BOOKS:
REFERENCE BOOKS:
2. Building Materials by P. C. Varghese, PHI.
3. Building Construction by PC Varghese PHI.
5. Alternate Building Materials and Technology, Jagadish, Venkatarama Reddy and others; New Age Publications.
CE404PC: STRENGTH OF MATERIALS – II

B.Tech. II Year II Sem.

Pre-Requisites: Strength of Materials - I

Course Objectives: The objective of this Course is

- To understand the nature of stresses developed in simple geometries shafts, springs, columns & cylindrical and spherical shells for various types of simple loads
- To calculate the stability and elastic deformation occurring in various simple geometries for different types of loading.
- To understand the unsymmetrical bending and shear center importance for equilibrium conditions in a structural member of having different axis of symmetry.

Course Outcome: On completion of the course, the student will be able to:

- Describe the concepts and principles, understand the theory of elasticity, and perform calculations, relative to the strength of structures and mechanical components in particular to torsion and direct compression;
- To evaluate the strains and deformation that will result due to the elastic stresses developed within the materials for simple types of loading
- Analyze strength and stability of structural members subjected to Direct, and Direct and Bending stresses;
- Understand and evaluate the shear center and unsymmetrical bending.
- Frame an idea to design a system, component, or process

UNIT – I

SPRINGS: Introduction – Types of springs – deflection of close and open coiled helical springs under axial pull and axial couple – springs in series and parallel.

UNIT – II

BEAM COLUMNS: Laterally loaded struts – subjected to uniformly distributed and concentrated loads.

UNIT - III

DIRECT AND BENDING STRESSES: Stresses under the combined action of direct loading and bending moment, core of a section – determination of stresses in the case of retaining walls, chimneys and dams – conditions for stability-Overtuming and sliding – stresses due to direct loading and bending moment about both axis.

UNIT – IV

UNIT – V
UNS YMMETRICAL BENDING:
Introduction – Centroidal principal axes of section –Moments of inertia referred to any set of rectangular axes – Stresses in beams subjected to unsymmetrical bending – Principal axes – Resolution of bending moment into two rectangular axes through the centroid – Location of neutral axis.

SHEAR CENTRE: Introduction - Shear centre for symmetrical and unsymmetrical (channel, I, T and L) sections

TEXT BOOKS:
2. Mechanics of Materials by Dr. B. C Punmia, Dr. Ashok Kumar Jain and Dr. Arun Kumar Jain

REFERENCE BOOKS:
1. Mechanics of Materials by R.C. Hibbeler, Pearson Education
CE405PC: HYDRAULICS AND HYDRAULIC MACHINERY

B.Tech. II Year II Sem. L T/P/D C
3 0/0/0 3

Course Objectives: The objective of the course is
- To Define the fundamental principles of water conveyance in open channels.
- To Discuss and analyze the open channels in uniform and Non-uniform flow conditions.
- To Study the characteristics of hydroelectric power plant and its components.
- To analyze and design of hydraulic machinery and its modeling

Course Outcomes: At the end of the course the student will able to
- Apply their knowledge of fluid mechanics in addressing problems in open channels and hydraulic machinery.
- Understand and solve problems in uniform, gradually and rapidly varied flows in open channel in steady state conditions.
- Apply dimensional analysis and to differentiate the model, prototype and similitude conditions for practical problems.
- Get the knowledge on different hydraulic machinery devices and its principles that will be utilized in hydropower development and for other practical usages

UNIT - I
Open Channel Flow – I: Introduction to Open channel flow-Comparison between open channel flow and pipe flow, Classification of open channels, Classification of open channel flows, Velocity distribution. Uniform flow – Characteristics of uniform flow, Chezy’s, Manning’s and Bazin formulae for uniform flow – Factors affecting Manning’s Roughness Coefficient “n”. Most economical sections. Computation of Uniform flow, Normal depth.

UNIT - II
Open Channel Flow – II: Non-uniform flow – Gradually Varied Flow; Dynamic equation for G.V.F; Classification of channel bottom slopes – Classification and characteristics of Surface profiles – Computation of water surface profiles by Numerical and Analytical approaches. Direct step method.
Rapidly varied flow: Elements and characteristics (Length and Height) of Hydraulic jump in rectangular channel– Types, applications and location of hydraulic jump, Energy dissipation and other uses – Positive and Negative Surges (Theory only).

UNIT - III
Dimensional Analysis and Hydraulic Similitude: Dimensional homogeneity – Rayleigh’s method and Buckingham’s pi methods – Dimensionless groups. Similitude, Model studies, Types of models. Application of dimensional analysis and model studies to fluid flow problems. Distorted models. Basics of Turbo Machinery: Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes, Jet striking centrally and at tip, Velocity triangles at inlet and outlet, expressions for work done and efficiency – Angular

UNIT - IV

UNIT - V

TEXT BOOKS:
3. Fluid mechanics & Hydraulic Machines, Domkundwar & Domkundwar Dhanpat Rai &Co

REFERENCE BOOKS:
1. Fluid Mechanics by R. C. Hibbeler, Pearson India Education Services Pvt. Ltd
2. Fluid Mechanic & Fluid Power Engineering by D. S. Kumar (Kataria & Sons Publications Pvt. Ltd.).
5. Hydraulic Machines by Banga & Sharma (Khanna Publishers).
CE406PC: STRUCTURAL ANALYSIS – I

B.Tech. II Year II Sem. L T/P/D C
3 0/0/0 3

Pre-Requisites: Strength of Materials – I

Course Objectives: The objective of the course is to
- Differentiate the statically determinate and indeterminate structures.
- To understand the nature of stresses developed in perfect frames and three hinged arches for various types of simple loads
- Analyse the statically indeterminate members such as fixed bars, continuous beams and for various types of loading.
- Understand the energy methods used to derive the equations to solve engineering problems
- Evaluate the Influence on a beam for different static & moving loading positions

Course Outcomes: At the end of the course the student will able to
- An ability to apply knowledge of mathematics, science, and engineering
- Analyse the statically indeterminate bars and continuous beams
- Draw strength behaviour of members for static and dynamic loading.
- Calculate the stiffness parameters in beams and pin jointed trusses.
- Understand the indeterminacy aspects to consider for a total structural system.
- Identify, formulate, and solve engineering problems with real time loading

UNIT – I
ANALYSIS OF PERFECT FRAMES: Types of frames - Perfect, Imperfect and Redundant pin jointed plane frames - Analysis of determinate pin jointed plane frames using method of joints, method of sections and tension coefficient method for vertical loads, horizontal loads and inclined loads.

UNIT – II
ENERGY THEOREMS: Introduction-Strain energy in linear elastic system, expression of strain energy due to axial load, bending moment and shear forces - Castigliano’s theorem-Unit Load Method - Deflections of simple beams and pin- jointed plane frames - Deflections of statically determinate bent frames.

THREE HINGED ARCHES – Introduction – Types of Arches – Comparison between Three hinged and Two hinged Arches - Linear Arch - Eddy’s theorem - Analysis of Three hinged arches - Normal Thrust and radial shear and bending moment - Geometrical properties of parabolic and circular arches - Three hinged parabolic circular arches having supports at different levels.

UNIT - III
PROPPED CANTILEVER and FIXED BEAMS: Determination of static and kinematic indeterminacies for beams- Analysis of Propped cantilever and fixed beams, including the beams with different moments of inertia - subjected to uniformly distributed load - point loads - uniformly varying load, couple and combination of loads - Shear force, Bending moment diagrams and elastic curve for Propped Cantilever and Fixed Beams - Deflection of Propped cantilever and fixed beams - effect of sinking of support, effect of rotation of a support.

UNIT – IV
CONTINUOUS BEAMS: Introduction-Continuous beams - Clapeyron’s theorem of three moments- Analysis of continuous beams with constant and variable moments of inertia with one or both ends fixed-continuous beams with overhang - effect of sinking of supports.
SLOPE DEFLECTION METHOD: Derivation of slope-deflection equation, application to continuous beams with and without sinking of supports - Determination of static and kinematic indeterminacies for frames - Analysis of Single Bay, Single storey Portal Frames by Slope Deflection Method including Side Sway - Shear force and bending moment diagrams and Elastic curve.

UNIT – V
MOVING LOADS and INFLUENCE LINES: Introduction maximum SF and BM at a given section and absolute maximum shear force and bending moment due to single concentrated load ,uniformly distributed load longer than the span, uniformly distributed load shorter than the span, two point loads with fixed distance between them and several point loads-Equivalent uniformly distributed load-Focal length - Definition of influence line for shear force and bending moment - load position for maximum shear force and maximum bending Moment at a section - Point loads, uniformly distributed load longer than the span, uniformly distributed load shorter than the span- Influence lines for forces in members of Pratt and Warren trusses - Equivalent uniformly distributed load -Focal length.

TEXT BOOKS:

REFERENCE BOOKS:
1. Structural Analysis by R. C. Hibbeler, Pearson Education
CE407PC: COMPUTER AIDED CIVIL ENGINEERING DRAWING

B.Tech. II Year II Sem.
L T/P/D C
0 0/3/0 1.5

Course Outcomes: At the end of the course, the student will be able to:
- Use the Autocad commands for drawing 2D & 3D building drawings required for different civil engg applications.
- Plan and draw Civil Engineering Buildings as per aspect and orientation.
- Presenting drawings as per user requirements and preparation of technical report

Course Objectives: The objective of this lab is to teach the student usage of Auto cad and basic drawing fundamentals in various civil engineering applications, specially in building drawing.

