JAYAWARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE & SYLLABUS (R18)

Applicable From 2018-19 Admitted Batch

I YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA101BS</td>
<td>Mathematics - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>AP102BS</td>
<td>Applied Physics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>CS103ES</td>
<td>Programming for Problem Solving</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ME104ES</td>
<td>Engineering Graphics</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>AP105BS</td>
<td>Applied Physics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>CS106ES</td>
<td>Programming for Problem Solving Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>*MC109ES</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Induction Programme

Total Credits: 13 3 10 18

I YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA201BS</td>
<td>Mathematics - II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CH202BS</td>
<td>Chemistry</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EE203ES</td>
<td>Basic Electrical Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ME205ES</td>
<td>Engineering Workshop</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>EN205HS</td>
<td>English</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>CH206BS</td>
<td>Engineering Chemistry Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>EN207HS</td>
<td>English Language and Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>EE208ES</td>
<td>Basic Electrical Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits: 12 2 10 19

II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EC301PC</td>
<td>Electronic Devices and Circuits</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>EC302PC</td>
<td>Network Analysis and Transmission Lines</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EC303PC</td>
<td>Digital System Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>EC304PC</td>
<td>Signals and Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>EC305ES</td>
<td>Probability Theory and Stochastic Processes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EC306PC</td>
<td>Electronic Devices and Circuits Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>EC307PC</td>
<td>Digital System Design Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>EC308ES</td>
<td>Basic Simulation Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*MC309</td>
<td>Constitution of India</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits: 18 3 6 21

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA401BS</td>
<td>Laplace Transforms, Numerical Methods & Complex Variables</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>EC402PC</td>
<td>Electromagnetic Fields and Waves</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
III YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EC501PC</td>
<td>Microprocessors & Microcontrollers</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>EC502PC</td>
<td>Data Communications and Networks</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EC503PC</td>
<td>Control Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>SM504MS</td>
<td>Business Economics & Financial Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Professional Elective - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EC505PC</td>
<td>Microprocessors & Microcontrollers Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>EC506PC</td>
<td>Data Communications and Networks Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>EN508HS</td>
<td>Advanced Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*MC510</td>
<td>Intellectual Property Rights</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>18</td>
<td>3</td>
<td>8</td>
<td>22</td>
</tr>
</tbody>
</table>

*MC509 - Environmental Science – Should be Registered by Lateral Entry Students Only.

III YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EC601PC</td>
<td>Antennas and Propagation</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>EC602PC</td>
<td>Digital Signal Processing</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EC603PC</td>
<td>VLSI Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Professional Elective - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Open Elective - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EC604PC</td>
<td>Digital Signal Processing Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>EC605PC</td>
<td>e – CAD Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>EC606PC</td>
<td>Scripting Languages Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*MC609</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>18</td>
<td>3</td>
<td>8</td>
<td>22</td>
</tr>
</tbody>
</table>

*MC609 - Environmental Science – Should be Registered by Lateral Entry Students Only.

IV YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EC701PC</td>
<td>Microwave and Optical Communications</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Professional Elective – III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Professional Elective – IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Open Elective - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>SM702MS</td>
<td>Professional Practice, Law & Ethics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>EC703PC</td>
<td>Microwave and Optical Communications Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>EC704PC</td>
<td>Industrial Oriented Mini Project/ Summer Internship</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2*</td>
</tr>
<tr>
<td>8</td>
<td>EC705PC</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>EC706PC</td>
<td>Project Stage - I</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>14</td>
<td>0</td>
<td>10</td>
<td>21</td>
</tr>
</tbody>
</table>
IV YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professional Elective – V</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Professional Elective – VI</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Open Elective - III</td>
<td>3 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EC801PC</td>
<td>Project Stage - II</td>
<td>0 0 14 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>9 0 14 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*MC – Satisfactory/Unsatisfactory

Note: Industrial Oriented Mini Project/Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/Summer Internship for evaluation.

Professional Elective – I
EC511PE Computer Organization & Operating Systems
EC512PE Error Correcting Codes
EC513PE Electronic Measurements and Instrumentation

Professional Elective – II
EC611PE Object Oriented Programming through Java
EC612PE Mobile Communications and Networks
EC613PE Embedded System Design

Professional Elective – III
EC711PE Artificial Neural Networks
EC712PE Scripting Languages
EC713PE Digital Image Processing

Professional Elective – IV
EC721PE Biomedical Instrumentation
EC722PE Database Management Systems
EC723PE Network Security and Cryptography

Professional Elective – V
EC811PE Satellite Communications
EC812PE Radar Systems
EC813PE Wireless Sensor Networks

Professional Elective – VI
EC821PE System on Chip Architecture
EC822PE Test and Testability
EC823PE Low Power VLSI Design
MA101BS: MATHEMATICS - I

B.Tech. I Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives: To learn

- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of Eigen values and eigenvectors and to reduce the quadratic form to canonical form.
- Concept of Sequence.
- Concept of nature of the series.
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.

Course Outcomes: After learning the contents of this paper the student must be able to

- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- Find the Eigen values and Eigen vectors
- Reduce the quadratic form to canonical form using orthogonal transformations.
- Analyse the nature of sequence and series.
- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions
- Find the extreme values of functions of two variables with/without constraints.

UNIT-I: Matrices
Matrices: Types of Matrices, Symmetric; Hermitian; Skew-symmetric; Skew-Hermitian; orthogonal matrices; Unitary Matrices; rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method; System of linear equations; solving system of Homogeneous and Non-Homogeneous equations. Gauss elimination method; Gauss Seidel Iteration Method.

UNIT-II: Eigen values and Eigen vectors
Linear Transformation and Orthogonal Transformation: Eigen values and Eigenvectors and their properties: Diagonalization of a matrix; Cayley-Hamilton Theorem (without proof); finding inverse and power of a matrix by Cayley-Hamilton Theorem; Quadratic forms and Nature of the Quadratic Forms; Reduction of Quadratic form to canonical forms by Orthogonal Transformation

UNIT-III: Sequences & Series
Sequence: Definition of a Sequence, limit; Convergent, Divergent and Oscillatory sequences.
Series: Convergent, Divergent and Oscillatory Series; Series of positive terms; Comparison test, p-test, D-Alembert’s ratio test; Raabe’s test; Cauchy’s Integral test; Cauchy’s root test; logarithmic test. Alternating series: Leibnitz test; Alternating Convergent series: Absolute and Conditionally Convergence.

UNIT-IV: Calculus
Mean value theorems: Rolle’s theorem, Lagrange’s Mean value theorem with their Geometrical Interpretation and applications, Cauchy’s Mean value Theorem. Taylor’s Series. Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT-V: Multivariable calculus (Partial Differentiation and applications)
Definitions of Limit and continuity.
Partial Differentiation; Euler’s Theorem; Total derivative; Jacobian; Functional dependence & independence, Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.
TEXT BOOKS:

REFERENCE BOOKS:
Course Objectives:
- Students will demonstrate skills in scientific inquiry, problem solving and laboratory techniques.
- Students will be able to demonstrate competency and understanding of the concepts found in Quantum Mechanics, Fiber optics and lasers, Semiconductor physics and Electromagnetic theory and a broad base of knowledge in physics.
- The graduates will be able to solve non-traditional problems that potentially draw on knowledge in multiple areas of physics.
- To study applications in engineering like memory devices, transformer core and electromagnetic machinery.

Course Outcomes: Upon graduation:
- The student would be able to learn the fundamental concepts on Quantum behaviour of matter in its micro state.
- The knowledge of fundamentals of Semiconductor physics, Optoelectronics, Lasers and fibre optics enable the students to apply to various systems like communications, solar cell, photo cells and so on.
- Design, characterization and study of properties of material help the students to prepare new materials for various engineering applications.
- The course also helps the students to be exposed to the phenomena of electromagnetism and also to have exposure on magnetic materials and dielectric materials.

UNIT-I: Quantum Mechanics
Introduction to quantum physics, Black body radiation, Planck’s law, Photoelectric effect, Compton effect, de-Broglie’s hypothesis, Wave-particle duality, Davison and Germer experiment, Heisenberg’s Uncertainty principle, Born’s interpretation of the wave function, Schrodinger’s time independent wave equation, Particle in one dimensional box.

UNIT-II: Semiconductor Physics
Intrinsic and Extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature, Carrier generation and recombination, Carrier transport: diffusion and drift, Hall effect, p-n junction diode, Zener diode and their V-I Characteristics, Bipolar Junction Transistor (BJT): Construction, Principle of operation.

UNIT-III: Optoelectronics

UNIT-IV: Lasers and Fibre Optics

UNIT-V: Electromagnetism and Magnetic Properties of Materials

TEXT BOOKS:
3. A textbook of Engineering Physics, Dr. M. N. Avadhanulu, Dr. P.G. Kshirsagar - S. Chand
REFERENCE BOOKS:
1. Richard Robinett, Quantum Mechanics
3. Online Course: “Optoelectronic Materials and Devices” by Monica Katiyar and Deepak Guptha on NPTEL
CS103ES/CS203ES: PROGRAMMING FOR PROBLEM SOLVING

B.Tech. I Year I Sem.

Course Objectives:
- To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of C programming language.
- To learn the usage of structured programming approach in solving problems.

Course Outcomes: The student will learn
- To write algorithms and to draw flowcharts for solving problems.
- To convert the algorithms/flowcharts to C programs.
- To code and test a given logic in C programming language.
- To decompose a problem into functions and to develop modular reusable code.
- To use arrays, pointers, strings and structures to write C programs.
- Searching and sorting problems.

UNIT - I: Introduction to Programming
Introduction to components of a computer system: disks, primary and secondary memory, processor, operating system, compilers, creating, compiling and executing a program etc., Number systems
Introduction to Algorithms: steps to solve logical and numerical problems. Representation of Algorithm, Flowchart/Pseudo code with examples, Program design and structured programming
Introduction to C Programming Language: variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code, Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments
Bitwise operations: Bitwise AND, OR, XOR and NOT operators
Conditional Branching and Loops: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do-while loops
I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr. Command line arguments

UNIT - II: Arrays, Strings, Structures and Pointers:
Arrays: one and two dimensional arrays, creating, accessing and manipulating elements of arrays
Strings: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings
Structures: Defining structures, initializing structures, unions, Array of structures
Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self-referential structures, usage of self referential structures in linked list (no implementation)
Enumeration data type

UNIT - III: Preprocessor and File handling in C:
Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifndef, ifdef
Files: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions.

UNIT - IV: Function and Dynamic Memory Allocation:
Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries
Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions
Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of different data types
UNIT - V: Introduction to Algorithms:
Algorithms for finding roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a number is prime number, etc.
Basic searching in an array of elements (linear and binary search techniques),
Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms),
Basic concept of order of complexity through the example programs

TEXT BOOKS:

REFERENCE BOOKS:
2. Hall of India
3. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
ME104ES/ME204ES: ENGINEERING GRAPHICS

B.Tech. I Year I Sem.

Pre-requisites: Nil

Course objectives:
- To provide basic concepts in engineering drawing.
- To impart knowledge about standard principles of orthographic projection of objects.
- To draw sectional views and pictorial views of solids.

Course Outcomes: At the end of the course, the student will be able to:
- Preparing working drawings to communicate the ideas and information.
- Read, understand and interpret engineering drawings.

UNIT – I

UNIT- II

UNIT – III
Projections of Regular Solids – Auxiliary Views - Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views – Sections of Sphere

UNIT – IV
Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone, Intersection of Solids: Intersection of – Prism vs Prism- Cylinder Vs Cylinder

UNIT – V

Introduction to CAD: (For Internal Evaluation Weightage only):
Introduction to CAD Software Package Commands - Free Hand Sketches of 2D - Creation of 2D Sketches by CAD Package

TEXT BOOKS:
1. Engineering Drawing N.D. Bhatt / Charotar
2. Engineering Drawing / N. S. Parthasarathy and Vela Murali/ Oxford

REFERENCE BOOKS:
1. Engineering Drawing / Basant Agrawal and McAgrawal/ McGraw Hill
2. Engineering Drawing/ M. B. Shah, B.C. Rane / Pearson.
AP105BS/AP205BS: APPLIED PHYSICS LAB

B.Tech. I Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Energy gap of P-N junction diode:
 To determine the energy gap of a semiconductor diode.

2. Solar Cell:
 To study the V-I Characteristics of solar cell.

3. Light emitting diode:
 Plot V-I and P-I characteristics of light emitting diode.

4. Stewart – Gee’s experiment:
 Determination of magnetic field along the axis of a current carrying coil.

5. Hall effect:
 To determine Hall co-efficient of a given semiconductor.

6. Photoelectric effect:
 To determine work function of a given material.

7. LASER:
 To study the characteristics of LASER sources.

8. Optical fibre:
 To determine the bending losses of Optical fibres.

9. LCR Circuit:
 To determine the Quality factor of LCR Circuit.

10. R-C Circuit:
 To determine the time constant of R-C circuit.

Note: Any 8 experiments are to be performed
CS106ES/CS206ES: PROGRAMMING FOR PROBLEM SOLVING LAB

B.Tech. I Year I Sem. L T P C
0 0 3 1.5

[Note: The programs may be executed using any available Open Source/ Freely available IDE
Some of the Tools available are:
CodeLite: https://codelite.org/
Code::Blocks: http://www.codeblocks.org/
DevCpp : http://www.bloodshed.net/devcpp.html
Eclipse: http://www.eclipse.org
This list is not exhaustive and is NOT in any order of preference]

Course Objectives: The students will learn the following:
- To work with an IDE to create, edit, compile, run and debug programs
- To analyze the various steps in program development.
- To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- To Write programs using the Dynamic Memory Allocation concept.
- To create, read from and write to text and binary files

Course Outcomes: The candidate is expected to be able to:
- formulate the algorithms for simple problems
- translate given algorithms to a working and correct program
- correct syntax errors as reported by the compilers
- identify and correct logical errors encountered during execution
- represent and manipulate data with arrays, strings and structures
- use pointers of different types
- create, read and write to and from simple text and binary files
- modularize the code with functions so that they can be reused

Practice sessions:
- Write a simple program that prints the results of all the operators available in C (including pre/post increment, bitwise and/or/not, etc.). Read required operand values from standard input.
- Write a simple program that converts one given data type to another using auto conversion and casting. Take the values form standard input.

Simple numeric problems:
- Write a program for finding the max and min from the three numbers.
- Write the program for the simple, compound interest.
- Write program that declares Class awarded for a given percentage of marks, where mark <40% = Failed, 40% to <60% = Second class, 60% to <70% = First class, >= 70% = Distinction. Read percentage from standard input.
- Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be:
- 5 x 1 = 5
- 5 x 2 = 10
- 5 x 3 = 15
- Write a program that shows the binary equivalent of a given positive number between 0 to 255.

Expression Evaluation:
- A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of the building. Find the time taken by the ball to reach each floor. (Use the formula \(s = ut + \frac{1}{2}at^2 \) where \(u \) and \(a \) are the initial velocity in m/sec (= 0) and acceleration in m/sec^2 (= 9.8 m/s^2)).
- Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, % and use Switch Statement)
c. Write a program that finds if a given number is a prime number

d. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.

e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.

f. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

g. Write a C program to find the roots of a Quadratic equation.

h. Write a C program to calculate the following, where x is a fractional value.

i. \(\frac{1}{2} - \frac{x}{2} + \frac{x^2}{4} - \frac{x^3}{6}\)

j. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression: \(1 + x + x^2 + x^3 + \ldots + x^n\). For example: if n is 3 and x is 5, then the program computes 1+5+25+125.

Arrays and Pointers and Functions:

a. Write a C program to find the minimum, maximum and average in an array of integers.

b. Write a functions to compute mean, variance, Standard Deviation, sorting of n elements in single dimension array.

c. Write a C program that uses functions to perform the following:

d. Addition of Two Matrices

 e. Multiplication of Two Matrices

 f. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be same.

 g. Write C programs that use both recursive and non-recursive functions

 h. To find the factorial of a given integer.

 i. To find the GCD (greatest common divisor) of two given integers.

 j. To find \(x^n\)

 k. Write a program for reading elements using pointer into array and display the values using array.

 l. Write a program for display values reverse order from array using pointer.

m. Write a program through pointer variable to sum of n elements from array.

Files:

a. Write a C program to display the contents of a file to standard output device.

b. Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.

c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.

d. Write a C program that does the following:

 It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function)

 Now the program asks for an index and a value from the user and the value at that index should be changed to the new value in the file. (hint: use fseek function)

 The program should then read all 10 values and print them back.

e. Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

Strings:

a. Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.

b. Write a C program that converts a number ranging from 1 to 50 to Roman equivalent

c. Write a C program that uses functions to perform the following operations:

 d. To insert a sub-string in to a given main string from a given position.

 e. To delete n Characters from a given position in a given string.

 f. Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)

 g. Write a C program that displays the position of a character ch in the string S or – 1 if S doesn't contain ch.

 h. Write a C program to count the lines, words and characters in a given text.
Miscellaneous:

a. Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered.

b. Write a C program to construct a pyramid of numbers as follows:

```
    1
   1 2
  1 2 3
```

```
  4 5 6
```

```
  3 3 3
```

```
  4 4 4
```

```
  * * *
```

```
  * *
```

```
  *
```

Sorting and Searching:

a. Write a C program that uses non recursive function to search for a Key value in a given list of integers using linear search method.

b. Write a C program that uses non recursive function to search for a Key value in a given sorted list of integers using binary search method.

c. Write a C program that implements the Bubble sort method to sort a given list of integers in ascending order.

d. Write a C program that sorts the given array of integers using selection sort in descending order.

e. Write a C program that sorts the given array of integers using insertion sort in ascending order.

Suggested Reference Books for solving the problems:

i. Byron Gottfried, Schaum’s Outline of Programming with C, McGraw-Hill

iii. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

iv. Hall of India

v. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)

Course Objectives:
- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations

Course Outcomes:
- Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development.

UNIT-I
Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT-II
Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT-III

UNIT-IV

UNIT-V

TEXT BOOKS:
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:
6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.
MA201BS: MATHEMATICS - II

B.Tech. I Year II Sem. L T P C
3 1 0 4

Course Objectives: To learn
- Methods of solving the differential equations of first and higher order.
- Evaluation of multiple integrals and their applications
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course Outcomes: After learning the contents of this paper the student must be able to
- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real world problems
- Evaluate the multiple integrals and apply the concept to find areas, volumes, centre of mass and Gravity for cubes, sphere and rectangular parallelopiped
- Evaluate the line, surface and volume integrals and converting them from one to another

UNIT-I: First Order ODE
Exact, linear and Bernoulli’s equations; Applications: Newton’s law of cooling, Law of natural growth and decay; Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut’s type.

UNIT-II: Ordinary Differential Equations of Higher Order
Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type $e^{ax}, \sin ax, \cos ax$, polynomials in $x, e^{ax}V(x)$ and $x V(x)$; method of variation of parameters; Equations reducible to linear ODE with constant coefficients: Legendre’s equation, Cauchy-Euler equation.

UNIT-III: Multivariable Calculus (Integration)
Evaluation of Double Integrals (Cartesian and polar coordinates); change of order of integration (only Cartesian form); Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals. Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals), Centre of mass and Gravity (constant and variable densities) by double and triple integrals (applications involving cubes, sphere and rectangular parallelopiped).

UNIT-IV: Vector Differentiation

UNIT-V: Vector Integration
Line, Surface and Volume Integrals. Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:

REFERENCE BOOKS:
B.Tech. I Year II Sem.

Course Objectives:
- To bring adaptability to the concepts of chemistry and to acquire the required skills to become a perfect engineer.
- To impart the basic knowledge of atomic, molecular and electronic modifications which makes the student to understand the technology based on them.
- To acquire the knowledge of electrochemistry, corrosion and water treatment which are essential for the Engineers and in industry.
- To acquire the skills pertaining to spectroscopy and to apply them for medical and other fields.
- To impart the knowledge of stereochemistry and synthetic aspects useful for understanding reaction pathways.

Course Outcomes: The basic concepts included in this course will help the student to gain:
- The knowledge of atomic, molecular and electronic changes, band theory related to conductivity.
- The required principles and concepts of electrochemistry, corrosion and in understanding the problem of water and its treatments.
- The required skills to get clear concepts on basic spectroscopy and application to medical and other fields.
- The knowledge of configurational and conformational analysis of molecules and reaction mechanisms.

UNIT - I:
Molecular structure and Theories of Bonding: Atomic and Molecular orbitals. Linear Combination of Atomic Orbitals (LCAO), molecular orbitals of diatomic molecules, molecular orbital energy level diagrams of N₂, O₂ and F₂ molecules. π molecular orbitals of butadiene and benzene.

UNIT - II:

UNIT - III:

UNIT - IV:
Substitution reactions: Nucleophilic substitution reactions: Mechanism of S_N1, S_N2 reactions. Electrophilic and nucleophilic addition reactions: Addition of HBr to propene. Markownikoff and anti

UNIT - V:
Spectroscopic techniques and applications: Principles of spectroscopy, selection rules and applications of electronic spectroscopy, vibrational and rotational spectroscopy. Basic concepts of Nuclear magnetic resonance Spectroscopy, chemical shift. Introduction to Magnetic resonance imaging.

TEXT BOOKS:
6. Engineering Chemistry (NPTEL Web-book), by B.L. Tembe, Kamaluddin and M.S. Krishnan
EE103ES/EE203ES: BASIC ELECTRICAL ENGINEERING

B.Tech. I Year II Sem. L T P C
3 0 0 3

Course Objectives:
- To introduce the concepts of electrical circuits and its components
- To understand magnetic circuits, DC circuits and AC single phase & three phase circuits
- To study and understand the different types of DC/AC machines and Transformers.
- To import the knowledge of various electrical installations.
- To introduce the concept of power, power factor and its improvement.

Course Outcomes:
- To analyze and solve electrical circuits using network laws and theorems.
- To understand and analyze basic Electric and Magnetic circuits
- To study the working principles of Electrical Machines
- To introduce components of Low Voltage Electrical Installations

UNIT-I: D.C. Circuits
Time-domain analysis of first-order RL and RC circuits.

UNIT-II: A.C. Circuits
Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit.
Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III: Transformers
Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency.
Auto-transformer and three-phase transformer connections.

UNIT-IV: Electrical Machines
Generation of rotating magnetic fields, Construction and working of a three-phase induction motor,
Construction and working of synchronous generators.

UNIT-V: Electrical Installations
Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT REFERENCE BOOKS:
ME105ES/ME205ES: ENGINEERING WORKSHOP

B.Tech. I Year II Sem. L T P C
Pre-requisites: Practical skill

Course Objectives:
- To study of different hand- operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands-on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

Course Outcomes: At the end of the course, the student will be able to:
- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including plumbing, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

1. TRADES FOR EXERCISES:
 At least two exercises from each trade:
 I. Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
 II. Fitting – (V-Fit, Dovetail Fit & Semi-circular fit)
 III. Tin-Smithy – (Square Tin, Rectangular Tray & Conical Funnel)
 IV. Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern)
 V. Welding Practice – (Arc Welding & Gas Welding)
 VI. House-wiring – (Parallel & Series, Two-way Switch and Tube Light)
 VII. Blacksmithy – (Round to Square, Fan Hook and S-Hook)

2. TRADES FOR DEMONSTRATION & EXPOSURE:
 Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working

TEXT BOOKS:
1. Workshop Practice /B. L. Juneja / Cengage

REFERENCE BOOKS:
2. Workshop Manual / Venkat Reddy/ BSP
INTRODUCTION

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire language skills, the syllabus of English has been designed to develop linguistic, communicative and critical thinking competencies of Engineering students.

In English classes, the focus should be on the skills development in the areas of vocabulary, grammar, reading and writing. For this, the teachers should use the prescribed text for detailed study. The students should be encouraged to read the texts leading to reading comprehension and different passages may be given for practice in the class. The time should be utilized for working out the exercises given after each excerpt, and also for supplementing the exercises with authentic materials of a similar kind, for example, newspaper articles, advertisements, promotional material etc. The focus in this syllabus is on skill development, fostering ideas and practice of language skills in various contexts and cultures.

Learning Objectives: The course will help to

a. Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.

b. Equip students to study academic subjects more effectively and critically using the theoretical and practical components of English syllabus.

c. Develop study skills and communication skills in formal and informal situations.

Course Outcomes: Students should be able to

- Use English Language effectively in spoken and written forms.
- Comprehend the given texts and respond appropriately.
- Communicate confidently in various contexts and different cultures.
- Acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

SYLLABUS

UNIT –I
‘The Raman Effect’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary Building: The Concept of Word Formation -- The Use of Prefixes and Suffixes.

Grammar: Identifying Common Errors in Writing with Reference to Articles and Prepositions.

Reading: Reading and Its Importance - Techniques for Effective Reading.

UNIT –II
‘Ancient Architecture in India’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary: Synonyms and Antonyms.

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-verb Agreement.

Reading: Improving Comprehension Skills – Techniques for Good Comprehension

UNIT –III
‘Blue Jeans’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary: Acquaintance with Prefixes and Suffixes from Foreign Languages in English to form Derivatives - Words from Foreign Languages and their Use in English.
Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.
Reading: Sub-skills of Reading- Skimming and Scanning
Writing: Nature and Style of Sensible Writing- Defining- Describing Objects, Places and Events – Classifying- Providing Examples or Evidence

UNIT –IV
‘What Should You Be Eating’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Standard Abbreviations in English
Grammar: Redundancies and Clichés in Oral and Written Communication.
Reading: Comprehension- Intensive Reading and Extensive Reading
Writing: Writing Practices- Writing Introduction and Conclusion - Essay Writing-Précis Writing.

UNIT –V
‘How a Chinese Billionaire Built Her Fortune’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Technical Vocabulary and their usage
Grammar: Common Errors in English
Reading: Reading Comprehension-Exercises for Practice
Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing aReport.

TEXT BOOK:

REFERENCE BOOKS:
CH106BS/CH206BS: ENGINEERING CHEMISTRY LAB

B.Tech. I Year II Sem.

L T P C 0 0 3 1.5

Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness and chloride content in water to check its suitability for drinking purpose.
- To determine the rate constant of reactions from concentrations as a function of time.
- The measurement of physical properties like adsorption and viscosity.
- To synthesize the drug molecules and check the purity of organic molecules by thin layer chromatographic (TLC) technique.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness and chloride content in water.
- Estimation of rate constant of a reaction from concentration – time relationships.
- Determination of physical properties like adsorption and viscosity.
- Calculation of R_f values of some organic molecules by TLC technique.

List of Experiments:

1. Determination of total hardness of water by complexometric method using EDTA
2. Determination of chloride content of water by Argentometry
3. Estimation of an HCl by Conductometric titrations
4. Estimation of Acetic acid by Conductometric titrations
5. Estimation of HCl by Potentiometric titrations
6. Estimation of Fe$^{2+}$ by Potentiometry using KMnO$_4$
7. Determination of rate constant of acid catalysed hydrolysis of methyl acetate
8. Synthesis of Aspirin and Paracetamol
9. Thin layer chromatography calculation of R_f values. eg ortho and para nitro phenols
10. Determination of acid value of coconut oil
11. Verification of freundlich adsorption isotherm-adsorption of acetic acid on charcoal
12. Determination of viscosity of castor oil and ground nut oil by using Ostwald’s viscometer.
13. Determination of partition coefficient of acetic acid between n-butanol and water.