List of Experiments:
1. Introduction to computer aided drafting and different coordinate system
2. Drawing of Regular shapes using Editor mode
3. Introduction GUI and drawing of regular shapes using GUI
4. Exercise on Draw tools
5. Exercise on Modify tools
6. Exercise on other tools (Layers, dimensions, texting etc.)
7. Drawing of building components like walls, lintels, Doors, and Windows. using CAD software
8. Drawing a plan of Building and dimensioning
9. Drawing a plan of a residential building using layers
10. Developing a 3-D plan from a given 2-D plan
11. Developing sections and elevations for given
 a) Single storied buildings b) multi storied buildings
12. Auto CAD applications in surveying, mechanics etc.

TEXT BOOKS:
EE409ES: BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB

B.Tech. II Year II Sem.

Pre-requisites: Basic Electrical and Electronics Engineering

Course Objectives:
- To introduce the concepts of electrical circuits and its components
- To understand magnetic circuits, DC circuits and AC single phase & three phase circuits
- To study and understand the different types of DC/AC machines and Transformers.
- To impart the knowledge of various electrical installations.
- To introduce the concept of power, power factor and its improvement.
- To introduce the concepts of diodes & transistors, and
- To impart the knowledge of various configurations, characteristics and applications.

Course Outcomes:
- To analyze and solve electrical circuits using network laws and theorems.
- To understand and analyze basic Electric and Magnetic circuits
- To study the working principles of Electrical Machines
- To introduce components of Low Voltage Electrical Installations
- To identify and characterize diodes and various types of transistors.

List of experiments/demonstrations:

PART A: ELECTRICAL
1. Verification of KVL and KCL
2. (i) Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer
 (ii) Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star) in a Three Phase Transformer
4. Performance Characteristics of a Separately Excited DC Shunt Motor
5. Performance Characteristics of a Three-phase Induction Motor
6. No-Load Characteristics of a Three-phase Alternator

PART B: ELECTRONICS
1. Study and operation of
 (i) Multi-meters (ii) Function Generator (iii) Regulated Power Supplies (iv) CRO.
2. PN Junction diode characteristics
3. Zener diode characteristics and Zener as voltage Regulator
4. Input & Output characteristics of Transistor in CB / CE configuration
5. Full Wave Rectifier with & without filters
6. Input and Output characteristics of FET in CS configuration

TEXT BOOKS:
1. Basic Electrical and electronics Engineering – M S Sukija TK Nagasarkar Oxford University

REFERENCE BOOKS:
6. Network Theory by Sudhakar, Shyam Mohan Palli, TMH.
CE409PC: HYDRAULICS & HYDRAULIC MACHINERY LAB

B.Tech. II Year II Sem. L T/P/D C
0 0/3/0 1.5

Course Objectives
- To **identify** the behavior of analytical models introduced in lecture to the actual behavior of real fluid flows.
- To **explain** the standard measurement techniques of fluid mechanics and their applications.
- To **illustrate** the students with the components and working principles of the Hydraulic machines- different types of Turbines, Pumps, and other miscellaneous hydraulics machines.
- To **analyze** the laboratory measurements and to document the results in an appropriate format.

Course Outcomes: Students who successfully complete this course will have demonstrated ability to:
- **Describe** the basic measurement techniques of fluid mechanics and its appropriate application.
- **Interpret** the results obtained in the laboratory for various experiments.
- **Discover** the practical working of Hydraulic machines- different types of Turbines, Pumps, and other miscellaneous hydraulics machines.
- **Compare** the results of analytical models introduced in lecture to the actual behavior of real fluid flows and draw correct and sustainable conclusions.
- Write a technical laboratory report

List of Experiments
1. Verification of Bernoulli’s equation
2. Determination of Coefficient of discharge for a small orifice by a constant head method
3. Calibration of Venturimeter / Orifice Meter
4. Calibration of Triangular / Rectangular/Trapezoidal Notch
5. Determination of Minor losses in pipe flow
6. Determination of Friction factor of a pipe line
7. Determination of Energy loss in Hydraulic jump
8. Determination of Manning’s and Chezy’s constants for Open channel flow.
9. Impact of jet on vanes
10. Performance Characteristics of Pelton wheel turbine
11. Performance Characteristics of Francis turbine
12. Performance characteristics of Keplan Turbine
13. Performance Characteristics of a single stage / multi stage Centrifugal Pump
*MC409/*MC309: GENDER SENSITIZATION LAB
(An Activity-based Course)

B.Tech. II Year II Sem. L T/P/D C
0 0/2/0 0

COURSE DESCRIPTION
This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course:
- To develop students’ sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes:
- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT - I: UNDERSTANDING GENDER
UNIT – II: GENDER ROLES AND RELATIONS
Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles-
Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences-
Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

UNIT – III: GENDER AND LABOUR
Division and Valuation of Labour-Housework: The Invisible Labor- “My Mother doesn't Work.” “Share
the Load.”-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work. -
Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human
Rights-Gender and Mainstreaming

UNIT – IV: GENDER - BASED VIOLENCE
The Concept of Violence- Types of Gender-based Violence-Gender-based Violence from a Human
Rights Perspective-Sexual Harassment: Say No! -Sexual Harassment, not Eve-teasing- Coping with
Everyday Harassment- Further Reading: “Chupulu”.
Thinking about Sexual Violence Blaming the Victim-“I Fought for my Life”

UNIT – V: GENDER AND CULTURE
Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular
Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and
Popular Literature - Just Relationships: Being Together as Equals
Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks-
The Brave Heart.

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of
English Literature or Sociology or Political Science or any other qualified faculty who has
expertise in this field from engineering departments.

- Classes will consist of a combination of activities: dialogue-based lectures, discussions,
collaborative learning activities, group work and in-class assignments. Apart from the
above prescribed book, Teachers can make use of any authentic materials related to the
topics given in the syllabus on “Gender”.

☞ ESSENTIAL READING: The Textbook, “Towards a World of Equals: A Bilingual Textbook on
Gender” written by A.Suneetha, Uma Bhrugubanda, DuggiralaVasanta, Rama Melkote,
Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu

ASSESSMENT AND GRADING:
- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%
CE501PC: STRUCTURAL ANALYSIS – II

B.Tech. III Year I Sem.

Course Objectives: The objectives of the course are to
- Identify the various actions in arches.
- Understand classical methods of analysis for statically indeterminate structures.
- Differentiate the approximate and numerical methods of analysis for indeterminate structures.
- Find the degree of static and kinematic indeterminacies of the structures.
- Plot the variation of S.F and B.M when a moving load passes on indeterminate structure

Course Outcomes: After the completion of the course student should be able to
- Analyze the two hinged arches.
- Solve statically indeterminate beams and portal frames using classical methods
- Sketch the shear force and bending moment diagrams for indeterminate structures.
- Formulate the stiffness matrix and analyze the beams by matrix methods

 UNIT – I
Two Hinged Arches: Introduction – Classification of Two hinged Arches – Analysis of two hinged parabolic arches – Secondary stresses in two hinged arches due to temperature and elastic shortening of rib.

UNIT – II
cables and suspension bridges:
Equilibrium of a Suspension Cable subjected to concentrated loads and uniformly distributed loads - Length of a cable - Cable with different support levels - Suspension cable supports - Suspension Bridges - Analysis of Three Hinged Stiffening Girder Suspension Bridges.

UNIT – III

UNIT – IV

UNIT- V
Influence Lines For Indeterminate Beams: Introduction – influence line diagram for shear force and bending moment for two span continuous beam with constant and different moments of inertia - influence line diagram for shear force and bending moment for propped cantilever beams.
TEXT BOOKS:

REFERENCE BOOKS:
5. Structural Analysis by R. C. Hibbeler, Pearson Education
CE505PC: GEOTECHNICAL ENGINEERING

B.Tech. III Year I Sem. L T/P/D C
3 0/0/0 3

Course Objectives: the objectives of the course are to
- understand the formation of soil and classification of the soils
- determine the Index & Engineering Properties of Soils
- determine the flow characteristics & stresses due to externally applied loads
- estimate the consolidation properties of soils
- estimate the shear strength and seepage loss

Course Outcomes: At the end of the course the student will able to
- Characterize and classify the soils
- Able to estimate seepage, stresses under various loading conditions and compaction characteristics
- Able to analyse the compressibility of the soils
- Able to understand the strength of soils under various drainage conditions

UNIT – I
Index Properties of Soils: Grain size analysis – consistency limits and indices – I.S. Classification of soils.

UNIT – II

UNIT – III
Stress Distribution in Soils: Boussinesq’s and Westergaard’s theories for point load, uniformly loaded circular and rectangular areas, pressure bulb, variation of vertical stress under point load along the vertical and horizontal plane, and Newmark’s influence chart for irregular areas.

UNIT – IV
Consolidation: Types of compressibility – Immediate Settlement, primary consolidation and secondary consolidation - stress history of clay; e-p and e-log(p) curves – normally consolidated soil, over consolidated soil and under consolidated soil - preconsolidation pressure and its determination - Terzaghi’s 1-D consolidation theory – coefficient of consolidation: square root time and logarithm of time fitting methods - computation of total settlement and time rate of settlement.