References

1. Senior practical physical chemistry, B.D. Khosla, A. Gulati and V. Garg (R. Chand & Co., Delhi)
2. An introduction to practical chemistry, K.K. Sharma and D. S. Sharma (Vikas publishing, N. Delhi)
EN107HS/EN207HS: ENGLISH LANGUAGE AND COMMUNICATION SKILLS LAB

B.Tech. I Year II Sem. L T P C 0 0 2 1

The **Language Lab** focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Course Objectives:
- To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- To sensitize students to the nuances of English speech sounds, word accent, intonation and rhythm
- To bring about a consistent accent and intelligibility in students’ pronunciation of English by providing an opportunity for practice in speaking
- To improve the fluency of students in spoken English and neutralize their mother tongue influence
- To train students to use language appropriately for public speaking and interviews

Course Outcomes: Students will be able to attain
- Better understanding of nuances of English language through audio-visual experience and group activities
- Neutralization of accent for intelligibility
- Speaking skills with clarity and confidence which in turn enhances their employability skills

Syllabus

English Language and Communication Skills Lab (ELCS) shall have two parts:
- a. **Computer Assisted Language Learning (CALL) Lab**
- b. **Interactive Communication Skills (ICS) Lab**

Listening Skills

Objectives
1. To enable students develop their listening skills so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills

Objectives
1. To involve students in speaking activities in various contexts
2. To enable students express themselves fluently and appropriately in social and professional contexts
 - Oral practice: Just A Minute (JAM) Sessions
 - Describing objects/situations/people
 - Role play – Individual/Group activities

- The following course content is prescribed for the English Language and Communication Skills Lab based on Unit-6 of AICTE Model Curriculum 2018 for B.Tech First English. As the syllabus is
very limited, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning and timesaving in the Lab)

Exercise – I
CALL Lab:

ICS Lab:

Exercise – II
CALL Lab:

ICS Lab:

Exercise - III
CALL Lab:

ICS Lab:

Exercise – IV
CALL Lab:
Understand: Listening for General Details. Practice: Listening Comprehension Tests.

ICS Lab:

Exercise – V
CALL Lab:
Understand: Listening for Specific Details. Practice: Listening Comprehension Tests.

ICS Lab:
Understand: Interview Skills. Practice: Mock Interviews.

minimum Requirement of infrastructural facilities for ELCS Lab:
1. Computer Assisted Language Learning (CALL) Lab:
The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self-study by students.

System Requirement (Hardware component):
Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

i) Computers with Suitable Configuration
ii) High Fidelity Headphones
2. **Interactive Communication Skills (ICS) Lab:**
 The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public-Address System, a LCD and a projector etc.
Course Objectives:
- To analyze a given network by applying various electrical laws and network theorems
- To know the response of electrical circuits for different excitations
- To calculate, measure and know the relation between basic electrical parameters.
- To analyze the performance characteristics of DC and AC electrical machines

Course Outcomes:
- Get an exposure to basic electrical laws.
- Understand the response of different types of electrical circuits to different excitations.
- Understand the measurement, calculation and relation between the basic electrical parameters
- Understand the basic characteristics of transformers and electrical machines.

List of experiments/demonstrations:
1. Verification of Ohms Law
2. Verification of KVL and KCL
3. Transient Response of Series RL and RC circuits using DC excitation
4. Transient Response of RLC Series circuit using DC excitation
5. Resonance in series RLC circuit
6. Calculations and Verification of Impedance and Current of RL, RC and RLC series circuits
8. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
9. Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star)
10. Measurement of Active and Reactive Power in a balanced Three-phase circuit
11. Performance Characteristics of a Separately/Self Excited DC Shunt/Compound Motor
12. Torque-Speed Characteristics of a Separately/Self Excited DC Shunt/Compound Motor
13. Performance Characteristics of a Three-phase Induction Motor
14. Torque-Speed Characteristics of a Three-phase Induction Motor
15. No-Load Characteristics of a Three-phase Alternator
EC301PC: ELECTRONIC DEVICES AND CIRCUITS

B.Tech. II Year I Sem.

Course Objectives:
- To introduce components such as diodes, BJT's and FET's.
- To know the applications of components.
- To know the switching characteristics of components.
- To give understanding of various types of amplifier circuits.

Course Outcomes: Upon completion of the Course, the students will be able to:
- Know the characteristics of various components.
- Understand the utilization of components.
- Understand the biasing techniques.
- Design and analyze small signal amplifier circuits.

UNIT - I
Diode and Applications: Diode - Static and Dynamic resistances, Equivalent circuit, Load line analysis, Diffusion and Transition Capacitances, Diode Applications: Switch-Switching times.
Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier, Rectifiers with Capacitive and Inductive Filters, Clippers-Clipping at two independent levels, Clamper-Clamping Circuit Theorem, Clamping Operation, Types of Clamplers.

UNIT - II

UNIT - III

UNIT – IV

UNIT – V

TEXT BOOKS:
1. Electronic Devices and Circuits- Jacob Millman, McGraw Hill Education

REFERENCE BOOKS:
EC302PC: NETWORK ANALYSIS AND TRANSMISSION LINES

B.Tech. II Year I Sem. L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

- To understand the basic concepts on RLC circuits.
- To know the behavior of the steady states and transients states in RLC circuits.
- To understand the two port network parameters.
- To study the propagation, reflection and transmission of plane waves in bounded and unbounded media.

Course Outcomes: Upon successful completion of the course, students will be able to:

- Gain the knowledge on basic RLC circuits behavior.
- Analyze the steady state and transient analysis of RLC Circuits.
- Know the characteristics of two port network parameters.
- Analyze the transmission line parameters and configurations.

UNIT - I
Network Topology, Basic cutset and tie set matrices for planar networks, Magnetic Circuits, Self and Mutual inductances, dot convention, impedance, reactance concept, Impedance transformation and coupled circuits, co-efficient of coupling, equivalent T for Magnetically coupled circuits, Ideal Transformer.

UNIT - II
Transient and Steady state analysis of RC, RL and RLC Circuits, Sinusoidal, Step and Square responses. RC Circuits as integrator and differentiators. 2nd order series and parallel RLC Circuits, Root locus, damping factor, over damped, under damped, critically damped cases, quality factor and bandwidth for series and parallel resonance, resonance curves.

UNIT - III
Two port network parameters, Z, Y, ABCD, h and g parameters, Characteristic impedance, Image transfer constant, image and iterative impedance, network function, driving point and transfer functions – using transformed (S) variables, Poles and Zeros. Standard T, π, L Sections, Characteristic impedance, image transfer constants, Design of Attenuators, impedance matching network.

UNIT – IV

UNIT – V

TEXT BOOKS:

REFERENCE BOOKS:
3. Electromagnetics with Applications – JD. Kraus, 5th Ed., TMH
EC303PC: DIGITAL SYSTEM DESIGN

B.Tech. II Year I Sem.

Pre-Requisites: Nil

Course Objectives:
- To understand common forms of number representation in logic circuits
- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand the concepts of combinational logic circuits and sequential circuits.
- To understand the Realization of Logic Gates Using Diodes & Transistors.

Course Outcomes: Upon completing this course, the student will be able to
- Understand the numerical information in different forms and Boolean Algebra theorems
- Postulates of Boolean algebra and to minimize combinational functions
- Design and analyze combinational and sequential circuits
- Known about the logic families and realization of logic gates.

UNIT I:
Number Systems: Number systems, Complements of Numbers, Codes- Weighted and Non-weighted codes and its Properties, Parity check code and Hamming code.

UNIT II:
Minimization of Boolean functions: Karnaugh Map Method - Up to five Variables, Don't Care Map Entries, Tabular Method.

Combinational Logic Circuits: Adders, Subtractors, Comparators, Multiplexers, Demultiplexers, Encoders, Decoders and Code converters, Hazards and Hazard Free Relations.

UNIT III:
Sequential Circuits Fundamentals: Basic Architectural Distinctions between Combinational and Sequential circuits, SR Latch, Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing and Triggering Consideration, Conversion from one type of Flip-Flop to another.

Registers and Counters: Shift Registers – Left, Right and Bidirectional Shift Registers, Applications of Shift Registers - Design and Operation of Ring and Twisted Ring Counter, Operation of Asynchronous and Synchronous Counters.

UNIT IV:
Sequential Machines: Finite State Machines, Synthesis of Synchronous Sequential Circuits- Serial Binary Adder, Sequence Detector, Parity-bit Generator, Synchronous Modulo N –Counters. Finite state machine-capabilities and limitations, Mealy and Moore models.

UNIT V:
Realization of Logic Gates Using Diodes & Transistors: AND, OR and NOT Gates using Diodes and Transistors, DCTL, RTL, DTL, TTL, CML and CMOS Logic Families and its Comparison, Classification of Integrated circuits, comparison of various logic families, standard TTL NAND Gate-Analysis & characteristics, TTL open collector O/Ps, Tristate TTL, MOS & CMOS open drain and tri-state outputs, CMOS transmission gate, IC interfacing- TTL driving CMOS & CMOS driving TTL.

TEXT BOOKS:

REFERENCE BOOKS:
4. Switching Theory and Logic Design – A Anand Kumar, PHI, 2013
EC304PC: SIGNALS AND SYSTEMS

B.Tech. II Year I Sem.

Pre-requisite: Nil

Course Objectives:
- This gives the basics of Signals and Systems required for all Electrical Engineering related courses.
- To understand the behavior of signal in time and frequency domain
- To understand the characteristics of LTI systems
- This gives concepts of Signals and Systems and its analysis using different transform techniques.

Course Outcomes: Upon completing this course, the student will be able to
- Differentiate various signal functions.
- Represent any arbitrary signal in time and frequency domain.
- Understand the characteristics of linear time invariant systems.
- Analyze the signals with different transform technique

UNIT - I
Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex functions, Classification of Signals and systems, Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum function.

UNIT – II
Fourier series: Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet’s conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum.

UNIT - III
Signal Transmission through Linear Systems: Linear System, Impulse response, Response of a Linear System, Linear Time Invariant(LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution.

UNIT – IV

UNIT - V
and Correlation, Detection of Periodic Signals in the presence of Noise by Correlation, Extraction of Signal from Noise by Filtering.

TEXT BOOKS:
1. Signals, Systems & Communications - B.P. Lathi, 2013, BSP.

REFERENCE BOOKS:
EC305ES: PROBABILITY THEORY AND STOCHASTIC PROCESSES

B.Tech. II Year I Sem.

Pre-requisite: Nil

Course Objectives:
- This gives basic understanding of random signals and processes sing
- Utilization of Random signals and systems in Communications and Signal Processing areas.
- To know the Spectral and temporal characteristics of Random Process.
- To Learn the Basic concepts of Noise sources

Course Outcomes: Upon completing this course, the student will be able to
- Understand the concepts of Random Process and its Characteristics.
- Understand the response of linear time Invariant system for a Random Processes.
- Determine the Spectral and temporal characteristics of Random Signals.
- Understand the concepts of Noise in Communication systems.

UNIT - I

UNIT - II

UNIT - III

UNIT - IV

UNIT - V
Noise Sources & Information Theory: Resistive/Thermal Noise Source, Arbitrary Noise Sources, Effective Noise Temperature, Noise equivalent bandwidth, Average Noise Figures, Average Noise Figure of cascaded networks, Narrow Band noise, Quadrature representation of narrow band noise & its properties. Entropy, Information rate, Source coding: Huffman coding, Shannon Fano coding, Mutual information, Channel capacity of discrete channel, Shannon-Hartley law; Trade-off between bandwidth and SNR.

TEXT BOOKS:
2. Principles of Communication systems by Taub and Schilling (TMH), 2008

REFERENCE BOOKS:
1. Random Processes for Engineers-Bruce Hajck, Cambridge unipress, 2015
EC306PC: ELECTRONIC DEVICES AND CIRCUITS LAB

B.Tech. II Year I Sem. L T P C
0 0 2 1

List of Experiments (Twelve experiments to be done):

Verify any twelve experiments in H/W Laboratory
1. PN Junction diode characteristics A) Forward bias B) Reverse bias.
2. Zener diode characteristics and Zener as voltage Regulator
3. Full Wave Rectifier with & without filters
4. Input and output characteristics of BJT in CE Configuration
5. Input and output characteristics of FE in CS Configuration
6. Common Emitter Amplifier Characteristics
7. Common Base Amplifier Characteristics
8. Common Source amplifier Characteristics
9. Measurement of h-parameters of transistor in CB, CE, CC configurations
10. Switching characteristics of a transistor
11. SCR Characteristics.
12. Types of Clippers at different reference voltages
13. Types of Clampers at different reference voltages
14. The steady state output waveform of clampers for a square wave input

Major Equipment required for Laboratories:
1. Regulated Power Suppliers, 0-30V
2. 20 MHz, Dual Channel Cathode Ray Oscilloscopes.
3. Functions Generators-Sine and Square wave signals
4. Multimeters
5. Electronic Components
EC307PC: DIGITAL SYSTEM DESIGN LAB

B.Tech. II Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Implement using digital ICs, all experiments to be carried out.

List of Experiments
1. Realization of Boolean Expressions using Gates
2. Design and realization logic gates using universal gates
3. Generation of clock using NAND / NOR gates
4. Design a 4 – bit Adder / Subtractor
5. Design and realization of a 4 – bit gray to Binary and Binary to Gray Converter
7. Design and realization of a Synchronous and Asynchronous counter using flip-flops
8. Design and realization of Asynchronous counters using flip-flops
9. Design and realization of 8x1 MUX using 2x1 MUX
10. Design and realization of 4 bit comparator
11. Design and Realization of a sequence detector-a finite state machine

Major Equipments required for Laboratories:
1. 5 V Fixed Regulated Power Supply/ 0-5V or more Regulated Power Supply.
2. 20 MHz Oscilloscope with Dual Channel.
3. Bread board and components/ Trainer Kit.
4. Multimeter.
EC308ES: BASIC SIMULATION LAB

B.Tech. II Year I Sem. L T P C
0 0 2 1

Note:
- All the experiments are to be simulated using MATLAB or equivalent software
- Minimum of 15 experiment are to be completed

List of Experiments:
1. Basic Operations on Matrices.
2. Generation of Various Signals and Sequences (Periodic and Aperiodic), such as Unit Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc.
3. Operations on Signals and Sequences such as Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
4. Finding the Even and Odd parts of Signal/Sequence and Real and Imaginary parts of Signal.
5. Convolution for Signals and sequences.
6. Auto Correlation and Cross Correlation for Signals and Sequences.
8. Computation of Unit sample, Unit step and Sinusoidal responses of the given LTI system and verifying its physical realizability and stability properties.
10. Finding the Fourier Transform of a given signal and plotting its magnitude and phase spectrum.
12. Locating the Zeros and Poles and plotting the Pole-Zero maps in S-plane and Z-Plane for the given transfer function.
14. Verification of Sampling Theorem.
17. Verification of Weiner-Khinchine Relations.

Major Equipments required for Laboratories:
1. Computer System with latest specifications connected
2. Window Xp or equivalent
3. Simulation software-MAT Lab or any equivalent simulation software
The Constitution of India is the supreme law of India. Parliament of India cannot make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the “basic structure" of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of “Constitutionalism" – a modern and progressive concept historically developed by the thinkers of “liberalism" – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of “constitutionalism" in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India’s legacy of “diversity". It has been said that Indian constitution reflects ideals of its freedom movement; however, few critics have argued that it does not truly incorporate our own ancient legal heritage and cultural values. No law can be “static" and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution but also strengthened the same through progressive interpretations of the text of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it "as one of the strongest court in the world".

Course content
1. Meaning of the constitution law and constitutionalism
2. Historical perspective of the Constitution of India
3. Salient features and characteristics of the Constitution of India
4. Scheme of the fundamental rights
5. The scheme of the Fundamental Duties and its legal status
6. The Directive Principles of State Policy – Its importance and implementation
7. Federal structure and distribution of legislative and financial powers between the Union and the States
8. Parliamentary Form of Government in India – The constitution powers and status of the President of India
9. Amendment of the Constitutional Powers and Procedure
10. The historical perspectives of the constitutional amendments in India
12. Local Self Government – Constitutional Scheme in India
13. Scheme of the Fundamental Right to Equality
14. Scheme of the Fundamental Right to certain Freedom under Article 19
15. Scope of the Right to Life and Personal Liberty under Article 21
MA401BS: LAPLACE TRANSFORMS, NUMERICAL METHODS AND COMPLEX VARIABLES

B.Tech. II Year II Sem.

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To learn
- Concept, properties of Laplace transforms
- Solving ordinary differential equations using Laplace transforms techniques.
- Various methods to find roots of an equation.
- Concept of finite differences and to estimate the value for the given data using interpolation.
- Evaluation of integrals using numerical techniques.
- Solving ordinary differential equations using numerical techniques.
- Differentiation and integration of complex valued functions.
- Evaluation of integrals using Cauchy’s integral formula and Cauchy’s residue theorem.
- Expansion of complex functions using Taylor’s and Laurent’s series.

Course outcomes: After learning the contents of this paper the student must be able to
- Use the Laplace transforms techniques for solving ODE’s
- Find the root of a given equation.
- Estimate the value for the given data using interpolation
- Find the numerical solutions for a given ODE’s
- Analyze the complex function with reference to their analyticity, integration using Cauchy’s integral and residue theorems.
- Taylor’s and Laurent’s series expansions of complex Function

UNIT - I
Laplace Transforms 10 L
Laplace Transforms; Laplace Transform of standard functions; first shifting theorem; Laplace transforms of functions when they are multiplied and divided by ‘t’. Laplace transforms of derivatives and integrals of function; Evaluation of integrals by Laplace transforms; Laplace transforms of Special functions; Laplace transform of periodic functions.
Inverse Laplace transform by different methods, convolution theorem (without Proof), solving ODEs by Laplace Transform method.

UNIT - II
Numerical Methods – I 10 L
Finite differences—forward differences—backward differences—central differences—symbolic relations and separation of symbols; Interpolation using Newton’s forward and backward difference formulae. Central difference interpolation: Gauss’s forward and backward formulae; Lagrange’s method of interpolation

UNIT - III
Numerical Methods – II 08 L
Ordinary differential equations: Taylor’s series; Picard’s method; Euler and modified Euler’s methods; Runge-Kutta method of fourth order.

UNIT - IV
Complex Variables (Differentiation) 10 L
Limit, Continuity and Differentiation of Complex functions. Cauchy-Riemann equations (without proof), Milne-Thomson methods, analytic functions, harmonic functions, finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties.

UNIT - V
Complex Variables (Integration) 10 L
Line integrals, Cauchy’s theorem, Cauchy’s Integral formula, Liouville’s theorem, Maximum-Modulus theorem (All theorems without proof); zeros of analytic functions, singularities, Taylor’s series,
Laurent’s series; Residues, Cauchy Residue theorem (without proof).

TEXT BOOKS:

REFERENCE BOOKS:
EC402PC: ELECTROMAGNETIC FIELDS AND WAVES

B.Tech. II Year II Sem.
Pre-requisite: Applied Physics

Course Objectives:
- To learn the Basic Laws, Concepts and proofs related to Electrostatic Fields and Magnetostatic Fields, and apply them to solve physics and engineering problems.
- To distinguish between static and time-varying fields, and understand the significance and utility of Maxwell’s Equations and Boundary Conditions, and gain ability to provide solutions to communication engineering problems.
- To analyze the characteristics of Uniform Plane Waves (UPW), determine their propagation parameters and estimate the same for dielectric and dissipative media.
- To conceptually understand the waveguides and to determine the characteristics of rectangular waveguides, microstrip lines.

Course Outcomes: Upon completing this course, the student will be able to
- Get the knowledge of Basic Laws, Concepts and proofs related to Electrostatic Fields and Magnetostatic Fields.
- Distinguish between the static and time-varying fields, establish the corresponding sets of Maxwell’s Equations and Boundary Conditions.
- Analyze the Wave Equations for good conductors, good dielectrics and evaluate the UPW Characteristics for several practical media of interest.
- To analyze completely the rectangular waveguides, their mode characteristics, and design waveguides for solving practical problems.

UNIT – I
Electrostatics: Coulomb’s Law, Electric Field Intensity – Fields due to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Electric Potential, Relations Between E and V, Maxwell’s Two Equations for Electrostatic Fields, Energy Density, Convection and Conduction Currents, Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation, Relaxation Time, Poisson’s and Laplace’s Equations, Capacitance – Parallel Plate, Coaxial, Spherical Capacitors.

UNIT – II

UNIT – III

UNIT – IV

UNIT – V
Waveguides: Electromagnetic Spectrum and Bands. Rectangular Waveguides – Solution of Wave Equations in Rectangular Coordinates, TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross-section, Phase and Group Velocities, Wavelengths and Impedance Relations,
Equation of Power Transmission, Impossibility of TEM Mode. Microstrip Lines – \(Z_0 \) Relations, Effective Dielectric Constant.

TEXT BOOKS:

REFERENCE BOOKS:
EC403PC: ANALOG AND DIGITAL COMMUNICATIONS

B.Tech. II Year II Semester

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: Probability theory and Stochastic Processes

Course Objectives:
- To develop ability to analyze system requirements of analog and digital communication systems.
- To understand the generation, detection of various analog and digital modulation techniques.
- To acquire theoretical knowledge of each block in AM, FM transmitters and receivers.
- To understand the concepts of baseband transmissions.

Course Outcomes: Upon completing this course, the student will be able to
- Analyze and design of various continuous wave and angle modulation and demodulation techniques
- Understand the effect of noise present in continuous wave and angle modulation techniques.
- Attain the knowledge about AM, FM Transmitters and Receivers
- Analyze and design the various Pulse Modulation Techniques.
- Understand the concepts of Digital Modulation Techniques and Baseband transmission.

UNIT - I
Amplitude Modulation: Need for modulation, Amplitude Modulation - Time and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves - Switching modulator, Detection of AM Waves - Envelope detector, DSBSC modulation - time and frequency domain description, Generation of DSBSC Waves - Balanced Modulators, Coherent detection of DSB-SC Modulated waves, COSTAS Loop, SSB modulation - time and frequency domain description, frequency discrimination and Phase discrimination methods for generating SSB, Demodulation of SSB Waves, principle of Vestigial side band modulation.

UNIT - II

UNIT - III
Transmitters: Classification of Transmitters, AM Transmitters, FM Transmitters
Receivers: Radio Receiver - Receiver Types - Tuned radio frequency receiver, Superheterodyne receiver, RF section and Characteristics - Frequency changing and tracking, Intermediate frequency, Image frequency, AGC, Amplitude limiting, FM Receiver, Comparison of AM and FM Receivers.

UNIT - IV
Pulse Modulation: Types of Pulse modulation- PAM, PWM and PPM. Comparison of FDM and TDM.
Pulse Code Modulation: PCM Generation and Reconstruction, Quantization Noise, Non-Uniform Quantization and Compingd, DPCM, Adaptive DPCM, DM and Adaptive DM, Noise in PCM and DM.

UNIT - V
Digital Modulation Techniques: ASK- Modulator, Coherent ASK Detector, FSK- Modulator, Non-Coherent FSK Detector, BPSK- Modulator, Coherent BPSK Detection. Principles of QPSK, Differential PSK and QAM.

Baseband Transmission and Optimal Reception of Digital Signal: A Baseband Signal Receiver, Probability of Error, Optimum Receiver, Coherent Reception, ISI, Eye Diagrams.

TEXT BOOKS:
REFERENCE BOOKS:
EC404PC: LINEAR IC APPLICATIONS

B.Tech. II Year II Sem.

Pre-requisite: Electronic Devices & Circuits

Course Objectives: The main objectives of the course are:
- To introduce the basic building blocks of linear integrated circuits.
- To introduce the theory and applications of analog multipliers and PLL.
- To introduce the concepts of waveform generation and introduce some special function ICs.

Course Outcomes: Upon completing this course, the student will be able to
- A thorough understanding of operational amplifiers with linear integrated circuits.
- Attain the knowledge of functional diagrams and applications of IC 555 and IC 565
- Acquire the knowledge about the Data converters.

UNIT - I

UNIT - II
Op-amp and Applications: Basic information of Op-amp, instrumentation amplifier, ac amplifier, V to I and I to V converters, Sample & hold circuits, multipliers and dividers, differentiators and integrators, comparators, Schmitt trigger, Multivibrators, introduction to voltage regulators, features of 723

UNIT - III
Active Filters & Oscillators: Introduction, 1st order LPF, HPF filters, Band pass, Band reject and all pass filters. Oscillator types and principle of operation - RC, Wien and quadrature type, waveform generators - triangular, sawtooth, square wave and VCO.

UNIT - IV
Timers & Phase Locked Loops: Introduction to 555 timer, functional diagram, monostable and astable operations and applications, Schmitt Trigger. PLL - introduction, block schematic, principles and description of individual blocks of 565.

UNIT - V

TEXT BOOKS:
1. Linear Integrated Circuits, D. Roy Chowdhury, New Age International(p) Ltd.
2. Op-Amps & Linear ICs, Ramakanth A. Gayakwad, PHI

REFERENCES BOOKS:
1. Operational Amplifiers & Linear Integrated Circuits, R.F. Coughlin & Fredrick F. Driscoll, PHI.
2. Operational Amplifiers & Linear Integrated Circuits: Theory & Applications, Denton J. Daibey, TMH.
4. Digital Fundamentals - Floyd and Jain, Pearson Education.
EC405PC: ELECTRONIC CIRCUIT ANALYSIS

B.Tech. II Year II Sem. L T P C 3 0 0 3

Pre-requisite: Electronic Devices and Circuits

Course Objectives:
- Learn the concepts of high frequency analysis of transistors.
- To give understanding of various types of amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.
- To familiarize the Concept of feedback in amplifiers so as to differentiate between negative and positive feedback.
- To construct various multivibrators using transistors and sweep circuits.

Course Outcomes: Upon completing this course, the student will be able to
- Design the multistage amplifiers and understand the concepts of High Frequency Analysis of Transistors.
- Utilize the Concepts of negative feedback to improve the stability of amplifiers and positive feedback to generate sustained oscillations.
- Design and realize different classes of Power Amplifiers and tuned amplifiers useable for audio and Radio applications.
- Design Multivibrators and sweep circuits for various applications.

UNIT – I
Multistage Amplifiers: Classification of Amplifiers, Distortion in amplifiers, Different coupling schemes used in amplifiers, Frequency response and Analysis of multistage amplifiers, Casca RC Coupled amplifiers, Cascode amplifier, Darlington pair.

Transistor at High Frequency: Hybrid -π-model of Common Emitter transistor model, fα, fβ and unity gain bandwidth, Gain-bandwidth product.

UNIT II

UNIT III

UNIT IV
Large Signal Amplifiers: Class A Power Amplifier- Series fed and Transformer coupled, Conversion Efficiency, Class B Power Amplifier- Push Pull and Complimentary Symmetry configurations, Conversion Efficiency, Principle of operation of Class AB and Class –C Amplifiers.

UNIT V

Text Books:
1. Integrated Electronics, Jacob Millman, Christos C Halkias, McGraw Hill Education.
REFERENCE BOOKS:
5.
EC406PC: ANALOG AND DIGITAL COMMUNICATIONS LAB

B.Tech. II Year II Sem.
L T P C
0 0 3 1.5

Note:
- Minimum 12 experiments should be conducted;
- All these experiments are to be simulated first either using MATLAB, COMSIM or any other simulation package and then to be realized in hardware

List of Experiments:
1. (i) Amplitude modulation and demodulation (ii) Spectrum analysis of AM
2. (i) Frequency modulation and demodulation (ii) Spectrum analysis of FM
3. DSB-SC Modulator & Detector
4. SSB-SC Modulator & Detector (Phase Shift Method)
5. Frequency Division Multiplexing & Demultiplexing
6. Pulse Amplitude Modulation & Demodulation
7. Pulse Width Modulation & Demodulation
8. Pulse Position Modulation & Demodulation
9. PCM Generation and Detection
10. Delta Modulation
11. Frequency Shift Keying: Generation and Detection
12. Binary Phase Shift Keying: Generation and Detection
13. Generation and Detection (i) DPSK (ii) QPSK

Major Equipments required for Laboratories:
1. CROs: 20MHz
2. Function Generators: 2MHz
3. Spectrum Analyzer
4. Regulated Power Supplies: 0-30V
5. MAT Lab/Equivalent Simulation Package with Communication tool box
6. Analog and Digital Modulation and Demodulation Trainer Kits.
EC407PC: IC APPLICATIONS LAB

B.Tech. II Year II Semester

L T P C
0 0 3 1.5

Note: Verify the functionality of the IC in the given application

Design and Implementation of:
1. Inverting and Non-Inverting Amplifiers using Op Amps
4. Integrator Circuit using IC 741.
6. Active filter Applications-LPF, HPF (First Order)
7. IC 741 waveform Generators-Sine, Square wave and Triangular Waves.
8. Mono-Stable Multivibrator using IC 555.
10. Schmitt Trigger Circuits using IC 741.
11. IC 565-PLL Applications.
12. Voltage Regulator using IC 723
13. Three terminal voltage regulators-7805, 7809, 7912

Major Equipments required for Laboratories:
1. 5 V Fixed Regulated Power Supply/ 0-5V or more Regulated Power Supply.
2. 20 MHz Oscilloscope with Dual Channel.
3. Bread board and components/ Trainer Kit.
4. Multimeter.
EC408PC: ELECTRONIC CIRCUIT ANALYSIS LAB

B.Tech. II Year II Sem.