UNIT - V
Shear Strength of Soils: Importance of shear strength – Mohr’s– Coulomb Failure theories – Types of laboratory tests for strength parameters – strength tests based on drainage conditions – strength envelops – Shear strength of sands - dilatancy – critical void ratio, Introduction to stress path method.
TEXT BOOKS:
1. Basic and Applied Soil Mechanics by Gopal Ranjan & ASR Rao, New age International Pvt Ltd,
3. Foundation Engineering by P.C. Varghese, PHI

REFERENCE BOOKS:
CE503PC: STRUCTURAL ENGINEERING – I (RCC)

B.Tech. III Year I Sem. L T/P/D C 3 1/0/0 4

Course Objectives: The objectives of the course are to
- Identify the basic components of any structural system and the standard loading for the RC structure
- Identify and tell the various codal provisions given in IS. 456
- Describe the salient feature of limit state method, compare with other methods and the concepts of limit state of collapse and limit state of serviceability
- Evaluate the behaviour of RC member under flexure, shear and compression, torsion and bond.

Course Outcomes: After the completion of the course student should be able to
- Compare and Design the singly reinforced, doubly reinforced and flanged sections.
- Design the axially loaded, uniaxial and biaxial bending columns.
- Classify the footings and Design the isolated square, rectangular and circular footings
- Distinguish and Design the one-way and two-way slabs.

UNIT - I
Limit state Analysis and design of sections in Flexure – Behaviour of RC section under flexure - Rectangular, T and L-sections, singly reinforced and doubly reinforced Beams – Detailing of reinforcement

UNIT – II
Design for Shear, Bond and Torsion - Mechanism of shear and bond failure - Design of shear using limit state concept – Design for Bond –Anchorage and Development length of bars - Design of sections for torsion - Detailing of reinforcement

UNIT - III
Design of Two-way slabs with different end conditions, one-way slab, and continuous slab Using I S Coefficients - Design of dog-legged staircase – Limit state design for serviceability for deflection, cracking and codal provisions.

UNIT – IV

UNIT – V
Design of foundation - Different types of footings – Design of wall footing – Design of flat isolated square, rectangular, circular footings and combined footings for two columns.
TEXT BOOKS:

REFERENCE BOOKS:
3. Design of Reinforced Concrete Structures by N.Subramanian, Oxford University Press
CE504PC: TRANSPORTATION ENGINEERING

B.Tech. III Year I Sem.

Course Objectives:
This course aims at providing a comprehensive insight of various elements of Highway transportation engineering. Topics related to the highway development, characterisation of different materials needed for highway construction, structural and geometric design of highway pavements along with the challenges and possible solutions to the traffic related issues will be covered as a part of this course.

Course Outcomes: At the end of this course, the students will develop:
- An ability to apply the knowledge of mathematics, science and engineering in the areas of traffic engineering, highway development and maintenance
- An ability to design, conduct experiments to assess the suitability of the highway materials like soil, bitumen, aggregates and a variety of bituminous mixtures. Also the students will develop the ability to interpret the results and assess the suitability of these materials for construction of highways.
- An ability to design flexible and rigid highway pavements for varying traffic compositions as well as soil subgrade and environmental conditions using the standards stipulated by Indian Roads Congress.
- An ability to evaluate the structural and functional conditions of in-service highway pavements and provide solution in the form of routine maintenance measures or designed overlays using Indian Roads congress guidelines.
- An ability to assess the issues related to road traffic and provide engineering solutions supported with an understanding of road user psychological and behavioural patterns.

UNIT - I
Introduction, History and Importance of Highways, Characteristics of road transport, Current road development plans in India, Highway development in India, Highway planning, Highway alignment, Engineering surveys for Highway alignment, Highway projects, Highway drawings and reports, Detailed Project Report preparation, PPP schemes of Highway Development in India, Government of India initiatives in developing the highways and expressways in improving the mobility and village road development in improving the accessibility.

UNIT – II
Introduction to Highway Geometric Design; Width of Pavement, Formation and Land, Cross Slopes etc; Concept of Friction: Skid and Slip; Elements of geometric design of highways; Sight Distances: Stopping Sight Distance, Overtaking Sight Distance and Intermediate Sight Distance; Horizontal alignment: Design of horizontal curves, super elevation, extra widening of pavement at curves; Vertical Alignment: Gradients, Compensation in Gradient, Design of summit curves and valley curves using different criteria; Integration of Horizontal and Vertical Curves

UNIT - III
Basic traffic characteristics: Speed, volume and concentration, relationship between flow, speed and concentration; Highway capacity and Level of Service (LOS) concepts: Factors affecting capacity and LOS, relationship between V/C ratio and LOS; Traffic volume and spot speed studies: Methods; Road Safety: Traffic Signals: Types, warrants for signalization, design of isolated traffic signal by IRC method; Parking and road accidents: Types of parking facilities – on-street and off street, introduction to parking studies; Accident studies, road safety auditing; Introduction to street lighting; Road Intersections: Design considerations of at-grade intersections, introduction to interchanges
UNIT IV
Tests on soils: CBR, Field CBR, modulus of sub-grade reaction, Tests on Aggregates: specific gravity, shape (flakiness and elongation indices), angularity number, water absorption, impact, abrasion, attrition, crushing resistance, durability (weathering resistance), stone polishing value of aggregates; Tests on bitumen: spot, penetration, softening point, viscosity, ductility, elastic recovery, flash and fire points, Introduction to modified bituminous binders like crumb rubber modified, natural rubber modified and polymer modified bitumen binders; Bituminous Concrete: Critical parameters controlling bituminous concrete mixture design, aggregate blending concepts viz. Rothfuch’s method, trial and error procedure. Introduction to advanced concretes for road applications.

UNIT V
Introduction to Pavement Design: Types of pavements and their typical cross sections: flexible, rigid and composite; Flexible Pavement analysis and design: Introduction to multi layered analysis, IRC 37-2012 method of flexible pavement design; Rigid pavement analysis and design: Factors controlling rigid pavement design, types of stresses in rigid pavements, critical load positions, load stresses and temperature stresses in interior, corner and edge locations of jointed plain cement concrete pavement slabs, IRC 58-2015 method of rigid pavement design; Overlay Designs: Types of overlays on flexible and rigid pavements.

TEXT BOOKS:

Code of Provisions:

REFERENCE BOOKS:
5. Garber, N.J. and Hoel, L.A. Traffic and Highway Engineering, Fourth Edition; Cengage Learning, Stamford, CT, USA, 2010
CE511PE: CONCRETE TECHNOLOGY (Professional Elective – I)

B.Tech. III Year I Sem.

Pre-Requisites: Building Materials

Course Objectives: The objectives of the course are to

- **Know** different types of cement as per their properties for different field applications.
- **Understand Design** economic concrete mix proportion for different exposure conditions and intended purposes.
- **Know** field and laboratory tests on concrete in plastic and hardened stage.

Course Outcomes: After the completion of the course student should be able to

- **Determine** the properties of concrete ingredients i.e. cement, sand, coarse aggregate by conducting different tests. Recognize the effects of the rheology and early age properties of concrete on its long-term behavior.
- **Apply** the use of various chemical admixtures and mineral additives to design cement-based materials with tailor-made properties.
- **Use** advanced laboratory techniques to characterize cement-based materials.
- **Perform** mix design and engineering properties of special concretes such as high-performance concrete, self-compacting concrete, and fibre reinforced concrete.

UNIT I

UNIT - II

UNIT – III

UNIT - IV

Hardened Concrete: Water / Cement ratio – Abram’s Law – Gel/space ratio – Gain of strength of concrete – Maturity concept – Strength in tension and compression – Factors affecting strength – Relation between compression and tensile strength - Curing.

Testing of Hardened Concrete: Compression tests – Tension tests – Factors affecting strength – Flexure tests – Splitting tests – Pull-out test, Non-destructive testing methods – codal provisions for NDT.

UNIT – V

TEXT BOOKS:
1. Concrete Technology by M.S. Shetty. – S. Chand & Co.; 2004

REFERENCE BOOKS:

IS Codes:
IS 383
IS 516
IS 10262 - 2009
CE512PE: THEORY OF ELASTICITY (Professional Elective – I)

B.Tech. III Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0/0/0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites: Strength of Materials I & II

Course Objectives:

- To Introduce fundamental elasticity model of deformation in rectangular and polar coordinate.
- To Give foundation for 2D and 3D study in solid mechanics problems.
- To Introduce to torsion and warping of prismatic structure

Course Outcomes: At the end of the course the student will able to

- The more fundamental elasticity model of deformation should replace elementary strength of material analysis.
- Able to understand theory, formulate and to present solutions to a wide class of problems in 2D and 3D
- Acquire the foundation for advanced study in areas of solid mechanics

UNIT - I

UNIT - II
Two dimensional problems in rectangular coordinates - solution by polynomials - Saint-Venants principle - determination of displacements - bending of simple beams – Simple Supported and Cantilever Beam.

UNIT - III

UNIT - IV

UNIT - V
Torsion of Circular Shafts - Torsion of Straight Prismatic Bars – Saint Venants Method - torsion of prismatic bars - bars with elliptical cross sections - membrane analogy - torsion of a bar of narrow rectangular bars - solution of torsional problems by energy method - torsion of shafts, tubes, bars etc. Torsion of Rolled Profile Sections.

TEXT BOOKS:

REFERENCE BOOKS:
2. Theory of Elasticity by Gurucharan Singh.
CE513PE: ROCK MECHANICS (Professional Elective – I)

B.Tech. III Year I Sem.

Course Objectives: the objective of the course is to

- Identify the classification of Rocks as per engineering aspects
- Explain the basic laboratory in-situ tests, strengths and its responses
- Understand Rock slopes and its failures, underground and open excavations and its requirements

Course Outcomes: At the end of the course

- Able to determine the required rock properties and classify rock mass
- Determination of bearing capacity of rocks,
- Checking the stability of slopes, and design underground and open excavation.
- The students will be able to predict strength of rock mass with respect to various Civil Engineering applications

UNIT- I
Engineering Classification of Rocks: Classification of intact rocks, Rock mass classifications, Rock Quality Designation (RQD), Rock Structure Rating (RSR), Rock Mass Rating (RMR), Norwegian Geotechnical Classification (Q-system), Strength and modulus from classifications, Classification based on strength & modulus and strength and fracture strain, Geoengineering classification.

UNIT- II
Laboratory and In-Situ Testing of Rocks: Physical properties, Compressive strength, Tensile strength, Direct shear test, Triaxial shear test, Slake durability test, Schmidt rebound hardness test, Sound velocity test, In-Situ Tests: Seismic methods, Electrical resistivity method, In situ stresses, Plate loading test, Goodman jack test, Plate jacking test, In-situ shear test, Field permeability test.

UNIT- III

UNIT- IV

UNIT- V
Underground and Open Excavations: Blasting operational planning, Explosive products, Blast Design, Underground blast design, Controlled blasting techniques, blasting damage and control, Safe practice with explosives and shots.

TEXT BOOKS:
1. Goodman – Introduction to Rock mechanics, Willey International
REFERENCE BOOKS:
SM505MS: ENGINEERING ECONOMICS AND ACCOUNTANCY

B.Tech. III Year I Sem. L T/P/D C 2 0/0/0 2

Course Objective: To prepare engineering students to analyze cost/ revenue/ financial data and to make economic and financial analysis in decision making process and to examine the performance of companies engaged in engineering.

Course Outcome: To perform and evaluate present and future worth of the alternate projects and to appraise projects by using traditional and DCF Methods. To carry out cost benefit analysis of projects and to calculate BEP of different alternative projects.

UNIT- I:

UNIT- II:

UNIT- III:

UNIT- IV:
Borrowings on Investment: Equity Vs Debt Financing- Leverages- Concept of Leverage- Types of Leverages: Operating Leverage- Financial Leverage and Composite Leverage. (Simple Problems)

UNIT- V:

TEXT BOOKS:
CE506PC: HIGHWAY ENGINEERING & CONCRETE TECHNOLOGY LAB

B.Tech. III Year I Sem. L T/P/D C
0 0/3/0 1.5

Pre-Requisites: Building Materials, Concrete Technology, Highway Materials

Course Objectives: The objectives of the course are to
- To learn laboratory tests and their procedures cement, fine aggregate, course aggregates and bitumen
- To Evaluate fresh concrete properties
- To Understand the test procedures for characterization of Concrete and bituminous mixes

Course Outcomes: Student shall be able to
- Categorize the test on materials used Civil Engineering Building & Pavement constructions
- To perform the tests on concrete for it characterization.
- To Design Concrete Mix Proportioning by Using Indian Standard Method.
- Examine the tests performed for Bitumen mixes.
- To prepare a laboratory report

I. Test on Cement
1. Normal Consistency and fineness of cement.
2. Initial setting time and final setting time of cement.
3. Specific gravity of cement
4. Soundness of cement
5. Compressive strength of cement
6. Workability test on concrete by compaction factor, slump and Vee-bee.

II. Test on Aggregates (Coarse and Fine)
1. Specific gravity (Pycnometer and wire basket), water absorption
2. Shape (Flakiness and elongation indices)
3. Impact and abrasion value tests
4. Crushing resistance and durability tests
5. Sieve Analysis and gradation charts (Job mix formula using Rothfuch's charts)
6. Bulking of sand, Bulk and compact densities of fine and coarse aggregates

III. Test on Fresh Concrete
1. Slump test
2. CF (compact factor stress)
3. Vee-bee Test
4. Flow Table Test

IV. Test on hardened concrete
1. Compression test on cubes & Cylinders
2. Flexure test
3. Split Tension Test
4. Modulus of Elasticity

V. Tests on Bitumen and Bituminous concrete
1. Penetration, softening point and spot test
2. Ductility, Elastic recovery and viscosity
3. Flash and fire points and specific gravity
4. Marshall’s Stability (sample preparation and testing for stability and flow values)

TEXT BOOKS:
2. Highway Material Testing manual, Khanna, Justo and Veeraraghavan, Nemchand Brothers

IS CODES:
1. IS 10262 :2009 “Concrete Mix Proportioning – Guidelines”
2. IS 516:2006 “Methods of Tests on Strength of Concrete”
3. IS 383 :1993 “Specification For Coarse And Fine Aggregates From Natural Sources For Concrete”
5. IRC SP 53 -2010 “Guidelines on use of modified bitumen”
6. MS-2 Manual for Marshalls Mix design 2002
CE507PC: GEOTECHNICAL ENGINEERING LAB

B.Tech. III Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0/3/0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Pre-Requisites: Soil Mechanics (Co-requisite)

Course Objectives: To obtain index and engineering properties of locally available soils, and to understand the behavior of these soils under various loads.

Course Outcomes: At the end of the course, the student will be able to Classify and evaluate the behavior of the soils subjected to various loads.

LIST OF EXPERIMENTS

1. Atterberg Limits (Liquid Limit, Plastic Limit, and shrinkage limit)
2. a) Field density by core cutter method and
 b) Field density by sand replacement method
3. Determination of Specific gravity of soil Grain size distribution by sieve analysis
4. Permeability of soil by constant and variable head test methods
5. Standard Proctor’s Compaction Test
6. Determination of Coefficient of consolidation (square root time fitting method)
7. Unconfined compression test
8. Direct shear test
9. Vane shear test
10. Differential free swell index (DFSI) test

REFERENCE:

EN508HS: ADVANCE COMMUNICATION SKILLS LAB

B.Tech. III Year I Sem.

1. INTRODUCTION:
The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context.
The proposed course should be a laboratory course to enable students to use ‘good’ English and perform the following:
- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

2. OBJECTIVES:
This Lab focuses on using multi-media instruction for language development to meet the following targets:
- To improve the students’ fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS:
The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:
1. Activities on Fundamentals of Inter-personal Communication and Building Vocabulary – Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals - Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
2. Activities on Reading Comprehension – General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading & effective googling.
4. Activities on Presentation Skills – Oral presentations (individual and group) through JAM sessions/seminars/PPTs and written presentations through posters/projects/reports/ e-mails/assignments etc.
5. Activities on Group Discussion and Interview Skills – Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening
strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4. MINIMUM REQUIREMENT:
The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- T. V, a digital stereo & Camcorder
- Headphones of High quality

5. SUGGESTED SOFTWARE:
The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner’s Compass, 7th Edition
- DELTA’s key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dream tech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

TEXT BOOKS:

REFERENCES:
UNIT – I
Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT – II
Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT – III
Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.
Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT – IV
Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.
Unfair competition: Misappropriation right of publicity, false advertising.

UNIT – V
New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.
International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

TEXT & REFERENCE BOOKS:
1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
2. Intellectual property right – Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd
CE601PC: HYDROLOGY AND WATER RESOURCES ENGINEERING

B.Tech. III Year II Sem.

<table>
<thead>
<tr>
<th>unit</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1/0/0</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
This course provides the description of hydrological cycle and derive various formulas used in estimation of different basic components of surface and groundwater cycle, and its components. Further it will explain the water requirement for irrigation and connectivity of hydrology to the field requirement.

Course Outcomes:
At the end of the course the student will be able to:
- Understand the different concepts and terms used in engineering hydrology
- To identify and explain various formulae used in estimation of surface and groundwater hydrology components
- Demonstrate their knowledge to connect hydrology to the field requirement

UNIT - I
Introduction:
Concepts of Hydrologic cycle, Global Water Budget, Applications in Engineering. Sources of data.

Precipitation:
Forms of precipitation, characteristics of precipitation in India, measurement of precipitation:
- Recording and non-recording types, rain gauge network: mean precipitation over an area: Arithmetic, Theissen’s and Isohyetal methods, Missing Rainfall Data – Estimation, Consistency of Rainfall records, depth area-duration relationships, maximum intensity/depth-duration-frequency relationship, Probable Maximum Precipitation (PMP), rainfall data in India.

UNIT - II
Abstractions from precipitation:
evaporation process, evaporimeters, analytical methods of evaporation estimation, reservoir evaporation and methods for its reduction, evapotranspiration, measurement of evapotranspiration, evapotranspiration equations: Penman and Blaney & Criddle Methods, potential evapotranspiration over India, actual evapotranspiration, interception, depression storage, infiltration, infiltration capacity, measurement of infiltration, modelling infiltration capacity, classification of infiltration capacities, infiltration indices.

Runoff:

UNIT - III
Hydrographs:
Hydrograph – Distribution of Runoff – Hydrograph Analysis Flood Hydrograph – Effective Rainfall – Base Flow- Base Flow Separation - Direct Runoff Hydrograph Unit pulse and Unit step function - Unit Hydrograph, definition, limitations and applications of Unit hydrograph, derivation of Unit Hydrograph from Direct Runoff Hydrograph and vice versa - S-hydrograph, Synthetic Unit Hydrograph.