L T P C
0 0 2 1

Note:
- Experiments marked with * has to be designed, simulated and verified in hardware.
- Minimum of 9 experiments to be done in hardware.

Hardware Testing in Laboratory:
1. Common Emitter Amplifier (*)
2. Two Stage RC Coupled Amplifier
3. Cascode amplifier Circuit (*)
4. Darlington Pair Circuit
5. Current Shunt Feedback amplifier Circuit
6. Voltage Series Feedback amplifier Circuit (*)
7. RC Phase shift Oscillator Circuit (*)
8. Hartley and Colpitt’s Oscillators Circuit
9. Class A power amplifier
10. Class B Complementary symmetry amplifier (*)
11. Design a Monostable Multivibrator
12. The output voltage waveform of Miller Sweep Circuit

Major Equipments required for Laboratories:
1. Computer System with latest specifications connected
2. Window XP or equivalent
3. Simulation software-Multisim or any equivalent simulation software
4. Regulated Power Suppliers, 0-30V
5. 20 MHz, Dual Channel Cathode Ray Oscilloscopes.
6. Functions Generators-Sine and Square wave signals
7. Multimeters
8. Electronic Components
MC409/MC309: GENDER SENSITIZATION LAB
(An Activity-based Course)

B.Tech. II Year II Sem. L T P C
0 0 2 0

COURSE DESCRIPTION
This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course:
- To develop students’ sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes:
- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT - I: UNDERSTANDING GENDER

UNIT – II: GENDER ROLES AND RELATIONS
Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles-Gender Roles and Relationships Matrix-Missing Women-Sex Selection and its Consequences-Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

UNIT – III: GENDER AND LABOUR

UNIT – IV: GENDER - BASED VIOLENCE

UNIT – V: GENDER AND CULTURE

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

- Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on “Gender”.

ASSESSMENT AND GRADING:
- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%
EC501PC: MICROPROCESSORS AND MICROCONTROLLERS

B.Tech. III Year I Semester

Prerequisite: Nil

Course Objectives:
1. To familiarize the architecture of microprocessors and micro controllers
2. To provide the knowledge about interfacing techniques of bus & memory.
3. To understand the concepts of ARM architecture
4. To study the basic concepts of Advanced ARM processors

Course Outcomes: Upon completing this course, the student will be able to
1. Understands the internal architecture, organization and assembly language programming of 8086 processors.
2. Understands the internal architecture, organization and assembly language programming of 8051/controllers
3. Understands the interfacing techniques to 8086 and 8051 based systems.
4. Understands the internal architecture of ARM processors and basic concepts of advanced ARM processors.

UNIT –I:
Instruction Set and Assembly Language Programming of 8086: Instruction formats, Addressing modes, Instruction Set, Assembler Directives, Macros, and Simple Programs involving Logical, Branch and Call Instructions, Sorting, String Manipulations.

UNIT –II:
Introduction to Microcontrollers: Overview of 8051 Microcontroller, Architecture, I/O Ports, Memory Organization, Addressing Modes and Instruction set of 8051.
8051 Real Time Control: Programming Timer Interrupts, Programming External Hardware Interrupts, Programming the Serial Communication Interrupts, Programming 8051 Timers and Counters

UNIT –III:
I/O And Memory Interface: LCD, Keyboard, External Memory RAM, ROM Interface, ADC, DAC Interface to 8051.
Serial Communication and Bus Interface: Serial Communication Standards, Serial Data Transfer Scheme, On board Communication Interfaces-I2C Bus, SPI Bus, UART; External Communication Interfaces-RS232,USB.

UNIT –IV:
ARM Architecture: ARM Processor fundamentals, ARM Architecture – Register, CPSR, Pipeline, exceptions and interrupts interrupt vector table, ARM instruction set – Data processing, Branch instructions, load store instructions, Software interrupt instructions, Program status register instructions, loading constants, Conditional execution, Introduction to Thumb instructions.

UNIT – V:

TEXT BOOKS:

REFERENCE BOOKS:
EC502PC: DATA COMMUNICATIONS AND NETWORKS

B.Tech. III Year I Semester

Pre-requisite: Digital Communications

Course Objectives:
1. To introduce the Fundamentals of data communication networks
2. To demonstrate the Functions of various protocols of Data link layer.
3. To demonstrate Functioning of various Routing protocols.
4. To introduce the Functions of various Transport layer protocols.
5. To understand the significance of application layer protocols

Course Outcomes: Upon completing this course, the student will be able to
1. Know the Categories and functions of various Data communication Networks
2. Design and analyze various error detection techniques.
3. Demonstrate the mechanism of routing the data in network layer
4. Know the significance of various Flow control and Congestion control Mechanisms
5. Know the Functioning of various Application layer Protocols.

UNIT - I:

UNIT - II:
Data Link Layer: Links, Access Networks, and LANs- Introduction to the Link Layer, The Services Provided by the Link Layer, Types of errors, Redundancy, Detection vs Correction, Forward error correction Versus Retransmission Error-Detection and Correction Techniques, Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) , Framing, Flow Control and Error Control protocols , Noisy less Channels and Noisy Channels, HDLC, Multiple Access Protocols, Random Access , ALOHA, Controlled access, Channelization Protocols. 802.11 MAC Protocol, IEEE 802.11 Frame

UNIT - III:

UNIT - IV:

UNIT - V:
Application Layer:
Principles of Networking Applications – Network Application Architectures, Processes Communicating, Transport Services Available to Applications, Transport Services Provided by the File Transfer: FTP, FTP Commands and Replies, Electronic Mail in the Internet- STMP, Comparison with HTTP, DNS-The
Internet’s Directory Service – Service Provided by DNS, Overview of How DNS Works, DNS Records and messages.

TEXTBOOKS:

REFERENCES:
EC503PC: CONTROL SYSTEMS

B.Tech. III Year I Semester

L T P C
3 1 0 4

Prerequisite: Linear Algebra and Calculus, Ordinary Differential Equations and Multivariable Calculus Laplace Transforms, Numerical Methods and Complex variables

Course objectives:
- To understand the different ways of system representations such as Transfer function representation and state space representations and to assess the system dynamic response
- To assess the system performance using time domain analysis and methods for improving it
- To assess the system performance using frequency domain analysis and techniques for improving the performance
- To design various controllers and compensators to improve system performance

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand the modeling of linear-time-invariant systems using transfer function and state-space representations.
- Understand the concept of stability and its assessment for linear-time invariant systems.
- Design simple feedback controllers.

UNT - I

UNT - II

UNT - III

UNT - IV

UNT - V

TEXT BOOKS:

REFERENCE BOOKS:
SM504MS: BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

B.Tech. III Year I Semester

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objective: To learn the basic business types, impact of the economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm’s financial position by analysing the Financial Statements of a Company.

UNIT – I: Introduction to Business and Economics

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

UNIT - II: Demand and Supply Analysis

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

Supply Analysis: Determinants of Supply, Supply Function and Law of Supply.

UNIT- III: Production, Cost, Market Structures & Pricing

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition.

Pricing: Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT - V: Financial Analysis through Ratios: Concept of Ratio Analysis, Importance, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios – Analysis and Interpretation (simple problems).

TEXT BOOKS:

REFERENCE BOOKS:

EC511PE: COMPUTER ORGANIZATION & OPERATING SYSTEMS

B.Tech. III Year I Semester

Course Objectives:
1. To understand the structure of a computer and its operations.
2. To understand the RTL and Micro-level operations and control in a computer.
3. Understanding the concepts of I/O and memory organization and operating systems.

Course Outcomes:
1. Able to visualize the organization of different blocks in a computer.
2. Able to use micro-level operations to control different units in a computer.
3. Able to use Operating systems in a computer.

UNIT - I:

UNIT - II:
Micro Programmed Control: Control Memory, Address Sequencing, Microprogram Examples, Design of Control Unit, Hard Wired Control, Microprogrammed Control

The Memory System: Basic Concepts of Semiconductor RAM Memories, Read-Only Memories, Cache Memories Performance Considerations, Virtual Memories Secondary Storage, Introduction to RAID.

UNIT - III:

UNIT - IV:

Memory Management: Swapping, Contiguous Memory Allocation, Paging, Structure of The Page Table, Segmentation, Virtual Memory, Demand Paging, Page-Replacement Algorithms, Allocation of Frames, Thrashing Case Studies - UNIX, Linux, Windows

UNIT - V:

TEXT BOOKS:

62

REFERENCE BOOKS:
EC512PE: ERROR CORRECTING CODES

B.Tech. III Year I Semester

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite: Digital Communications

Course Objectives:
1. To acquire the knowledge in measurement of information and errors.
2. To study the generation of various code methods used in communications.
3. To study the various application of codes.

Course Outcomes:
1. Able to transmit and store reliable data and detect errors in data through coding.
2. Able to understand the designing of various codes like block codes, cyclic codes, convolution codes, turbo codes and space codes.

UNIT – I:

Coding for Reliable Digital Transmission and storage: Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.

Linear Block Codes: Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT - II:

Cyclic Codes: Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding, Cyclic Hamming Codes, Shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT – III:

Convolutional Codes: Encoding of Convolutional Codes, Structural and Distance Properties, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

UNIT – IV:

Turbo Codes: LDPC Codes- Codes based on sparse graphs, Decoding for binary erasure channel, Log-likelihood algebra, Brief propagation, Product codes, Iterative decoding of product codes, Concatenated convolutional codes- Parallel concatenation, The UMTS Turbo code, Serial concatenation, Parallel concatenation, Turbo decoding

UNIT - V:

Space-Time Codes: Introduction, Digital modulation schemes, Diversity, Orthogonal space- Time Block codes, Alamouti’s schemes, Extension to more than Two Transmit Antennas, Simulation Results, Spatial Multiplexing: General Concept, Iterative APP Preprocessing and Per-layer Decoding, Linear Multilayer Detection, Original BLAST Detection, QL Decomposition and Interface Cancellation, Performance of Multi – Layer Detection Schemes, Unified Description by Linear Dispersion Codes.

TEXT BOOKS:

REFERENCE BOOKS:
2. Digital Communications-Fundamental and Application - Bernard Sklar, PE.
4. Introduction to Error Control Codes-Salvatore Gravano-oxford
EC513PE: ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

B.Tech. III Year I Semester

Prerequisite: Basic Electrical and Electronics Engineering

Course Objectives:
1. It provides an understanding of various measuring system functioning and metrics for performance analysis.
2. Provides understanding of principle of operation, working of different electronic instruments viz. signal generators, signal analyzers, recorders and measuring equipment.
3. Understanding the concepts of various measuring bridges and their balancing conditions.
4. Provides understanding of use of various measuring techniques for measurement of different physical parameters using different classes of transducers.

Course Outcomes: Upon completing this course, the student will be able to
1. Measure electrical parameters with different meters and understand the basic definition of measuring parameters.
2. Use various types of signal generators, signal analyzers for generating and analyzing various real-time signals.
3. Operate an Oscilloscope to measure various signals.
4. Measure various physical parameters by appropriately selecting the transducers.

UNIT - I:

UNIT - II:
Signal Analyzers: AF, HF Wave Analyzers, Harmonic Distortion, Heterodyne wave Analyzers, Spectrum Analyzers, Power Analyzers, Capacitance-Voltage Meters, Oscillators. Signal Generators: AF, RF Signal Generators, Sweep Frequency Generators, Pulse and Square wave Generators, Function Generators, Arbitrary Waveform Generator, Video Signal Generators, and Specifications

UNIT III:
Special Purpose Oscilloscopes: Dual Trace, Dual Beam CROs, Sampling Oscilloscopes, Storage Oscilloscopes, Digital Storage CROs.

UNIT IV:
Transducers: Classification, Strain Gauges, Bounded, unbounded; Force and Displacement Transducers, Resistance Thermometers, Hotwire Anemometers, LVDT, Thermocouples, Synchros, Special Resistance Thermometers, Digital Temperature sensing system, Piezoelectric Transducers, Variable Capacitance Transducers, Magneto Strictive Transducers, gyroscopes, accelerometers.

UNIT V:
Bridges: Wheat Stone Bridge, Kelvin Bridge, and Maxwell Bridge.

TEXT BOOKS:
REFERENCE BOOKS:
EC505PC: MICROPROCESSORS AND MICROCONTROLLERS LAB

B.Tech. III Year I Semester

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Cycle 1: Using 8086 Processor Kits and/or Assembler (5 Weeks)
- Assembly Language Programs to 8086 to Perform
 1. Arithmetic, Logical, String Operations on 16 Bit and 32-Bit Data.
 2. Bit level Logical Operations, Rotate, Shift, Swap and Branch Operations.

Cycle 2: Using 8051 Microcontroller Kit (6 weeks)
- Introduction to IDE
 1. Assembly Language Programs to Perform Arithmetic (Both Signed and Unsigned) 16 Bit Data Operations, Logical Operations (Byte and Bit Level Operations), Rotate, Shift, Swap and Branch Instructions
 2. Time delay Generation Using Timers of 8051.
 3. Serial Communication from / to 8051 to / from I/O devices.
 4. Program Using Interrupts to Generate Square Wave 10 KHZ Frequency on P2.1 Using Timer 0 8051 in 8 bit Auto reload Mode and Connect a 1 HZ Pulse to INT1 pin and Display on Port 0. Assume Crystal Frequency as 11.0592 MHZ

Cycle 3: Interfacing I/O Devices to 8051(5 Weeks)
 1. 7 Segment Display to 8051.
 2. Matrix Keypad to 8051.
 3. Sequence Generator Using Serial Interface in 8051.
 4. 8 bit ADC Interface to 8051.
 5. Triangular Wave Generator through DAC interfaces to 8051.

TEXT BOOKS:
EC506PC: DATA COMMUNICATIONS AND NETWORKS LAB

B.Tech. III Year I Semester

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note:

A. Minimum of 12 Experiments have to be conducted
B. All the Experiments may be Conducted using Network Simulation software like NS-2, NSG-2.1 and Wire SHARK/equivalent software.

Note: For Experiments 2 to 10 Performance may be evaluated through simulation by using the parameters Throughput, Packet Delivery Ratio, Delay etc.

1. Writing a TCL Script to create two nodes and links between nodes
2. Writing a TCL Script to transmit data between nodes
3. Evaluate the performance of various LAN Topologies
4. Evaluate the performance of Drop Tail and RED queue management schemes
5. Evaluate the performance of CBQ and FQ Scheduling Mechanisms
6. Evaluate the performance of TCP and UDP Protocols
7. Evaluate the performance of TCP, New Reno and Vegas
8. Evaluate the performance of AODV and DSR routing protocols
9. Evaluate the performance of AODV and DSDV routing protocols
10. Evaluate the performance of IEEE 802.11 and IEEE 802.15.4
11. Evaluate the performance of IEEE 802.11 and SMAC
12. Capturing and Analysis of TCP and IP Packets
13. Simulation and Analysis of ICMP and IGMP Packets
14. Analyze the Protocols SCTP, ARP, NetBIOS, IPX VINES
15. Analysis of HTTP, DNS and DHCP Protocols

Major Equipment Required:

Required software (Open Source) like NS-2, NSG-2.1 and Wire SHARK
EN508HS: ADVANCED COMMUNICATION SKILLS LAB

B.Tech. III Year I Semester

L T P C
0 0 2 1

1. INTRODUCTION:
The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context.
The proposed course should be a laboratory course to enable students to use ‘good’ English and perform the following:
- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

2. OBJECTIVES:
This Lab focuses on using multi-media instruction for language development to meet the following targets:
- To improve the students’ fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS:
The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:
1. Activities on Fundamentals of Inter-personal Communication and Building Vocabulary - Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals - Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
2. Activities on Reading Comprehension – General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading & effective googling.
4. Activities on Presentation Skills – Oral presentations (individual and group) through JAM sessions/seminars/PPTs and written presentations through posters/projects/reports/ e-mails/assignments etc.
5. Activities on Group Discussion and Interview Skills – Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4. MINIMUM REQUIREMENT:
The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:
- Spacious room with appropriate acoustics.
- Round Tables with movable chairs.
Audio-visual aids
• LCD Projector
• Public Address system
• P – IV Processor, Hard Disk – 80 GB, RAM – 512 MB Minimum, Speed – 2.8 GHZ
• T. V, a digital stereo & Camcorder
• Headphones of High quality

5. SUGGESTED SOFTWARE:
The software consisting of the prescribed topics elaborated above should be procured and used.
• Oxford Advanced Learner’s Compass, 7th Edition
• DELTA’s key to the Next Generation TOEFL Test: Advanced Skill Practice.
• Lingua TOEFL CBT Insider, by Dream tech
• TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

TEXT BOOKS:

REFERENCES:
UNIT – I
Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT – II
Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT – III
Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.
Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT – IV
Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.
Unfair competition: Misappropriation right of publicity, false advertising.

UNIT – V
New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.
International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

TEXT & REFERENCE BOOKS:
1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
EC601PC: ANTENNAS AND PROPAGATION

B.Tech. III Year II Semester

Pre-requisite: Electromagnetic Theory and Transmission Lines

Course Objectives: The course objectives are:
1. To understand the concept of radiation, antenna definitions and significance of antenna parameters, to derive and analyze the radiation characteristics of thin wire dipole antennas and solve numerical problems.
2. To analyze the characteristics and design relations of UHF, VHF and Microwave Antennas.
3. To identify the antenna array requirements, to determine the characteristics of ULAs and estimate the patterns of BSA, EFA, and Binomial Arrays.
4. To understand the concepts and set-up requirements for microwave measurements, and familiarize with the procedure to enable antenna measurements.
5. To define and distinguish between different phenomenon of wave propagation (ground wave, space wave and sky wave), their frequency dependence, and estimate their characteristics, identifying their profiles and parameters involved.

Course Outcomes: Upon completing this course, the student will be able to explain the mechanism of radiation, definitions of different antenna characteristic parameters and establish their mathematical relations.
1. Characterize the antennas based on frequency, configure the geometry and establish the radiation patterns of VHF, UHF and Microwave antennas and also antenna arrays.
2. Specify the requirements for microwave measurements and arrange a setup to carry out the antenna far zone pattern and gain measurements in the laboratory.
3. Classify the different wave propagation mechanisms, determine the characteristic features of different wave propagations, and estimate the parameters involved.

UNIT - I
Antenna Basics: Basic Antenna Parameters – Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity-Gain-Resolution, Antenna Apertures, Effective Height. Fields from Oscillating Dipole, Field Zones, Front - to-back Ratio, Antenna Theorems, Radiation, Retarded Potentials – Helmholtz Theorem
Thin Linear Wire Antennas – Radiation from Small Electric Dipole, Quarter Wave Monopole and Half Wave Dipole – Current Distributions, Field Components, Radiated Power, Radiation Resistance, Beam Width, Directivity, Effective Area and Effective Height, Natural Current Distributions, Far Fields and Patterns of Thin Linear Centre-fed Antennas of Different Lengths. Loop Antennas - Small Loop, Comparison of Far Fields of Small Loop and Short Dipole, Radiation Resistances and Directivities of Small Loops (Qualitative Treatment).

UNIT - II
Antenna Arrays: Point Sources – Definition, Patterns, arrays of 2 Isotropic Sources - Different Cases, Principle of Pattern Multiplication, Uniform Linear Arrays – Broadside Arrays, Endfire Arrays, EFA with Increased Directivity, Derivation of their Characteristics and Comparison, BSAs with Non-uniform Amplitude Distributions – General Considerations and Binomial Arrays.
Antenna Measurements: Introduction, Concepts - Reciprocity, Near and Far Fields, Coordinate System, Sources of Errors. Patterns to be Measured, Directivity Measurement, Gain Measurements (by Comparison, Absolute and 3-Antenna Methods)

UNIT - III:

UNIT - IV
VHF, UHF and Microwave Antennas - II: Microstrip Antennas – Introduction, Features, Advantages and Limitations, Rectangular Patch Antennas – Geometry and Parameters, Characteristics of Microstrip

UNIT - V:
Wave Propagation - Definitions, Categorizations and General Classifications, Different Modes of Wave Propagation, Ray/Mode Concepts,
Ground Wave Propagation – Plane Earth Reflections, Space and Surface Waves, Wave Tilt, Curved Earth Reflections.
Space Wave Propagation – Field Strength Variation with Distance and Height, Effect of Earth’s Curvature, Absorption, Super Refraction, M-Curves and Duct Propagation, Scattering Phenomena, Troposphere Propagation.
Sky Wave Propagation – Structure of Ionosphere, Refraction and Reflection of Sky Waves by Ionosphere, Ray Path, Critical Frequency, MUF, LUF, OF, Virtual Height and Skip Distance, Relation between MUF and Skip Distance, Multi-hop Propagation.

TEXT BOOKS:

REFERENCE BOOKS:
EC602PC: DIGITAL SIGNAL PROCESSING

B.Tech. III Year II Semester

Prerequisite: Signals and Systems

Course Objectives:
1. To provide background and fundamental material for the analysis and processing of digital signals.
2. To understand the fast computation of DFT and appreciate the FFT processing.
3. To study the designs and structures of digital (IIR and FIR) filters and analyze and synthesize for a given specifications.
4. To acquaint in Multi-rate signal processing techniques and finite word length effects.

Course Outcomes: Upon completing this course, the student will be able to
1. Understand the LTI system characteristics and Multirate signal processing.
2. Understand the inter-relationship between DFT and various transforms.
3. Design a digital filter for a given specification.
4. Understand the significance of various filter structures and effects of round off errors.

UNIT - I:

UNIT - II:

UNIT - III

UNIT - IV

UNIT - V

TEXT BOOKS:
REFERENCE BOOKS:
EC603PC: VLSI DESIGN

B.Tech. III Year II Semester

Prerequisite: Electronic Circuit Analysis; Switching Theory and Logic Design

Course Objectives: The objectives of the course are to:
1. Give exposure to different steps involved in the fabrication of ICs.
2. Explain electrical properties of MOS and BiCMOS devices to analyze the behavior of inverters designed with various loads.
3. Give exposure to the design rules to be followed to draw the layout of any logic circuit.
4. Provide design concepts to design building blocks of data path of any system using gates.
5. Understand basic programmable logic devices and testing of CMOS circuits.

Course Outcomes: Upon completing this course, the student will be able to
1. Acquire qualitative knowledge about the fabrication process of integrated circuits using MOS transistors.
2. Draw the layout of any logic circuit which helps to understand and estimate parasitic effect of any logic circuit.
3. Design building blocks of data path systems, memories and simple logic circuits using PLA, PAL, FPGA and CPLD.
4. Understand different types of faults that can occur in a system and learn the concept of testing and adding extra hardware to improve testability of system.

UNIT – I
Introduction: Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & BiCMOS
Basic Electrical Properties: Basic Electrical Properties of MOS and BiCMOS Circuits: I_{ds}-V_{ds} relationships, MOS transistor threshold Voltage, g_m, g_{ds}, Figure of merit; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

UNIT - II

UNIT – III
Gate Level Design: Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time delays, Driving large capacitive loads, Wiring capacitance, Fan – in, Fan – out.

UNIT - IV
Data Path Subsystems: Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Zero/One Detectors, Counters.
Array Subsystems: SRAM, DRAM, ROM, Serial Access Memories.

UNIT - V
Programmable Logic Devices: Design Approach – PLA, PAL, Standard Cells FPGAs, CPLDs.

TEXT BOOKS:

REFERENCE BOOKS:
EI603PE/EC611PE: OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. III Year II Semester

Prerequisites: Programming for Problem Solving.

Course Objectives:
1. Introduces Object Oriented Programming Concepts Using The Java Language
2. Introduces The Principles Of Inheritance And Polymorphism; And Demonstrates How They Relate To The Design Of Abstract Classes.
3. Introduces The Implementation Of Packages And Interfaces.
4. Introduces Exception Handling, Event Handling and Multithreading.
5. Introduces The Design Of Graphical User Interface Using Applets And Swings.

Course Outcomes:
1. Develop Applications for Range of Problems Using Object-Oriented Programming Techniques
2. Design Simple Graphical User Interface Applications.

UNIT - I:
Object Oriented Thinking and Java Basics: Need for OOP Paradigm, Summary of OOP Concepts, Coping with Complexity, Abstraction Mechanisms, A Way Of Viewing World – Agents, Responsibility, Messages, Methods, History of Java, Java Buzzwords, Data Types, Variables, Scope and Life Time of Variables, Arrays, Operators, Expressions, Control Statements, Type Conversion and Casting, Simple Java Program, Concepts of Classes, Objects, Constructors, Methods, Access Control, This Keyword, Garbage Collection, Overloading Methods and Constructors, Method Binding, Inheritance, Overriding and Exceptions, Parameter Passing, Recursion, Nested and Inner Classes, Exploring String Class.

UNIT - II:

UNIT - III:

UNIT - IV:

UNIT - V:
TEXT BOOKS:
2. Understanding OOP with Java Updated Edition, T. Budd, Pearson Education.

REFERENCE BOOKS:
3. Introduction to Java Programming, Y. Daniel Liang, Pearson Education.
EC612PE: MOBILE COMMUNICATIONS AND NETWORKS

B.Tech. III Year II Semester | L T P C
---|---|---|---
3 | 0 | 0 | 3

Prerequisites: Analog and Digital Communications

Course Objectives:
1. To provide the student with an understanding of the cellular concept, frequency reuse, handoff strategies.
2. To provide the student with an understanding of Co-channel and Non-Co-Channel interferences.
3. To give the student an understanding of cell coverage for signal and traffic, diversity techniques and channel assignment.
4. To give the student an understanding of handoff.
5. To understand challenges and application of Adhoc wireless Networks.

Course Outcomes: Upon completing this course, the student will be able to:
1. Known the evolution of cellular and mobile communication system.
2. The student will be able to understand Co-Channel and Non-Co-Channel interferences.
3. Understand impairments due to multipath fading channel and how to overcome the different fading effects.
4. Familiar with cell coverage for signal and traffic, diversity, techniques, frequency management, Channel assignment and types of handoff.
5. Know the difference between cellular and Adhoc Networks and design goals of MAC Layer protocol.

UNIT - I

UNIT – II
Co-Channel Interference: Measurement of Real Time Co-Channel Interference, Design of Antenna System, Antenna Parameters and their effects, diversity techniques-space diversity, polarization diversity, frequency diversity, time diversity.
Non Co-Channel Interference: Adjacent Channel Interference, Near end far end interference, cross talk, effects on coverage and interference by power decrease, antenna height decrease, effects of cell site components.

UNIT – III
Cell Coverage for Signal and Traffic: Signal Reflections in flat and Hilly Terrain, effects of Human Made Structures, phase difference between direct and reflected paths, constant standard deviation, straight line path loss slope, general formula for mobile propagation over water and flat open area, near and long-distance propagation, path loss from a point to point prediction model in different conditions, merits of lee model.

Frequency Management and Channel Assignment: Numbering and Grouping, Setup Access and Paging Channels, Channel Assignments to Cell Sites and Mobile Units.

UNIT - IV
UNIT - V

TEXT BOOKS:

REFERENCE BOOKS:
EC613PE: EMBEDDED SYSTEM DESIGN

B.Tech. III Year II Semester

Prerequisite: Microprocessors and Microcontrollers; Computer Organization and Operating Systems

Course Objectives:
1. To provide an overview of Design Principles of Embedded System.
2. To provide clear understanding about the role of firmware.
3. To understand the necessity of operating systems in correlation with hardware systems.
4. To learn the methods of interfacing and synchronization for tasking.

Course Outcomes: Upon completing this course, the student will be able to
1. To understand the selection procedure of Processors in the embedded domain.
2. Design Procedure for Embedded Firmware.
3. To visualize the role of Real time Operating Systems in Embedded Systems.
4. To evaluate the Correlation between task synchronization and latency issues

UNIT - I:

UNIT - II:
Typical Embedded System: Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.