UNIT - IV
Groundwater Hydrology:
Occurrence, movement and distribution of groundwater, aquifers – types, Specific Yield, Permeability, Storage coefficient, Transmissibility, Darcy’s Law. **Well Hydraulics** - Steady radial flow into well for confined and unconfined aquifers, Recuperation tests. Well constants.

Crop Water Requirements:
Water requirement of crops-Crops and crop seasons in India, cropping pattern, duty and delta; Quality of irrigation water; Soil-water relationships, root zone soil water,
infiltration, consumptive use, irrigation requirement, frequency of irrigation; Methods of applying water to the fields: surface, sub-surface, sprinkler and trickle / drip irrigation.

UNIT - V

TEXT BOOKS:
2. Irrigation Engineering and Hydraulic structures by Santhosh kumar Garg Khanna publishers

REFERENCE BOOKS:
1. Elements of Engineering Hydrology by V.P. Singh (Tata McGraw-Hill)
2. Engineering Hydrology by Jaya Rami Reddy (Laxmi Publications
4. Elements of Water Resources Engineering by K.N.Duggal and J.P.Soni (New Age
5. International)
Course Objectives: This subject provides the knowledge of water sources, water treatment, design of distribution system waste water treatment, and safe disposal methods. The topics of characteristics of waste water, sludge digestion are also included.

Course Outcomes: At the end of the course, the student will be able to:
- Assess characteristics of water and wastewater and their impacts
- Estimate quantities of water and waste water and plan conveyance components
- Design components of water and waste water treatment plants
- Be conversant with issues of air pollution and control

UNIT – I

UNIT – II

UNIT - III

UNIT – IV

UNIT – V

TEXT BOOKS:
5. Environmental Pollution and Control Engineering CS Rao, Wiley Publications

REFERENCE BOOKS:
1. Water and Waste Water Technology by Steel, Wiley
5. Introduction to Environmental Engineering and Science by Gilbert Masters, Prentice Hall, New Jersey.
Course Objectives:
- To Plan Soil exploration programme for civil Engineering Projects
- To check the stability of slopes
- To determine the lateral earth pressures and design retaining walls
- To determine the Bearing capacity of Soil
- To design pile group foundation

Course Outcomes: At the end of the course the student will able to
- understand the principles and methods of Geotechnical Exploration
- decide the suitability of soils and check the stability of slopes
- calculate lateral earth pressures and check the stability of retaining walls
- analyse and design the shallow and deep foundations

UNIT – I

UNIT – II

UNIT – III
EARTH PRESSURE THEORIES: Active, Passive and at rest soil pressures Rankine’s theory of earth pressure – earth pressures in layered soils – Coulomb’s earth pressure theory.

RETAINING WALLS: Types of retaining walls – stability of gravity and cantilever retaining walls against overturning, sliding and, bearing capacity, filter material for drainage.

UNIT – IV
SHALLOW FOUNDATIONS - Types - choice of foundation – location and depth - safe bearing capacity – shear criteria – Terzaghi’s, and IS code methods - settlement criteria – allowable bearing pressure based on SPT N value and plate load test – allowable settlements of structures.

UNIT - V
PILE FOUNDATION: Types of piles – load carrying capacity of piles based on static pile formulae – dynamic pile formulae – Pile Capacity through SPT results - pile load tests - load carrying capacity of pile groups in sands and clays – Settlement of pile groups – negative skin friction

TEXT BOOKS:

REFERENCE BOOKS:
CE604PC: STRUCTURAL ENGINEERING – II (STEEL)

B.Tech. III Year II Sem.

<table>
<thead>
<tr>
<th>Course Objectives:</th>
<th>The objectives of the course is to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain the mechanical properties of structural steel, plasticity, yield.</td>
<td></td>
</tr>
<tr>
<td>Describe the salient features of Limit State Method of design of Steel structures.</td>
<td></td>
</tr>
<tr>
<td>Identify and explain the codal provisions given in IS. 800.</td>
<td></td>
</tr>
<tr>
<td>Analyze the behaviour of steel structures under tension, compression and flexure.</td>
<td></td>
</tr>
<tr>
<td>Design the tension, compression, flexural members and plate girder</td>
<td></td>
</tr>
<tr>
<td>Design the connection in steel structure, build - up member and (bolted and welded).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Outcomes:</th>
<th>After the completion of the course student should be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyze the tension members, compression members.</td>
<td></td>
</tr>
<tr>
<td>Design the tension members, compression members and column bases and joints and connections</td>
<td></td>
</tr>
<tr>
<td>Analyze and Design the beams including built-up sections and beam and connections.</td>
<td></td>
</tr>
<tr>
<td>Identify and Design the various components of welded plate girder including stiffeners</td>
<td></td>
</tr>
</tbody>
</table>

UNIT – I

UNIT – II

UNIT – III
Plastic Analysis;Plastic moment – Plastic section modulus - Plastic analysis of continuous beams
Design of Flexural Members – Laterally supported and unsupported Beams – Design of laterally supported beams - Bending and shear strength/buckling – Built-up sections - Beam splice

UNIT – IV

UNIT – V
Design of Industrial Structures; Types of roof trusses - loads on trusses – wind loads - Purlin design – truss design – Design of welded Gantry girder

Note: Design of structural members include detailed sketches.
TEXT BOOKS:

REFERENCE BOOKS:
CE611PE: PRESTRESSED CONCRETE (Professional Elective – II)

B.Tech. III Year II Sem.	L	T/P/D	C
3 | 0/0/0 | 3

Pre-Requisites: Reinforced Concrete Design

Course Objectives: The objectives of the course are to
- Understand the principles & necessity of prestressed concrete structures.
- Know different techniques of prestressing.
- Get the knowledge on various losses of prestress.
- Understand Analysis and design of prestressed concrete members.

Course Outcomes: After the completion of the course student should be able to
- Acquire the knowledge of evolution of process of prestressing.
- Acquire the knowledge of various prestressing techniques.
- Develop skills in analysis design of prestressed structural elements as per the IS codal provisions

UNIT - I:
Introduction: Historic development- General principles of prestressing pretensioning and post tensioning- Advantages and limitations of Prestressed concrete- General principles of PSC- Classification and types of prestressing- Materials- high strength concrete and high tensile steel their characteristics.

UNIT - II:
Methods and Systems of prestressing: Pretensioning and Posttensioning methods and systems of prestressing like Hoyer system, Magnel Blaton system, Freyssinet system and Gifford- Udall System- Lee McCall system.
Losses of Prestress: Loss of prestress in pretensioned and posttensioned members due to various causes like elastic shortage of concrete, shrinkage of concrete, creep of concrete, relaxation of stress in steel, slip in anchorage, frictional losses.

UNIT - III:
Flexure: Analysis of sections for flexure- beams prestressed with straight, concentric, eccentric, bent and parabolic tendons- stress diagrams- Elastic design of PSC slabs and beams of rectangular and I sections- Kern line – Cable profile and cable layout.
Shear: General Considerations- Principal tension and compression- Improving shear resistance of concrete by horizontal and vertical prestressing and by using inclined or parabolic cables- Analysis of rectangular and I beams for shear – Design of shear reinforcements- IS Code provisions.

UNIT - IV:

UNIT - V:
Composite Beams: Different Types- Propped and Unpropped- stress distribution- Differential shrinkage- Analysis of composite beams- General design considerations.
Deflections: Importance of control of deflections- Factors influencing deflections – Short term deflections of uncracked beams- prediction of long time deflections- IS code requirements.
REFERENCE BOOKS:
4. Prestressed Concrete by N. Rajagopalan Narosa Publishing House
CE612PE: ELEMENTS OF EARTHQUAKE ENGINEERING (Professional Elective – II)

B.Tech. III Year II Sem.	L	T/P/D	C
3 | 0/0/0 | 3

Pre-Requisites: Structural Engineering –II & RC Design

Course Objectives: The objectives of the course are to
- Understand Engineering Seismology
- Explain and discuss single degree of freedom systems subjected to free and forced vibrations
- Acquire the knowledge of the conceptual design and principles of earthquake resistant designs as per IS codes
- Understand importance of ductile detailing of RC structures

Course Outcomes: After the completion of the course student should be able to
- Explain and derive fundamental equations in structural dynamics
- Discuss and explain causes and Theories on earthquake, seismic waves, measurement of earthquakes
- Evaluate base shear using IS methods
- Design and Detail the reinforcement for earthquake forces

UNIT - I

UNIT - II

Introduction to earthquake resistant design: Seismic design requirements-regular and irregular configurations-basic assumptions-design earthquake loads-basic load combinations-permissible stresses-seismic methods of analysis-factors in seismic analysis-equivalent lateral force method.

UNIT - III
Reinforced Concrete Buildings: Principles of earthquake resistant design of RC members- Structural models for frame buildings - Seismic methods of analysis- IS code based methods for seismic design - Vertical irregularities - Plan configuration problems- Lateral load resisting systems- Determination of design lateral forces as per IS 1893 (Part-1);2016- Equivalent lateral force procedure- Lateral distribution of base shear.

UNIT - IV
UNIT - V
Structural Walls and Non-Structural Elements: Strategies in the location of structural walls- sectional shapes- variations in elevation- cantilever walls without openings – Failure mechanism of non-structures- Effects of non-structural elements on structural system- Analysis of non-structural elements- Prevention of non-structural damage
Ductility Considerations in Earthquake Resistant Design of RC Buildings: Introduction- Impact of Ductility- Requirements for Ductility- Assessment of Ductility- Factors affecting Ductility- Ductile detailing considerations as per IS 13920-2016 - Behaviour of beams, columns and joints in RC buildings during earthquakes

TEXT BOOKS:
2. Earthquake Resistant Design of structures – Pankaj Agarwal and Manish Shrikhande, Prentice Hall of India Pvt. Ltd.

REFERENCE BOOKS:
2. Earthquake Resistant Design of Building structures by Vinod Hosur, Wiley India Pvt. Ltd.
4. Masonry and Timber structures including earthquake Resistant Design –Anand S.Arya, Nem Chand & Bros
5. Earthquake Tips – Learning Earthquake Design and Construction, C.V.R. Murthy

BIS Codes: 1. IS 1893(Part-1):2016. 2. IS 13920:2016. 3. IS 4326. 4. IS 456:200
CE613PE: ADVANCED STRUCTURAL ANALYSIS (Professional Elective – II)

B.Tech. III Year II Sem.

Course Objectives:
The objectives of the course are to
- Understand the matrix method of analysis statically indeterminate frames and trusses.
- Know the transformation of coordinates and assembly of stiffness matrices
- Differentiate between flexibility and stiffness methods of analysis of beams, frames and plane trusses
- Understand the structural behavior of large frames with or without shear walls

Course Outcomes:
After the completion of the course student should be able to
- Analyze the multistory building frames by various approximate methods.
- Solve the continuous beams, portal frames by matrix methods of analysis.
- Analyze and design of large frames with or without shear walls

UNIT - I
Introduction to matrix methods of analysis statically indeterminacy and kinematics indeterminacy-degree of freedom-coordinate system-structure idealization stiffness and flexibility matrices-suitability element stiffness equations-elements flexibility equations-mixed force-displacement equations-for truss element, beam element and tensional element
Transformation of coordinates-element stiffness matrix-and load vector-local and global coordinates.

UNIT- II
Assembly of stiffness matrix from element stiffness matrix-direct stiffness method-general procedure-bank matrix-semi bandwidth-computer algorithm for assembly by direct stiffness matrix method.

UNIT- III
Analysis of plane truss-continuous beam-plane frame and grids by Flexible methods.

UNIT- IV
Analysis of plane truss-continuous beam-plane frame and grids by stiffness methods.

UNIT- V
Special analysis procedures-static condensation and sub structuring-initial and thermal stresses.
Shear Walls Necessity-structural behavior of large frames with and without shear walls-approximate methods of analysis of shear walls.

TEXT BOOKS:
2. Advanced Structural Analysis by A.K. Jain Nemchand Publishers

REFERENCE BOOKS:
1. Advanced Structural Analysis by Devdas Menon, Narosa publishing house.
2. Matrix methods of structural analysis by Pandit and gupta
3. Matrix methods of structural analysis by J Meek
4. Structural Analysis by Ghali and Neyveli
CE605PC: ENVIRONMENTAL ENGINEERING LAB

Course Objectives: the objectives of the course are to
- Perform the experiments to determine water and waste water quality
- Understand the water & waste water sampling, their quality standards
- Estimate quality of water, waste water, Industrial water

Course outcomes: After the completion of the course student should be able to
- Understand about the equipment used to conduct the test procedures
- Perform the experiments in the lab
- Examine and Estimate water, waste water, air and soil Quality
- Compare the water, air quality standards with prescribed standards set by the local governments
- Develop a report on the quality aspect of the environment

Practical Work: List of Experiments
1. Determination of pH
2. Determination of Electrical Conductivity
3. Determination of Total Solids (Organic and inorganic)
4. Determination of Acidity
5. Determination of Alkalinity
6. Determination of Hardness (Total, Calcium and Magnesium Hardness)
7. Determination of Chlorides
8. Determination of optimum coagulant Dosage
9. Determination of Dissolved Oxygen (Winkler Method)
10. Determination of COD
11. Determination of BOD/DO
12. Determination of Residual Chlorine
13. Total count No.
14. Noise level measurement

TEXT/REFERENCE BOOKS:
1. Introduction to Environmental Engineering and Science by Gilbert Masters, Prentice Hall, New Jersey.
CE606PC: COMPUTER AIDED DESIGN LAB

B.Tech. III Year II Sem.

L T/P/D C
0 0/2/0 1

Pre-Requisites: Computer Aided Civil Engineering Drawing or AUTO CAD Principles –Excel-Structural Engineering -1 & 2

Course Objectives: The objectives of the course are to
- Learn the usage of any fundamental software for design
- Create geometries using pre-processor
- Analyse and Interpret the results using post processor
- Design the structural elements

Course Outcomes: After the completion of the course student should be able to
- Model the geometry of real-world structure Represent the physical model of structural element/structure
- Perform analysis
- Interpret from the Post processing results
- Design the structural elements and a system as per IS Codes

LIST OF EXPERIMENTS
1. Analysis & Design determinate structures using a software
2. Analysis & Design of fixed & continuous beams using a software
3. Analysis & Design of Plane Frames
4. Analysis & Design of space frames subjected to DL & LL
5. Analysis & Design of residential building subjected to all loads (DL,LL,WL,EQL)
6. Analysis & Design of Roof Trusses
7. Design and detailing of built up steel beam
8. Developing a design programme for foundation using EXCEL Spread Sheet
9. Detailing of RCC beam and RCC slab
10. Detailing of Steel built up compression member

Note: Drafting of all the exercises is to be carried out using commercially available designing software’s.
MC609: ENVIRONMENTAL SCIENCE

* B.Tech. III Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0/0/0</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives:
- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures
- Understanding the environmental policies and regulations

Course Outcomes:
Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development.

UNIT - I
Ecosystems: Definition, Scope and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II
Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

UNIT - III
Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT - IV

UNIT - V
Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio-

TEXT BOOKS:
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:
CE701PC: ESTIMATION, COSTING AND PROJECT MANAGEMENT

B.Tech. IV Year I Sem. L T/P/D C
3 1/0/0 4

Course Objectives: The subject provide process of estimations required for various work in construction. To have knowledge of using SOR & SSR for analysis of rates on various works and basics of planning tools for a construction projects.

Course Outcomes: On completion of the course, the students will be able to:
- understand the technical specifications for various works to be performed for a project and how they impact the cost of a structure.
- quantify the worth of a structure by evaluating quantities of constituents, derive their cost rates and build up the overall cost of the structure.
- understand how competitive bidding works and how to submit a competitive bid proposal.
- An idea of how to optimize construction projects based on costs
- An idea how construction projects are administered with respect to contract structures and issues.
- An ability to put forward ideas and understandings to others with effective communication processes

UNIT – I

UNIT – II
Reinforcement bar bending and bar requirement schedules Earthwork for roads and canals.

UNIT – III
Rate Analysis – Working out data for various items of work over head and contingent charges.

UNIT- IV

UNIT- V
Construction project planning – Stages of project planning: pre-tender planning, pre-construction planning, detailed construction planning, role of client and contractor, level of detail. Process of development of plans and schedules, work break-down structure, activity lists, assessment of work content, concept of productivities, estimating durations, sequence of activities, activity utility data; Techniques of planning- Bar charts, Gantt Charts. Networks: basic terminology, types of precedence relationships, preparation of CPM networks: activity on link and activity on node representation, computation of float values, critical and semi critical paths, calendaring networks. PERT- Assumptions underlying PERT analysis, determining three-time estimates, analysis, slack computations, calculation of probability of completion

NOTE: NUMBER OF EXERCISES PROPOSED:
1. Three in flat Roof & one in Sloped Roof
2. Exercises on Data – three Nos.

TEXT BOOKS:
2. Estimating and Costing by G.S. Birdie
3. Punmia, B.C., Khandelwal, K.K., Project Planning with PERT and CPM, Laxmi Publications, 2016

REFERENCE BOOKS:
2. S. 1200 (Parts I to XXV – 1974/ method of measurement of building and Civil Engineering works – B.I.S.)
3. Estimation, Costing and Specifications by M. Chakraborthi; Laxmi publications.
CE711PE: REMOTE SENSING & GIS (PE – III)

B.Tech. IV Year I Sem. L T/P/D C 3 0/0/0 3

Course Objectives:
- Know the concepts of Remote Sensing, its interpreting Techniques and concepts of Digital images
- know the concept of Geographical Information System (GIS), coordinate system GIS Data and its types
- Understand the students managing the spatial Data Using GIS.
- Understand Implementation of GIS interface for practical usage.

Course Outcomes: After the completion of the course student should be able to
- Describe different concepts and terms used in Remote Sensing and its data
- Understand the Data conversion and Process in different coordinate systems of GIS interface
- Evaluate the accuracy of Data and implementing a GIS
- Understand the applicability of RS and GIS for various applications.

UNIT - I:

UNIT - II:
Introduction to GIS: Introduction, History of GIS, GIS Components, GIS Applications in Real life, The Nature of geographic data, Maps, Types of maps, Map scale, Types of scale, Map and Globe, Coordinate systems, Map projections, Map transformation, Geo-referencing,

UNIT - III:
Spatial Database Management System: Introduction: Spatial DBMS, Data storage, Database structure models, database management system, entity-relationship model, normalization Data models and data structures: Introduction, GIS Data model, vector data structure, raster data structure, attribute data, geo-database and metadata,

UNIT - IV:
Spatial Data input and Editing: Data input methods – keyboard entry, digitization, scanning, conversion of existing data, remotely sensed data, errors in data input, Data accuracy, Micro and Macro components of accuracy, sources of error in GIS. Spatial Analysis: Introduction, topology, spatial analysis, vector data analysis, Network analysis, raster data analysis, Spatial data interpolation techniques

UNIT - V: Implementing a GIS and Applications
Implementing a GIS: Awareness, developing system requirements, evaluation of alternative systems, decision making using GIS

TEXT BOOKS:

REFERENCE BOOKS:
CE712PE: GROUND IMPROVEMENT TECHNIQUES (PE – III)

B.Tech. IV Year I Sem. L T/P/D C
3 0/0/0 3

Prerequisites: Geo-Technical Engineering, Foundation Engineering

Course Objectives:
- To know the need of ground improvement
- To acquire the knowledge on the various ground improvement techniques available and their applications for different types of soils
- To understand suitable ground improvement technique for given soil conditions.

Course Outcomes: at the end of the course the student able to
- Know the necessity of ground improvement
- Understand the various ground improvement techniques available
- Select & design suitable ground improvement technique for existing soil conditions in the field

UNIT - I:
Introduction to Engineering Ground Modification: Need and objectives, Identification of soil types, In situ and laboratory tests to characterize problematic soils; Mechanical, Hydraulic, Physico-chemical, Electrical, Thermal methods, and their applications.

UNIT - II:

UNIT - III:

UNIT - IV:
Physical and Chemical Modification – Modification by admixtures, Modification Grouting, Introduction to Thermal Modification including freezing.

UNIT - V:
Modification by Inclusions and Confinement - Soil reinforcement, reinforcement with strip, and grid reinforced soil. In-situ ground reinforcement, ground anchors, rock bolting and soil nailing.

TEXT BOOKS:

REFERENCE BOOKS:
CE713PE: ADVANCED STRUCTURAL DESIGN (PE – III)

B.Tech. IV Year I Sem.

L T/P/D C
3 0/0/0 3

Prerequisites: Structural Engineering I (RCC) & II (STEEL) and Structural analysis

Course Objective: To make the student more conversant with the design principles of critical structures using limit state approach

Course Outcomes: At the end of the course the student will be able to:

- Enhance the capabilities to design the special structural elements as per Indian standard code of practice.
- Analyze, design, draw and detailing of critical structural components with a level of accuracy

UNIT – I

UNIT – II
Flat slabs: Direct design method – Distribution of moments in column strips and middle strip-moment and shear transfer from slabs to columns – Shear in Flat slabs - Check for one way and two way shears
Ribbed slabs: Analysis of the Slabs for Moment and Shears, Ultimate Moment of Resistance, Design for shear, Deflection, Arrangement of Reinforcements.

UNIT – III
Design of RCC Circular Water Tanks.

UNIT – IV
Introduction - Definition and basic forms – Components of a bridge - Classification of bridges – IRC Loading Standards and specifications - Design of Reinforced Concrete Slab Bridge decks

UNIT – V
Design of Steel Gantry Girders.

TEXT BOOKS:
3. Structural Design and drawing (RCC and steel) by Krishnam Raju, Univ. Press, New Delhi
4. R.C.C Structures by Dr. B. C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, Laxmi Publications, New Delhi

REFERENCE BOOKS:
1. RCC Designs by Sushil Kumar, standard publishing house.
CE721PE: IRRIGATION AND HYDRAULIC STRUCTURES (PE – IV)

B.Tech. IV Year I Sem.

Pre-Requisites: Hydraulics, Hydrology & Water Resources Engineering

Course Objectives: To study various types of storage works and, diversion headwork, their components and design principles for their construction.

Course Outcomes: At the end of the course, the student will be able to:

- Know types of water retaining structures for multiple purposes and its key parameters considered for planning and designing
- Understand details in any Irrigation System and its requirements
- Know, Analyze and Design of a irrigation system components

UNIT - I

Storage Works-Reservoirs - Types of reservoirs, selection of site for reservoir, zones of storage of a reservoir, reservoir yield, estimation of capacity of reservoir using mass curve Reservoir Sedimentation – Life of Reservoir. Types of dams, factors affecting selection of type of dam, factors governing selection of site for a dam.

UNIT - II

Gravity dams: Forces acting on a gravity dam, causes of failure of a gravity dam, elementary profile, and practical profile of a gravity dam, limiting height of a low gravity dam, Factors of Safety Stability Analysis, Foundation for a Gravity Dam, drainage and inspection galleries.

UNIT - III

Earth dams: types of Earth dams, causes of failure of earth dam, criteria for safe design of earth dam, seepage through earth dam-graphical method, measures for control of seepage. Spillways: types of spillways, Design principles of Ogee spillways - Spillway gates. Energy Dissipaters and Stilling Basins Significance of Jump Height Curve and Tail Water Rating Curve - USBR and Indian types of Stilling Basins.

UNIT - IV

Diversion Head works: Types of Diversion head works- weirs and barrages, layout of diversion head work - components. Causes and failure of Weirs and Barrages on permeable foundations, -Silt Ejectors and Silt Excluders

Weirs on Permeable Foundations – Creep Theories - Bligh’s, Lane’s and Khosla’s theories, Determination of uplift pressure- Various Correction Factors – Design principles of weirs on permeable foundations using Creep theories - exit gradient, U/s and D/s Sheet Piles - Launching Apron

UNIT- V

Canal Falls - types of falls and their location, Design principles of Notch Fall and Sarada type Fall. Canal regulation works, principles of design of cross and distributary head regulators, types of Canal escapes - types of canal modules, proportionality, sensitivity, setting and flexibility. Cross Drainage works: types, selection of suitable type, various types, design considerations for cross drainage works

TEXT BOOKS:

1. Irrigation Engineering and Hydraulic structures by Santhosh kumar Garg, Khanna Publishers.
3. Irrigation and water power engineering by Punmia & Lal, Laxmi publications Pvt. Ltd., New Delhi
REFERENCE BOOKS:
1. Theory and Design of Hydraulic structures by Varshney, Gupta & Gupta
CE722PE: PIPELINE ENGINEERING (PE – IV)

B.Tech. IV Year I Sem. L T/P/D C
3 0/0/0 3

Pre-Requisites: Fluid Mechanics, Hydraulics and Hydraulic machinery

Course Objectives:
- To familiarize the students with the various elements and stages involved in transportation of water.
- To understand standards and practices in piping design.
- To know various equipment and their operation in pipeline transportation.
- To understand technology in transportation of fluids.

Course Outcome: At the end of the course the student will able to:
- Get an understanding of the key steps in a pipeline’s lifecycle: design, construction, installation, asset management and maintenance.

UNIT - I
Elements of pipeline design: Types of piping systems; transmission lines, In-plant piping systems, Distribution mains, Service lines. Types of Water distribution networks; serial networks, branched networks and looped networks. Network components and Network model. Basic hydraulic principles; continuity and Energy principle.

UNIT – II
Frictional Head loss in Pipes: Major and Minor losses, Artificially roughened pipes, moody Diagram. Friction coefficient relationships, Empirical formulae, Simple pipe flow problems Equivalent pipes; pipes in series, parallel, series-parallel; problems. Water Hammer and energy transmission through pipes: gradual and Instantaneous closure

UNIT– III

UNIT – IV

UNIT - V
Pipeline construction: Construction – Commissioning.

Pipeline protection, Instrumentation, pigging & Operations: Pipeline coating – Cathodic protection – Cathodic protection calculations for land pipelines – Internal corrosion – Flow meters and their calibration – Sensors – Pigs-Pipeline Operations and maintenance.

TEXT BOOKS:
1. Analysis of Water Distribution Networks, P.R. Bhave and R. Gupta, Narosa Publishing House Pvt. Ltd.

REFERENCE BOOKS:
CE723PE: GROUND WATER HYDROLOGY (PE – IV)

B.Tech. IV Year I Sem. L T/P/D C
3 0/0/0 3

Pre-Requisites: Hydraulics & Fluid Mechanics

Course objectives: The objectives of the course are:
- To explain the concepts of Groundwater Development and Management.
- To demonstrate and derive the basic equations used in Groundwater development and management and the corresponding equations
- To know the investigations, field studies to conduct basic ground water studies.

Course Outcomes: On successful completion of this course, students should be able to:
- Identify different fundamental equations and concepts as applied in the Groundwater studies
- Discuss and derive differential equation governing groundwater flow in three dimensions
- To solve groundwater mathematical equations and analyze pumping tests in steady and non-steady flow cases
- Distinguish and understand the saline water intrusion problem in costal aquifers

UNIT- I
Ground Water Occurrence
Ground water hydrologic cycle, origin of ground water, rock properties effecting ground water, Vertical distribution of ground water, zone of aeration and zone of saturation, geologic formation as aquifers, types of aquifers, porosity, specific yield and specific retention. Ground Water Movement-Permeability, Darcy’s law, storage coefficient, Transmissivity, Differential equation governing ground water flow in three dimensions derivation, ground water flow equation in polar coordinate system, ground water flow contours and their applications.

UNIT- II
Analysis of Pumping Test Data-I
Steady flow ground water flow towards a well in confined and unconfined aquifers-Dupit’s and Theism’s equations, assumptions, formation constants, yield of an open well interface and well tests.

UNIT- III
Analysis of Pumping Test Data-II
Unsteady flow towards well-Non-Equilibrium equations, Thesis solution, Jocob and Chow’s simplifications, Leak aquifers.

UNIT- IV
Surface and sub-surface Investigation
surface methods of exploration-Electrical resistivity method and Seismic refraction methods. Subsurface methods geophysical logging and resistivity logging. Concept of artificial recharge of ground water, recharge methods, Applications of GIS and RS in artificial recharge of ground water along with case studies.

UNIT- V
Saline water intrusion in aquifer
Occurrence of saline water intrusion, Ghyben-Herzberg relation, Shape of interface, control of water intrusion. Ground water basin management-case studies.

TEXT BOOKS
2. Ground water by H.M. Raghunath, Wiley Eastern Ltd.

REFERENCE BOOKS:
1. Ground water by Bawwwr, John Wiley & Sons.
CE811PE: SOLID WASTE MANAGEMENT (PE – V)

B.Tech. IV Year II Sem.

Course Objectives: The objectives of the course are to
- Define the terms and Understands the necessity of solid waste management
- Explain the strategies for the collection of solid waste
- Describe the solid waste disposal methods
- Categorize Hazardous Waste

Course Outcomes: At the end of the course the student will able to:
- Identify the physical and chemical composition of solid wastes
- Analyze the functional elements for solid waste management.
- Understand the techniques and methods used in transformation, conservation, and recovery of materials from solid wastes.
- Identify and design waste disposal systems

UNIT - I

UNIT - II
Engineering Systems for Solid Waste Management: Solid waste generation; on-site handling, storage and processing; collection of solid wastes; Stationary container system and Hauled container systems – Route planning - transfer and transport; processing techniques;

UNIT - III
Engineering Systems for Resource and Energy Recovery: Processing techniques; materials recovery systems; recovery of biological conversion products – Composting, pre and post processing, types of composting, Critical parameters, Problems with composting - recovery of thermal conversion products; Pyrolsisis, Gasification, RDF - recovery of energy from conversion products; materials and energy recovery systems.

UNIT - IV

UNIT - V

TEXT BOOKS:
REFERENCE BOOKS:
CE812PE: ENVIRONMENTAL IMPACT ASSESSMENT (PE – V)

B.Tech. IV Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0/0/0</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives: The objectives of the course are to
- Define and Classify Environmental Impacts and the terminology
- Understands the environmental Impact assessment procedure
- Explain the EIA methodology
- List and describe environmental audits

Course Outcomes: At the end of the course the student will be able to
- Identify the environmental attributes to be considered for the EIA study
- Formulate objectives of the EIA studies
- Identify the methodology to prepare rapid EIA
- Prepare EIA reports and environmental management plans

UNIT- I

UNIT- II
EIA Methodologies: Environmental attributes-Criteria for the selection of EIA methodology, impact identification, impact measurement, impact interpretation & Evaluation, impact communication, Methods-Adhoc methods, Checklists methods, Matrices methods, Networks methods, Overlays methods. EIA review - Baseline Conditions - Construction Stage Impacts, post project impacts.

UNIT- III
Environmental Management Plan: EMP preparation, Monitoring Environmental Management Plan, Identification of Significant or Unacceptable Impacts Requiring Mitigation, Mitigation Plans and Relief & Rehabilitation, Stipulating the Conditions, Monitoring Methods, Pre- Appraisal and Appraisal.

UNIT- IV

UNIT- V
Case Studies: Preparation of EIA for developmental projects- Factors to be considered in making assessment decisions, Water Resources Project, Pharmaceutical industry, thermal plant, Nuclear fuel complex, Highway project, Sewage treatment plant, Municipal Solid waste processing plant, Air ports.

TEXT BOOKS:
REFERENCE BOOKS:
CE813PE: AIR POLLUTION (PE – V)

B.Tech. IV Year II Sem.

Course Objectives: The objectives of the course are to
- Understand the Air pollution Concepts
- Identify the source of air pollution
- Know Air pollution Control devices
- Distinguish the Air quality monitoring devices

Course Outcomes: At the end of the course the student will be able to
- Identify sampling and analysis techniques for air quality assessment
- Describe the plume behavior for atmospheric stability conditions
- Apply plume dispersion modelling and assess the concentrations
- Design air pollution controlling devices

UNIT- I

Air Pollution: Definition of Air Pollution - Sources & Classification of Air Pollutants - Effects of air pollution - Global effects – Ambient Air Quality and standards – Monitoring air pollution, Sampling and analysis of Pollutants in ambient air - Stack sampling.

UNIT- II

Meteorology and Air Pollution: Factors influencing air pollution, Wind rose, Mixing Depths, Lapse rates and dispersion - Atmospheric stability, Plume behaviour, Plume rise and dispersion, Prediction of air quality, Box model - Gaussian model - Dispersion coefficient - Application of tall chimney for Pollutant dispersion.

UNIT- III

Control of Particulate Pollutants: Properties of particulate pollution - Particle size distribution - Control mechanism - Dust removal equipment – Working principles and operation of settling chambers, cyclones, wet dust scrubbers, fabric filters & ESP.

UNIT- IV

Control of Gaseous Pollutants: Process and equipment for the removal by chemical methods - Working principles and operation of absorption and adsorption equipment - Combustion and condensation equipment.

UNIT- V

Automobile and Indoor Pollution: Vehicular pollution – Sources and types of emission – Effect of operating conditions-Alternate fuels and emissions-Emission controls and standards, Strategies to control automobile pollution– Causes of indoor air pollution-changes in indoor air quality-control and air cleaning systems-indoor air quality.

TEXT BOOKS:

REFERENCE BOOKS:
2. Fundamentals of Air Pollution by Dr. B.S.N. Raju, Oxford & I.B.H.
CE821PE: AIRPORT, RAILWAYS, AND WATERWAYS (PE – VI)

B.Tech. IV Year II Sem.

Course Objectives: the objectives of the course are to
- Deal with the characteristics of aircrafts related to airport design; runway and taxiway design, runway orientation, length, grading and drainage.
- Introduce component of railway tracks, train resistance, crossing, signaling, high speed tracks and Metro Rail.
- Explain the classes of harbors, features, planning and design of port facilities.

Course Outcomes: At the end of this course, the students will develop:
- An ability to design of runways and taxiways.
- An ability to design the infrastructure for large and small airports
- An ability to design various crossings and signals in Railway Projects.
- An ability plan the harbors and ports projects including the infrastructure required for new ports and harbors.

UNIT – I
Airport Engineering: Introduction to Air Transportation - Aircraft Characteristics - Factors Affecting Selection of site for Airport – Aprons – Taxiway – Hanger – Geometric design - Computation of Runway Length, Correction for Runway Length, Orientation of Runway, Wind Rose Diagram

UNIT - II

UNIT – III

UNIT – IV
Track maintenance and Operation: Points and Crossings - Turnouts, Stations and Yards - Level Crossings. Signaling and Interlocking - Track Circuiting - Track Maintenance.

UNIT – V

TEXT BOOKS:
REFERENCE BOOKS:
5. Transportaion Engineering by R. Srinivasa Kumar, University Press India
CE822PE: URBAN TRANSPORTATION PLANNING (PE – VI)

B.Tech. IV Year I Sem. L T/P/D C
Pre-requisites: Transportation Engineering

UNIT I:

UNIT II:

UNIT III:
Trip Distribution Methods: Presentation of trip distribution data - PA matrix to OD matrix – Growth factor methods - gravity model and its calibration – opportunity model

UNIT IV:
Modal split analysis: Influencing factors – Earlier modal split models: Trip end type and trip interchange type – limitations – Disaggregate mode choice model – Logit model - binary choice situations – multinomial logit model – model calibration

UNIT V:

TEXT BOOKS:

REFERENCE BOOKS:
2. NPTEL videos on Urban Transportation Planning, Dr. V. Tamizh Arasan, IIT Madras
CE823PE: FINITE ELEMENT METHODS FOR CIVIL ENGINEERING (PE – VI)

B.Tech. IV Year I Sem. L T/P/D C
3 0/0/0 3

Pre-Requisites: SA – I & SA – II

Course Objectives: The subject provides introduction to finite element methods to analyse structural elements

Course Outcomes: At the end of the course the student will able to Analyse simple structural elements using Finite Element approach

UNIT – I

UNIT – II
Finite Element Analysis (FEA) of – one dimensional problems – Bar element – Shape functions stiffness matrix – stress – strain relation

UNIT – III
FEA Beam elements – stiffness matrix - shape function– Analysis of continuous beams.

UNIT – IV
Isoparametric formulation – Concepts of, isoparametric elements for 2D analysis -formulation of CST element.

UNIT-V
Solution Techniques: Numerical Integration, Static condensation, assembly of elements and solution techniques for static loads.

TEXT BOOKS:
2. Introduction to finite Elements in Engineering by Tirupathi R. Chandrupatla, and Ashok D. Belegundu, Prentice Hall of India

REFERENCE BOOKS:
1. Finite Element Analysis by P. Seshu, PHI Learning Private Limited
2. Concepts and applications of Finite Element Analysis by Robert D. Cook et al., Wiley India Pvt. Ltd.