UNIT - III:
Embedded Firmware: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.

UNIT - IV:

UNIT - V:
Task Communication: Shared Memory, Message Passing, Remote Procedure Call and Sockets,
Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, Methods to Choose an RTOS.

TEXT BOOK:
1. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill.

REFERENCE BOOKS:
2. Embedded Systems - Raj Kamal, TMH.
5. An Embedded Software Primer - David E. Simon, Pearson Education.
EC604PC: DIGITAL SIGNAL PROCESSING LAB

B.Tech. III Year II Semester

L T P C
0 0 3 1.5

The Programs shall be implemented in Software (Using MATLAB / Lab View / C Programming/ Equivalent) and Hardware (Using TI / Analog Devices / Motorola / Equivalent DSP processors).

Note: - Minimum of 12 experiments has to be conducted.

List of Experiments:
1. Generation of Sinusoidal Waveform / Signal based on Recursive Difference Equations
3. To find DFT / IDFT of given DT Signal
4. To find Frequency Response of a given System given in Transfer Function/ Differential equation form.
5. Obtain Fourier series coefficients by formula and using FET and compare for half sine wave.
6. Implementation of FFT of given Sequence
7. Determination of Power Spectrum of a given Signal(s).
8. Implementation of LP FIR Filter for a given Sequence/Signal.
9. Implementation of HP IIR Filter for a given Sequence/Signal
10. Generation of Narrow Band Signal through Filtering
11. Generation of DTMF Signals
12. Implementation of Decimation Process
13. Implementation of Interpolation Process
14. Implementation of I/D Sampling Rate Converters
15. Impulse Response of First order and Second Order Systems.
EC605PC: e - CAD LAB

B.Tech. III Year II Semester

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note: Any SIX of the following experiments from each part are to be conducted (Total 12)

Part - I

All the following experiments have to be implemented using HDL

1. Realize all the logic gates
2. Design of 8-to-3 encoder (without and with priority) and 2-to-4 decoder
3. Design of 8-to-1 multiplexer and 1-to-8 demultiplexer
4. Design of 4 bit binary to gray code converter
5. Design of 4 bit comparator
6. Design of Full adder using 3 modeling styles
7. Design of flip flops: SR, D, JK, T
8. Design of 4-bit binary, BCD counters (synchronous/ asynchronous reset) or any sequence counter
9. Finite State Machine Design

Part-II

Layout, physical verification, placement & route for complex design, static timing analysis, IR drop analysis and crosstalk analysis for the following:

1. Basic logic gates
2. CMOS inverter
3. CMOS NOR/ NAND gates
4. CMOS XOR and MUX gates
5. Static / Dynamic logic circuit (register cell)
6. Latch
7. Pass transistor
8. Layout of any combinational circuit (complex CMOS logic gate).
EC606PC: SCRIPTING LANGUAGES LAB

B.Tech. III Year II Semester

Prerequisites: Any High-level programming language (C, C++)

Course Objectives:
- To Understand the concepts of scripting languages for developing web-based projects
- To understand the applications the of Ruby, TCL, Perl scripting languages

Course Outcomes:
- Ability to understand the differences between Scripting languages and programming languages
- Able to gain some fluency programming in Ruby, Perl, TCL

List of Experiments
1. Write a Ruby script to create a new string which is n copies of a given string where n is a non-negative integer
2. Write a Ruby script which accepts the radius of a circle from the user and compute the parameter and area.
3. Write a Ruby script which accepts the user's first and last name and print them in reverse order with a space between them
4. Write a Ruby script to accept a filename from the user print the extension of that
5. Write a Ruby script to find the greatest of three numbers
6. Write a Ruby script to print odd numbers from 10 to 1
7. Write a Ruby script to check two integers and return true if one of them is 20 otherwise return their sum
8. Write a Ruby script to check two temperatures and return true if one is less than 0 and the other is greater than 100
9. Write a Ruby script to print the elements of a given array
10. Write a Ruby program to retrieve the total marks where subject name and marks of a student stored in a hash
11. Write a TCL script to find the factorial of a number
12. Write a TCL script that multiplies the numbers from 1 to 10
13. Write a TCL script for Sorting a list using a comparison function
14. Write a TCL script to (i) create a list (ii)append elements to the list (iii) Traverse the list (iv) Concatenate the list
15. Write a TCL script to comparing the file modified times.
16. Write a TCL script to Copy a file and translate to native format.
17. a) Write a Perl script to find the largest number among three numbers.
 b) Write a Perl script to print the multiplication tables from 1-10 using subroutines.
18. Write a Perl program to implement the following list of manipulating functions
 a) Shift
 b) Unshift
 c) Push
19. a) Write a Perl script to substitute a word, with another word in a string.
 b) Write a Perl script to validate IP address and email address.
20. Write a Perl script to print the file in reverse order using command line arguments
MC609: ENVIRONMENTAL SCIENCE

B.Tech. III Year II Semester

Course Objectives:
- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations.

Course Outcomes:
Based on this course, the Engineering graduate will understand / evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development.

UNIT - I
Ecosystems: Definition, Scope and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II
Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

UNIT - III
Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT - IV

UNIT - V
TEXT BOOKS:
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:
EC701PC: MICROWAVE AND OPTICAL COMMUNICATIONS (PC)

B.Tech. IV Year I Semester

Prerequisite: Antennas and Propagation

Course Objectives:
- To get familiarized with microwave frequency bands, their applications and to understand the limitations and losses of conventional tubes at these frequencies.
- To distinguish between different types of microwave tubes, their structures and principles of microwave power generation.
- To impart the knowledge of Scattering Matrix, its formulation and utility, and establish the S-Matrix for various types of microwave junctions.
- Understand the utility of Optical Fibres in Communications.

Course Outcomes: Upon completing this course, the student will be able to
- Known power generation at microwave frequencies and derive the performance characteristics.
- realize the need for solid state microwave sources and understand the principles of solid state devices.
- distinguish between the different types of waveguide and ferrite components, and select proper components for engineering applications
- understand the utility of S-parameters in microwave component design and learn the measurement procedure of various microwave parameters.
- Understand the mechanism of light propagation through Optical Fibres.

UNIT - I
Helix TWTs: Types and Characteristics of Slow Wave Structures; Structure of TWT and Amplification Process (qualitative treatment), Suppression of Oscillations, Gain Considerations.

UNIT - II
M-Type Tubes:
Introduction, Cross-field Effects, Magnetrons – Different Types, Cylindrical Traveling Wave-Magnetron – Hull Cut-off and Hartree Conditions, Modes of Resonance and PI-Mode Operation, Separation of PI-Mode, o/p characteristics,

UNIT - III
Waveguide Components:

UNIT - IV

UNIT - V

TEXT BOOKS:
2. Electronic Communications Systems- Wayne Tomasi, Pearson, 5th Edition

REFERENCE BOOKS:
EC711PE/EI723PE: ARTIFICIAL NEURAL NETWORKS (PE – III)

B.Tech. IV Year I Semester

Prerequisite: Nil

Course Objectives:
- To understand the biological neural network and to model equivalent neuron models.
- To understand the architecture, learning algorithms.
- To know the issues of various feed forward and feedback neural networks.
- To explore the Neuro dynamic models for various problems.

Course Outcomes: Upon completing this course, the student will be able to
- Understand the similarity of Biological networks and Neural networks
- Perform the training of neural networks using various learning rules.
- Understanding the concepts of forward and backward propagations.
- Understand and Construct the Hopfield models.

UNIT-I:
Introduction: A Neural Network, Human Brain, Models of a Neuron, Neural Networks viewed as Directed Graphs, Network Architectures, Knowledge Representation, Artificial Intelligence and Neural Networks
Learning Process: Error Correction Learning, Memory Based Learning, Hebbian Learning, Competitive, Boltzmann Learning, Credit Assignment Problem, Memory, Adaption, Statistical Nature of the Learning Process

UNIT-II:
Single Layer Perceptrons: Adaptive Filtering Problem, Unconstrained Organization Techniques, Linear Least Square Filters, Least Mean Square Algorithm, Learning Curves, Learning Rate Annealing Techniques, Perceptron –Convergence Theorem, Relation Between Perceptron and Bayes Classifier for a Gaussian Environment
Multilayer Perceptron: Back Propagation Algorithm XOR Problem, Heuristics, Output Representation and Decision Rule, Computer Experiment, Feature Detection

UNIT-III:
Back Propagation: Back Propagation and Differentiation, Hessian Matrix, Generalization, Cross Validation, Network Pruning Techniques, Virtues and Limitations of Back Propagation Learning, Accelerated Convergence, Supervised Learning

UNIT - IV:
Self-Organzation Maps (SOM): Two Basic Feature Mapping Models, Self-Organzation Map, SOM Algorithm, Properties of Feature Map, Computer Simulations, Learning Vector Quantization, Adaptive Patter Classification

UNIT-V:
Neuro Dynamics: Dynamical Systems, Stability of Equilibrium States, Attractors, Neuro Dynamical Models, Manipulation of Attractors as a Recurrent Network Paradigm
Hopfield Models – Hopfield Models, restricted boltzmen machine.

TEXT BOOKS:
1. Neural Networks a Comprehensive Foundations, Simon S. Haykin, PHI Ed.,

REFERENCE BOOKS:
1. Neural Networks in Computer Intelligance, Li Min Fu TMH 2003
3. Artificial Neural Networks - B. Vegnanarayana Prentice Hall of India P Ltd 2005
EC712PE: SCRIPTING LANGUAGES (PE – III)

B.Tech. IV Year I Semester

Prerequisites: Computer Programming and Data Structures

Course Objectives:
- Able to differentiate scripting and non-scripting languages.
- To learn Scripting languages such as PERL, TCL/TK, python and BASH.
- Expertise to program in the Linux environment.
- Usage of scripting languages in IC design flow.

Course Outcomes: Upon completing this course, the student will be able to
- Known about basics of Linux and Linux Networking
- Use Linux environment and write programs for automation
- Understand the concepts of Scripting languages
- Create and run scripts using PERL/TCl/Python.

UNIT – I: Linux Basics
Introduction to Linux, File System of the Linux, General usage of Linux kernel & basic commands, Linux users and group, Permissions for file, directory and users, searching a file & directory, zipping and unzipping concepts.

UNIT – II: Linux Networking

UNIT – III: Perl Scripting
Introduction to Perl Scripting, working with simple values, Lists and Hashes, Loops and Decisions, Regular Expressions, Files and Data in Perl Scripting, References & Subroutines, Running and Debugging Perl, Modules, Object – Oriented Perl.

UNIT – IV: Tcl / Tk Scripting
Tcl Fundamentals, String and Pattern Matching, Tcl Data Structures, Control Flow Commands, Procedures and Scope, Evel, Working with Unix, Reflection and Debugging, Script Libraries, Tk Fundamentals, Tk by examples, The Pack Geometry Manager, Binding Commands to X Events, Buttons and Menus, Simple Tk Widgets, Entry and List box Widgets Focus, Grabs and Dialogs.

UNIT – V: Python Scripting.
Introduction to Python, using the Python Interpreter, More Control Flow Tools, Data Structures, Modules, Input and Output, Errors and Exceptions, Classes, Brief Tour of the Standard Library.

TEXT BOOKS:
1. Practical Programming in Tcl and Tk by Brent Welch, Updated for Tcl 7.4 and Tk 4.0.

REFERENCE BOOKS:
EC713PE/EI812PE: DIGITAL IMAGE PROCESSING (PE – III)

B. Tech. IV Year I Semester

Prerequisite: Digital Signal Processing

Course Objectives:
- To provide a approach towards image processing and introduction about 2D transforms
- To expertise about enhancement methods in time and frequency domain
- To expertise about segmentation and compression techniques
- To understand the Morphological operations on an image

Course Outcomes: Upon completing this course, the student will be able to
- Explore the fundamental relations between pixels and utility of 2-D transforms in image processor.
- Understand the enhancement, segmentation and restoration processes on an image.
- Implement the various Morphological operations on an image
- Understand the need of compression and evaluation of basic compression algorithms.

UNIT-I:

UNIT-II:
Image Enhancement (Frequency Domain): Filtering in Frequency Domain, Low Pass (Smoothing) and High Pass (Sharpening) Filters in Frequency Domain.

UNIT -III:

UNIT -IV:
Image Segmentation: Detection of Discontinuities, Edge Linking And Boundary Detection, thresholding, Region Oriented Segmentation.
Morphological Image Processing: Dilation and Erosion: Dilation, Structuring Element Decomposition, Erosion, Combining Dilation and Erosion, Opening and Closing, Hit or Miss Transformation.

UNIT -V:

TEXT BOOKS:

REFERENCE BOOKS:
EC721PE: BIOMEDICAL INSTRUMENTATION (PE – IV)

B.Tech. IV Year I Semester

Course Objectives
- Identify significant biological variables at cellular level and ways to acquire different bio-signals.
- Elucidate the methods to monitor the activity of the heart, brain, eyes and muscles.
- Introduce therapeutic equipment for intensive and critical care.
- Outline medical imaging techniques and equipment for certain diagnosis and therapies.

Course Outcomes: After completion of the course the student is able to:
- Understand biosystems and medical systems from an engineering perspective.
- Identify the techniques to acquire record and primarily understand physiological activity of the human body through cell potential, ECG, EEG, BP and blood flow measurement and EMG.
- Understand the working of various medical instruments and critical care equipment.
- Know the imaging techniques including CT, PET, SPECT and MRI used in diagnosis of various medical conditions.

UNIT - I:

UNIT - II:

UNIT - III:
Neurological Instrumentation: Neuronal communication, electro encephalogram (EEG), EEG Measurements EEG electrode-placement system, interpretation of EEG, EEG system Block diagram, preamplifiers and amplifiers. EMG block diagram and Stimulators

UNIT - IV:

UNIT - V:
Principles of Medical Imaging: Radiography, computed Radiography, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Nuclear Medicine, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Ultrasonography, Introduction to Telemedicine.

TEXT BOOKS:

REFERENCE BOOKS:
1. Biomedical Instrumentation and Measurements – by Leslie Cromwell, F.J. Weibell, E.A. Pfeiffer, PHI.
3. Introduction to Biomedical equipment technology-by Joseph Carr and Brown.
EC722PE: DATABASE MANAGEMENT SYSTEMS (PE – IV)

B.Tech. IV Year I Semester

Prerequisite: Data Structures

Course Objectives:
- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes
- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I
Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II
Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering tables and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III
SQL: Queries, Constraints, Triggers: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active data bases.

UNIT - IV

UNIT - V

TEXT BOOKS:
REFERENCE BOOKS:
2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C. J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
EC723PE: NETWORK SECURITY AND CRYPTOGRAPHY (PE – IV)

B.Tech. IV Year I Semester

Prerequisite: Nil

Course Objectives:
- Understand the basic concept of Cryptography and Network Security, their mathematical models
- To understand the necessity of network security, threats/vulnerabilities to networks and countermeasures
- To understand Authentication functions with Message Authentication Codes and Hash Functions.
- To provide familiarity in Intrusion detection and Firewall Design Principles

Course Outcomes: Upon completing this course, the student will be able to
- Describe network security fundamental concepts and principles
- Encrypt and decrypt messages using block ciphers and network security technology and protocols
- Analyze key agreement algorithms to identify their weaknesses
- Identify and assess different types of threats, malware, spyware, viruses, vulnerabilities

UNIT – I
Modern Techniques: Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Block Cipher Design Principles.

UNIT – II

UNIT – III
Number Theory: Prime and Relatively prime numbers, Modular arithmetic, Fermat’s and Euler’s theorems, Testing for primality, Euclid’s Algorithm, the Chinese remainder theorem, Discrete logarithms.

UNIT – IV
Hash and Mac Algorithms: MD-5, Message digest Algorithm, Secure Hash Algorithm.
Authentication Applications: Kerberos, Electronic Mail Security: Pretty Good Privacy, SIME/MIME.

UNIT – V
Intruders, Viruses and Worms: Intruders, Viruses and Related threats.
Fire Walls: Fire wall Design Principles, Trusted systems.

TEXT BOOKS:
REFERENCE BOOKS:
2. Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
4. Introduction to Cryptography, Buchmann, Springer.
Course Objectives:
- To make the students understand the types of roles they are expected to play in the society as practitioners of the civil engineering profession
- To develop some ideas of the legal and practical aspects of their profession.

Course Outcome: The students will understand the importance of professional practice, Law and Ethics in their personal lives and professional careers. The students will learn the rights and responsibilities as an employee, team member and a global citizen

UNIT - I
Professional Practice and Ethics: Definition of Ethics, Professional Ethics - Engineering Ethics, Personal Ethics; Code of Ethics - Profession, Professionalism, Professional Responsibility, Conflict of Interest, Gift Vs Bribery, Environmental breaches, Negligence, Deficiencies in state-of-the-art; Vigil Mechanism, Whistle blowing, protected disclosures. Introduction to GST- Various Roles of Various Stake holders

UNIT - II

UNIT - III
Arbitration, Conciliation and ADR (Alternative Dispute Resolution) system: Arbitration – meaning, scope and types – distinction between laws of 1940 and 1996; UNCITRAL model law – Arbitration and expert determination; Extent of judicial intervention; International commercial arbitration; Arbitration agreements – essential and kinds, validity, reference and interim measures by court; Arbitration tribunal – appointment, challenge, jurisdiction of arbitral tribunal, powers, grounds of challenge, procedure and court assistance; Distinction between conciliation, negotiation, mediation and arbitration, confidentiality, resort to judicial proceedings, costs; Dispute Resolution Boards; Lok Adalats.

UNIT - IV
Engagement of Labour and Labour & other construction-related Laws: Role of Labour in Civil Engineering; Methods of engaging labour- on rolls, labour sub-contract, piece rate work; Industrial Disputes Act, 1947; Collective bargaining; Industrial Employment (Standing Orders) Act, 1946; Workmen’s Compensation Act, 1923; Building & Other - Construction Workers (regulation of employment and conditions of service) Act (1996) and Rules (1998); RERA Act 2017, NBC 2017.

UNIT - V
Law relating to Intellectual property: Introduction – meaning of intellectual property, main forms of IP, Copyright, Trademarks, Patents and Designs, Secrets; Law relating to Copyright in India including Historical evolution of Copy Rights Act, 1957, Meaning of copyright – computer programs, Ownership of copyrights and assignment, Criteria of infringement, Piracy in Internet – Remedies and procedures in India; Law relating to Patents under Patents Act, 1970

TEXT BOOKS:

REFERENCE BOOKS:
EC703PC: MICROWAVE AND OPTICAL COMMUNICATIONS LAB

B.Tech IV Year I Semester

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Any twelve of the following experiments

LIST OF EXPERIMENTS:
1. Reflex Klystron Characteristics.
2. Gunn Diode Characteristics.
3. Attenuation measurement
4. Directional coupler Characteristics.
5. Scattering parameters of wave guide components
6. Frequency measurement.
7. Impedance measurement
8. VSWR measurement
9. Characterization of LED.
11. Intensity modulation of Laser output through an optical fiber.
14. Measurement of losses for Optical link
EC811PE : SATELLITE COMMUNICATIONS (PE – V)

B.Tech. IV Year II Semester

L T P C
3 0 0 3

Prerequisite: Analog and Digital Communications

Course Objectives:
- To acquired foundation in orbital mechanics and launch vehicles for the satellites.
- To provide basic knowledge of link design of satellite.
- To understand multiple access systems and earth station technology
- To understand the concepts of satellite navigation and GPS.

Course Outcomes: Upon completing this course, the student will be able to
- Understand basic concepts and frequency allocations for satellite communication, orbital mechanics and launch vehicles.
- Envision the satellite sub systems and design satellite links for specified C/N.
- Understand the various multiple access techniques for satellite communication systems and earth station technologies.
- Known the concepts of LEO, GEO Stationary Satellite Systems and satellite navigation

UNIT - I:

UNIT - II:

UNIT - III:
Multiple Access: Frequency Division Multiple Access (FDMA), Inter modulation, Calculation of C/N, Time Division Multiple Access (TDMA), Frame Structure, Examples, Satellite Switched TDMA Onboard Processing, DAMA, Code Division Multiple Access (CDMA), Spread Spectrum Transmission and Reception.

UNIT - IV:

UNIT - V:
Low Earth Orbit and Geo-Stationary Satellite Systems: Orbit Considerations, Coverage and Frequency Consideration, Delay & Throughput Considerations, System Considerations, Operational NGSO Constellation Designs.

TEXT BOOKS:

REFERENCE BOOKS:
EC812PE: RADAR SYSTEMS (PE – V)

B.Tech. IV Year II Semester

Prerequisite:
Analog and Digital Communications

Course Objectives:
- To explore the concepts of radar and its frequency bands.
- To understand Doppler effect and get acquainted with the working principles of CW radar, FM-CW radar.
- To impart the knowledge of functioning of MTI and Tracking Radars.
- To explain the designing of a Matched Filter in radar receivers.

Course Outcomes:
Upon completing this course, the student will be able to
- Derive the complete radar range equation.
- Understand the need and functioning of CW, FM-CW and MTI radars
- Known various Tracking methods.
- Derive the matched filter response characteristics for radar receivers.

UNIT - I

UNIT - II

UNIT - III

UNIT - IV
Tracking Radar: Tracking with Radar, Sequential Lobing, Conical Scan, Mono pulse Tracking Radar – Amplitude Comparison Mono pulse (one- and two- coordinates), Phase Comparison Mono pulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Trackers.

UNIT - V

Radar Receivers – Noise Figure and Noise Temperature, Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas – Basic Concepts, Radiation Pattern, Beam Steering and Beam Width changes, Applications, Advantages and Limitations.

TEXT BOOKS:

REFERENCE BOOKS:
EC813PE: WIRELESS SENSOR NETWORKS (PE – V)

B.Tech. IV Year II Semester

Prerequisite: Analogue and Digital Communications

Course Objectives:
- To acquire the knowledge about various architectures and applications of Sensor Networks
- To understand issues, challenges and emerging technologies for wireless sensor networks
- To learn about various routing protocols and MAC Protocols
- To understand various data gathering and data dissemination methods
- To Study about design principals, node architectures, hardware and software required for implementation of wireless sensor networks.

Course Outcomes: Upon completion of the course, the student will be able to:
- Analyze and compare various architectures of Wireless Sensor Networks
- Understand Design issues and challenges in wireless sensor networks
- Analyze and compare various data gathering and data dissemination methods.
- Design, Simulate and Compare the performance of various routing and MAC protocol

UNIT - I:
Introduction to Sensor Networks, unique constraints and challenges, Advantage of Sensor Networks, Applications of Sensor Networks, Types of wireless sensor networks

UNIT - II:
Mobile Ad-hoc Networks (MANETs) and Wireless Sensor Networks, Enabling technologies for Wireless Sensor Networks. Issues and challenges in wireless sensor networks

UNIT - III:
Routing protocols, MAC protocols: Classification of MAC Protocols, S-MAC Protocol, B-MAC protocol, IEEE 802.15.4 standard and ZigBee

UNIT - IV:
Dissemination protocol for large sensor network. Data dissemination, data gathering, and data fusion; Quality of a sensor network; Real-time traffic support and security protocols.

UNIT - V:
Design Principles for WSNs, Gateway Concepts Need for gateway, WSN to Internet Communication, and Internet to WSN Communication.
Single-node architecture, Hardware components & design constraints, Operating systems and execution environments, introduction to TinyOS and nesC.

TEXT BOOKS:

REFERENCE BOOKS:
1. Wireless Digital Communications – Kamilo Feher, 1999, PHI.
EC821PE: SYSTEM ON CHIP ARCHITECTURE (PE – VI)

B.Tech. IV Year II Semester

Prerequisite: Embedded System Design

Course Objectives:
- To introduce the architectural features of system on chip.
- To imbibe the knowledge of customization using case studies.

Course Outcomes:
- Expected to understand SOC Architectural features.
- To acquire the knowledge on processor selection criteria and limitations
- To acquires the knowledge of memory architectures on SOC.
- To understands the interconnection strategies and their customization on SOC.

UNIT – I:

UNIT – II:

UNIT – III:

UNIT - IV:
Interconnect Customization: Inter Connect Architectures, Bus: Basic Architectures, SOC Standard Buses, Analytic Bus Models, Using the Bus model, Effects of Bus transactions and contention time. SOC Customization:

UNIT – V:
Configuration: An overview, Customizing Instruction Processor, Reconfiguration Technologies, Mapping design onto Reconfigurable devices, Instance- Specific design, Customizable Soft Processor, Reconfiguration - overhead analysis and trade-off analysis on reconfigurable Parallelism.

TEXT BOOKS:

REFERENCE BOOKS:
2. Co-Verification of Hardware and Software for ARM System on Chip Design (Embedded Technology) – Jason Andrews – Newnes, BK and CDROM
EC822PE: TEST AND TESTABILITY (PE – VI)

B.Tech. IV Year II Semester

Prerequisite: Switching Theory and Logic Design, Digital System Design with PLDS

Course Objectives:
- To provide or broad understanding of fault diagnosis.
- To illustrate the framework of test pattern generation.
- To understand design for testability in Digital Design

Course Outcomes: On completion of this course the student will be able to:
- To acquire the knowledge of fundamental concepts in fault and fault diagnosis
- Test pattern generation using LFSR and CA
- Design for testability rules and techniques for combinational circuits
- Introducing scan architectures

UNIT - I
Need for testing, the problems in digital Design testing, the problems in Analog Design testing, the problems in mixed analog/digital design testing, design for test, printed-circuit board (PCB) testing, software testing,
Fault in Digital Circuits:
General Introduction, Controllability and Observability, Fault Models, stuck at faults, bridging faults, CMOS technology considerations, intermittent faults.

UNIT - II
General Introduction, to test pattern genration, Test Pattern generation for combinational logic circuits, Manual test pattern generation, automatic test pattern generation, boolean difference method, Roth’s D-algoritham, Developments following Roth’s D-algoritham, Pseudorandom test pattern generation.

UNIT - III
Pseudorandom test pattern generators, Design of test pattern generator using Linear feedback shift registers (LFSRs) and cellular automata(CAs).

UNIT - IV
Design for Testability for combinational circuits: Basic Concepts of testability, controllability and observability, the Reed Muller’s expansion techniques, use of control logic and syndrome testable designs.

UNIT - V
Making sequential circuits testable, testability insertion, full scan DFT technique-Full scan insertion, flip-flop structures, Full scan design and test, scan architectures-full scan design, shadow register DFT, partial scan methods, multiple scan design, other scan designs.

TEXT BOOKS
1. Fault Tolerant and Fault Testable Hardware Design-Parag K. Lala, 1984, PHI.

REFERENCE BOOKS
1. Digital Systems Testing and Testable Design-Miron Abramovici, Melvin A. Breuer and Arthur D. Friedman, Jaico Books
EC823PE: LOW POWER VLSI DESIGN (PE – VI)

B.Tech. IV Year II Semester

Prerequisite: VLSI Design

Course Objectives:
- Known the low power low voltage VLSI design
- Understand the impact of power on system performances.
- Known about different Design approaches.
- Identify suitable techniques to reduce power dissipation in combinational and sequential circuits.

Course Outcomes: Upon completing this course, the student will be able to
- Understand the need of Low power circuit design.
- Attain the knowledge of architectural approaches.
- Analyze and design Low-Voltage Low-Power combinational circuits.
- Known the design of Low-Voltage Low-Power Memories

UNIT - I:

UNIT - II:
Switched Capacitance Minimization Approaches: System Level Measures, Circuit Level Measures, and Mask level Measures.

UNIT - III:

UNIT - IV:
Low-Voltage Low-Power Multipliers: Introduction, Overview of Multiplication, Types of Multiplier Architectures, Braun Multiplier, Baugh-Wooley Multiplier, Booth Multiplier, Introduction to Wallace Tree Multiplier.

UNIT - V:

TEXT BOOKS:
2. Low-Voltage, Low-Power VLSI Subsystems – Kiat-Seng Yeo, Kaushik Roy, TMH Professional Engineering.

REFERENCE BOOKS: