JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech. in ELECTRONICS AND COMPUTER ENGINEERING

COURSE STRUCTURE & SYLLABUS (R18)

Applicable From 2020-21 Admitted Batch

I YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA101BS</td>
<td>Mathematics - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>AP102BS</td>
<td>Applied Physics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>CS103ES</td>
<td>Programming for Problem Solving</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ME104ES</td>
<td>Engineering Graphics</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>AP105BS</td>
<td>Applied Physics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>CS106ES</td>
<td>Programming for Problem Solving Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>*MC109ES</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Induction Programme

Total Credits 13 3 10 18

I YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA201BS</td>
<td>Mathematics - II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CH202BS</td>
<td>Chemistry</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EE203ES</td>
<td>Basic Electrical Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ME205ES</td>
<td>Engineering Workshop</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>EN205HS</td>
<td>English</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>CH206BS</td>
<td>Engineering Chemistry Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>EN207HS</td>
<td>English Language and Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>EE208ES</td>
<td>Basic Electrical Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits 12 2 10 19

II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CS301ES</td>
<td>Analog and Digital Electronics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CS302PC</td>
<td>Data Structures</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EM304PC</td>
<td>Signals, Systems and Signal Processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CS305PC</td>
<td>Object Oriented Programming using C++</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>SM306MS</td>
<td>Business Economics and Financial Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>CS306ES</td>
<td>Analog and Digital Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>CS307PC</td>
<td>Data Structures Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>CS309PC</td>
<td>C++ Programming Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*MC309</td>
<td>Constitution of India</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits 18 2 8 21

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EM401ES</td>
<td>Probability Theory and Stochastic Process</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>EC403PC</td>
<td>Analog and Digital Communications</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EM402PC</td>
<td>Computer Organization and Operating Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
<td>Practical</td>
<td>Lab</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------</td>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>CS404PC</td>
<td>Database Management Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EC405PC</td>
<td>Electronic Circuit Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EC406PC</td>
<td>Analog and Digital Communications Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CS406PC</td>
<td>Operating Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>CS407PC</td>
<td>Database Management Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>*MC409</td>
<td>Gender Sensitization Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits

15 2 10 21

*MC – Satisfactory/Unsatisfactory
Course Objectives: To learn
- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of Eigen values and eigenvectors and to reduce the quadratic form to canonical form.
- Concept of Sequence.
- Concept of nature of the series.
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.

Course Outcomes: After learning the contents of this paper the student must be able to
- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- Find the Eigen values and Eigen vectors
- Reduce the quadratic form to canonical form using orthogonal transformations.
- Analyse the nature of sequence and series.
- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions
- Find the extreme values of functions of two variables with/ without constraints.

UNIT-I: Matrices
Matrices: Types of Matrices, Symmetric; Hermitian; Skew-symmetric; Skew-Hermitian; orthogonal matrices; Unitary Matrices; rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method; System of linear equations; solving system of Homogeneous and Non-Homogeneous equations. Gauss elimination method; Gauss Seidel Iteration Method.

UNIT-II: Eigen values and Eigen vectors
Linear Transformation and Orthogonal Transformation: Eigen values and Eigenvectors and their properties: Diagonalization of a matrix; Cayley-Hamilton Theorem (without proof); finding inverse and power of a matrix by Cayley-Hamilton Theorem; Quadratic forms and Nature of the Quadratic Forms; Reduction of Quadratic form to canonical forms by Orthogonal Transformation

UNIT-III: Sequences & Series
Sequence: Definition of a Sequence, limit; Convergent, Divergent and Oscillatory sequences.
Series: Convergent, Divergent and Oscillatory Series; Series of positive terms; Comparison test, p-test, D'Alembert's ratio test; Raabe's test; Cauchy's Integral test; Cauchy's root test; logarithmic test. Alternating series: Leibnitz test; Alternating Convergent series: Absolute and Conditionally Convergence.

UNIT-IV: Calculus
Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem. Taylor's Series. Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT-V: Multivariable calculus (Partial Differentiation and applications)
Definitions of Limit and continuity. Partial Differentiation; Euler's Theorem; Total derivative; Jacobian; Functional dependence & independence, Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.
TEXT BOOKS:

REFERENCE BOOKS:
Course Objectives:
- Students will demonstrate skills in scientific inquiry, problem solving and laboratory techniques.
- Students will be able to demonstrate competency and understanding of the concepts found in Quantum Mechanics, Fiber optics and lasers, Semiconductor physics and Electromagnetic theory and a broad base of knowledge in physics.
- The graduates will be able to solve non-traditional problems that potentially draw on knowledge in multiple areas of physics.
- To study applications in engineering like memory devices, transformer core and electromagnetic machinery.

Course Outcomes: Upon graduation the student would be able to learn:
- The fundamental concepts on Quantum behaviour of matter in its micro state.
- The fundamentals of Semiconductor physics, Optoelectronics, Lasers and fibre optics enable the students to apply to various systems like communications, solar cell, photo cells and so on.
- The design, characterization and study of properties of material help the students to prepare new materials for various engineering applications.
- The phenomena of electromagnetism and also have exposure on magnetic materials and dielectric materials.

UNIT-I: Quantum Mechanics
Introduction to quantum physics, Black body radiation, Planck’s law, Photoelectric effect, Compton effect, de-Broglie’s hypothesis, Wave-particle duality, Davisson and Germer experiment, Heisenberg’s Uncertainty principle, Born’s interpretation of the wave function, Schrodinger’s time independent wave equation, Particle in one dimensional box.

UNIT-II: Semiconductor Physics
Intrinsic and Extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature, Carrier generation and recombination, Carrier transport: diffusion and drift, Hall effect, p-n junction diode, Zener diode and their V-I Characteristics, Bipolar Junction Transistor (BJT): Construction, Principle of operation.

UNIT-III: Optoelectronics

UNIT-IV: Lasers and Fibre Optics

UNIT-V: Electromagnetism and Magnetic Properties of Materials

TEXT BOOKS:
3. A textbook of Engineering Physics, Dr. M. N. Avadhanulu, Dr. P.G. Kshirsagar - S. Chand.
REFERENCE BOOKS:
1. Richard Robinett, Quantum Mechanics.
3. Online Course: “Optoelectronic Materials and Devices” by Monica Katiyar and Deepak Guptha on NPTEL.
CS103ES/CS203ES: PROGRAMMING FOR PROBLEM SOLVING

B.Tech. I Year I Sem.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
- To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of C programming language.
- To learn the usage of structured programming approach in solving problems.

Course Outcomes: The student will learn
- To write algorithms and to draw flowcharts for solving problems.
- To convert the algorithms/flowcharts to C programs.
- To code and test a given logic in C programming language.
- To decompose a problem into functions and to develop modular reusable code.
- To use arrays, pointers, strings and structures to write C programs.
- Searching and sorting problems.

UNIT - I: Introduction to Programming
Introduction to components of a computer system: disks, primary and secondary memory, processor, operating system, compilers, creating, compiling and executing a program etc., Number systems
Introduction to Algorithms: steps to solve logical and numerical problems. Representation of Algorithm, Flowchart/Pseudo code with examples, Program design and structured programming
Introduction to C Programming Language: variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code, Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments
Bitwise operations: Bitwise AND, OR, XOR and NOT operators
Conditional Branching and Loops: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do-while loops
I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr. Command line arguments

UNIT - II: Arrays, Strings, Structures and Pointers:
Arrays: one- and two-dimensional arrays, creating, accessing and manipulating elements of arrays
Strings: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings
Structures: Defining structures, initializing structures, unions, Array of structures
Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self-referential structures, usage of self-referential structures in linked list (no implementation)
Enumeration data type

UNIT - III: Pre-processor and File handling in C:
Pre-processor: Commonly used Pre-processor commands like include, define, undef, if, ifdef, ifndef
Files: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions.

UNIT - IV: Function and Dynamic Memory Allocation:
Functions: Designing structured programs, declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries
Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions
Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of different data types
UNIT - V: Introduction to Algorithms:
Algorithms for finding roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a number is prime number, etc.
Basic searching in an array of elements (linear and binary search techniques),
Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms),
Basic concept of order of complexity through the example programs

TEXT BOOKS:

REFERENCE BOOKS:
2. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression).
ME104ES/ME204ES: ENGINEERING GRAPHICS

B.Tech. I Year I Sem.

Pre-requisites: Nil

Course objectives:
- To provide basic concepts in engineering drawing.
- To impart knowledge about standard principles of orthographic projection of objects.
- To draw sectional views and pictorial views of solids.

Course Outcomes: At the end of the course, the student will be able to:
- Preparing working drawings to communicate the ideas and information.
- Read, understand and interpret engineering drawings.

UNIT – I

UNIT- II

UNIT – III
Projections of Regular Solids – Auxiliary Views - Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views – Sections of Sphere

UNIT – IV
Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone, Intersection of Solids: Intersection of – Prism vs Prism- Cylinder Vs Cylinder

UNIT – V

Introduction to CAD: (For Internal Evaluation Weightage only):
Introduction to CAD Software Package Commands - Free Hand Sketches of 2D - Creation of 2D Sketches by CAD Package

TEXT BOOKS:
1. Engineering Drawing N.D. Bhatt / Charotar
2. Engineering Drawing / N. S. Parthasarathy and Vela Murali/ Oxford

REFERENCE BOOKS:
1. Engineering Drawing / Basant Agrawal and McAgrawal/ McGraw Hill
2. Engineering Drawing/ M. B. Shah, B.C. Rane / Pearson.
List of Experiments:

1. Energy gap of P-N junction diode:
 To determine the energy gap of a semiconductor diode.

2. Solar Cell:
 To study the V-I Characteristics of solar cell.

3. Light emitting diode:
 Plot V-I and P-I characteristics of light emitting diode.

4. Stewart – Gee’s experiment:
 Determination of magnetic field along the axis of a current carrying coil.

5. Hall effect:
 To determine Hall co-efficient of a given semiconductor.

6. Photoelectric effect:
 To determine work function of a given material.

7. LASER:
 To study the characteristics of LASER sources.

8. Optical fibre:
 To determine the bending losses of Optical fibres.

9. LCR Circuit:
 To determine the Quality factor of LCR Circuit.

10. R-C Circuit:
 To determine the time constant of R-C circuit.

Note: Any 8 experiments are to be performed
CS106ES/CS206ES: PROGRAMMING FOR PROBLEM SOLVING LAB

Course Objectives: The students will learn the following:

- To work with an IDE to create, edit, compile, run and debug programs
- To analyze the various steps in program development.
- To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- To Write programs using the Dynamic Memory Allocation concept.
- To create, read from and write to text and binary files

Course Outcomes: The candidate is expected to be able to:

- formulate the algorithms for simple problems
- translate given algorithms to a working and correct program
- correct syntax errors as reported by the compilers
- identify and correct logical errors encountered during execution
- represent and manipulate data with arrays, strings and structures
- use pointers of different types
- create, read and write to and from simple text and binary files
- modularize the code with functions so that they can be reused

Practice sessions:

a. Write a simple program that prints the results of all the operators available in C (including pre/post increment, bitwise and/or/not, etc.). Read required operand values from standard input.

b. Write a simple program that converts one given data type to another using auto conversion and casting. Take the values form standard input.

c. Write a program that declares Class awarded for a given percentage of marks, where mark <40%= Failed, 40% to <60% = Second class, 60% to <70%=First class, >= 70% = Distinction. Read percentage from standard input.

d. Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be:

 5 x 1 = 5
 5 x 2 = 10
 5 x 3 = 15

 e. Write a program that shows the binary equivalent of a given positive number between 0 to 255.

Expression Evaluation:

a. A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of the building. Find the time taken by the ball to reach each floor. (Use the formula \(s = ut + \frac{1}{2}at^2 \) where \(u \) and \(a \) are the initial velocity in m/sec (= 0) and acceleration in m/sec\(^2\) (= 9.8 m/s\(^2\)).

b. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement)
c. Write a program that finds if a given number is a prime number

d. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.

e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.

f. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

g. Write a C program to find the roots of a Quadratic equation.

h. Write a C program to calculate the following, where x is a fractional value.
 \[\frac{1}{2} - \frac{x}{2} + \frac{x^2}{4} - \frac{x^3}{6} \]

i. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression: \(1 + x + x^2 + x^3 + \ldots + x^n\). For example: if n is 3 and x is 5, then the program computes \(1 + 5 + 25 + 125\).

Arrays and Pointers and Functions:

a. Write a C program to find the minimum, maximum and average in an array of integers.

b. Write a function to compute mean, variance, Standard Deviation, sorting of n elements in single dimension array.

c. Write a C program that uses functions to perform the following:
 i. Addition of Two Matrices
 ii. Multiplication of Two Matrices
 iii. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be same.

d. Write C programs that use both recursive and non-recursive functions
 i. To find the factorial of a given integer.
 ii. To find the GCD (greatest common divisor) of two given integers.
 iii. To find \(x^n\)

e. Write a program for reading elements using pointer into array and display the values using array.

f. Write a program for display values reverse order from array using pointer.

g. Write a program through pointer variable to sum of n elements from array.

Files:

a. Write a C program to display the contents of a file to standard output device.

b. Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.

c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.

d. Write a C program that does the following:
 It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function)
 Now the program asks for an index and a value from the user and the value at that index should be changed to the new value in the file. (hint: use fseek function)
 The program should then read all 10 values and print them back.

e. Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

Strings:

a. Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.

b. Write a C program that converts a number ranging from 1 to 50 to Roman equivalent

c. Write a C program that uses functions to perform the following operations:
 i. To insert a sub-string in to a given main string from a given position.
 ii. To delete n Characters from a given position in a given string.

d. Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)

e. Write a C program that displays the position of a character ch in the string S or – 1 if S doesn't contain ch.

f. Write a C program to count the lines, words and characters in a given text.
Miscellaneous:

a. Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered.

b. Write a C program to construct a pyramid of numbers as follows:

```
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
```

Sorting and Searching:

a. Write a C program that uses non-recursive function to search for a Key value in a given list of integers using linear search method.

b. Write a C program that uses non-recursive function to search for a Key value in a given sorted list of integers using binary search method.

c. Write a C program that implements the Bubble sort method to sort a given list of integers in ascending order.

d. Write a C program that sorts the given array of integers using selection sort in descending order.

e. Write a C program that sorts the given array of integers using insertion sort in ascending order.

f. Write a C program that sorts a given array of names

Suggested Reference Books for solving the problems:

i. Byron Gottfried, Schaum’s Outline of Programming with C, McGraw-Hill

iii. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

iv. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)

MC109ES: ENVIRONMENTAL SCIENCE

B.Tech. I Year I Sem. L T P C 3 0 0 0

Course Objectives:
- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations

Course Outcomes:
- Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development.

UNIT-I
Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT-II
Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT-III

UNIT-IV

UNIT-V

TEXT BOOKS:
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:
6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.
MA201BS: MATHEMATICS - II

B.Tech. I Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives: To learn
- Methods of solving the differential equations of first and higher order.
- Evaluation of multiple integrals and their applications
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course Outcomes: After learning the contents of this paper the student must be able to
- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real world problems
- Evaluate the multiple integrals and apply the concept to find areas, volumes, centre of mass and Gravity for cubes, sphere and rectangular parallelopiped
- Evaluate the line, surface and volume integrals and converting them from one to another

UNIT-I: First Order ODE
Exact, linear and Bernoulli’s equations; Applications: Newton’s law of cooling, Law of natural growth and decay; Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut’s type.

UNIT-II: Ordinary Differential Equations of Higher Order
Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type $e^{ax}, \sin ax, \cos ax$. polynomials in x, $e^{ax}V(x)$ and $x V(x)$; method of variation of parameters; Equations reducible to linear ODE with constant coefficients: Legendre’s equation, Cauchy-Euler equation.

UNIT-III: Multivariable Calculus (Integration)
Evaluation of Double Integrals (Cartesian and polar coordinates); change of order of integration (only Cartesian form); Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals. Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals). Centre of mass and Gravity (constant and variable densities) by double and triple integrals (applications involving cubes, sphere and rectangular parallelopiped).

UNIT-IV: Vector Differentiation

UNIT-V: Vector Integration
Line, Surface and Volume Integrals. Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:

REFERENCE BOOKS:
Course Objectives:
- To bring adaptability to the concepts of chemistry and to acquire the required skills to become a perfect engineer.
- To impart the basic knowledge of atomic, molecular and electronic modifications which makes the student to understand the technology based on them.
- To acquire the knowledge of electrochemistry, corrosion and water treatment which are essential for the Engineers and in industry.
- To acquire the skills pertaining to spectroscopy and to apply them for medical and other fields.
- To impart the knowledge of stereochemistry and synthetic aspects useful for understanding reaction pathways.

Course Outcomes: The basic concepts included in this course will help the student to gain:
- The knowledge of atomic, molecular and electronic changes, band theory related to conductivity.
- The required principles and concepts of electrochemistry, corrosion and in understanding the problem of water and its treatments.
- The required skills to get clear concepts on basic spectroscopy and application to medical and other fields.
- The knowledge of configurational and conformational analysis of molecules and reaction mechanisms.

UNIT - I:
Molecular structure and Theories of Bonding: Atomic and Molecular orbitals. Linear Combination of Atomic Orbitals (LCAO), molecular orbitals of diatomic molecules, molecular orbital energy level diagrams of \(N_2, O_2 \) and \(F_2 \) molecules. \(\pi \) molecular orbitals of butadiene and benzene. Crystal Field Theory (CFT): Salient Features of CFT – Crystal Field Splitting of transition metal ion d-orbitals in Tetrahedral, Octahedral and square planar geometries. Band structure of solids and effect of doping on conductance.

UNIT - II:

UNIT - III:

UNIT - IV:
Substitution reactions: Nucleophilic substitution reactions: Mechanism of \(S_N1 \), \(S_N2 \) reactions. Electrophilic and nucleophilic addition reactions: Addition of HBr to propene. Markownikoff and anti

UNIT - V:
Spectroscopic techniques and applications: Principles of spectroscopy, selection rules and applications of electronic spectroscopy, vibrational and rotational spectroscopy. Basic concepts of Nuclear magnetic resonance Spectroscopy, chemical shift. Introduction to Magnetic resonance imaging.

TEXT BOOKS:
6. Engineering Chemistry (NPTEL Web-book), by B.L. Tembe, Kamaluddin and M.S. Krishnan
EE103ES/EE203ES: BASIC ELECTRICAL ENGINEERING

B.Tech. I Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
- To introduce the concepts of electrical circuits and its components
- To understand magnetic circuits, DC circuits and AC single phase & three phase circuits
- To study and understand the different types of DC/AC machines and Transformers.
- To import the knowledge of various electrical installations.
- To introduce the concept of power, power factor and its improvement.

Course Outcomes:
- To analyze and solve electrical circuits using network laws and theorems.
- To understand and analyze basic Electric and Magnetic circuits
- To study the working principles of Electrical Machines
- To introduce components of Low Voltage Electrical Installations

UNIT-I: D.C. Circuits
Time-domain analysis of first-order RL and RC circuits.

UNIT-II: A.C. Circuits
Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit. Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III: Transformers
Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV: Electrical Machines

UNIT-V: Electrical Installations
Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT /REFERENCE BOOKS:
ME105ES/ME205ES: ENGINEERING WORKSHOP

B.Tech. I Year II Sem.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Pre-requisites: Practical skill

Course Objectives:
- To Study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

Course Outcomes: At the end of the course, the student will be able to:
- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including pluming, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

1. TRADES FOR EXERCISES:
 At least two exercises from each trade:
 - I. Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
 - II. Fitting – (V-Fit, Dovetail Fit & Semi-circular fit)
 - III. Tin-Smithy – (Square Tin, Rectangular Tray & Conical Funnel)
 - IV. Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern)
 - V. Welding Practice – (Arc Welding & Gas Welding)
 - VI. House-wiring – (Parallel & Series, Two-way Switch and Tube Light)
 - VII. Black Smithy – (Round to Square, Fan Hook and S-Hook)

2. TRADES FOR DEMONSTRATION & EXPOSURE:
 Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working

TEXT BOOKS:
1. Workshop Practice /B. L. Juneja / Cengage

REFERENCE BOOKS:
2. Workshop Manual / Venkat Reddy/ BSP
INTRODUCTION
In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire language skills, the syllabus of English has been designed to develop linguistic, communicative and critical thinking competencies of Engineering students.

In English classes, the focus should be on the skills development in the areas of vocabulary, grammar, reading and writing. For this, the teachers should use the prescribed text for detailed study. The students should be encouraged to read the texts leading to reading comprehension and different passages may be given for practice in the class. The time should be utilized for working out the exercises given after each excerpt, and also for supplementing the exercises with authentic materials of a similar kind, for example, newspaper articles, advertisements, promotional material etc. The focus in this syllabus is on skill development, fostering ideas and practice of language skills in various contexts and cultures.

Learning Objectives: The course will help to
a. Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.

b. Equip students to study academic subjects more effectively and critically using the theoretical and practical components of English syllabus.

c. Develop study skills and communication skills in formal and informal situations.

Course Outcomes: Students should be able to
- Use English Language effectively in spoken and written forms.
- Comprehend the given texts and respond appropriately.
- Communicate confidently in various contexts and different cultures.
- Acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

SYLLABUS

UNIT –I
‘The Raman Effect’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary Building: The Concept of Word Formation -- The Use of Prefixes and Suffixes.
Grammar: Identifying Common Errors in Writing with Reference to Articles and Prepositions.
Reading: Reading and Its Importance - Techniques for Effective Reading.

UNIT –II
‘Ancient Architecture in India’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary: Synonyms and Antonyms.
Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-verb Agreement.
Reading: Improving Comprehension Skills – Techniques for Good Comprehension

UNIT –III
‘Blue Jeans’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary: Acquaintance with Prefixes and Suffixes from Foreign Languages in English to form Derivatives – Words from Foreign Languages and their Use in English.
Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.
Reading: Sub-skills of Reading- Skimming and Scanning
Writing: Nature and Style of Sensible Writing- Defining- Describing Objects, Places and Events – Classifying- Providing Examples or Evidence

UNIT –IV
‘What Should You Be Eating’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Standard Abbreviations in English
Grammar: Redundancies and Clichés in Oral and Written Communication.
Reading: Comprehension- Intensive Reading and Extensive Reading
Writing: Writing Practices- Writing Introduction and Conclusion - Essay Writing-Précis Writing.

UNIT –V
‘How a Chinese Billionaire Built Her Fortune’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Technical Vocabulary and their usage
Grammar: Common Errors in English
Reading: Reading Comprehension-Exercises for Practice

TEXT BOOK:

REFERENCE BOOKS:
Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness and chloride content in water to check its suitability for drinking purpose.
- To determine the rate constant of reactions from concentrations as a function of time.
- The measurement of physical properties like adsorption and viscosity.
- To synthesize the drug molecules and check the purity of organic molecules by thin layer chromatographic (TLC) technique.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness and chloride content in water.
- Estimation of rate constant of a reaction from concentration – time relationships.
- Determination of physical properties like adsorption and viscosity.
- Calculation of R_f values of some organic molecules by TLC technique.

List of Experiments:

1. Determination of total hardness of water by complexometric method using EDTA
2. Determination of chloride content of water by Argentometry
3. Estimation of an HCl by Conductometric titrations
4. Estimation of Acetic acid by Conductometric titrations
5. Estimation of HCl by Potentiometric titrations
6. Estimation of Fe$^{3+}$ by Potentiometry using KMnO$_4$
7. Determination of rate constant of acid catalysed hydrolysis of methyl acetate
8. Synthesis of Aspirin and Paracetamol
9. Thin layer chromatography calculation of R_f values. eg ortho and para nitro phenols
10. Determination of acid value of coconut oil
11. Verification of freundlich adsorption isotherm-adsorption of acetic acid on charcoal
12. Determination of viscosity of castor oil and ground nut oil by using Ostwald’s viscometer.
13. Determination of partition coefficient of acetic acid between n-butanol and water.

Reference Books:

1. Senior practical physical chemistry, B.D. Khosla, A. Gulati and V. Garg (R. Chand & Co., Delhi)
2. An introduction to practical chemistry, K.K. Sharma and D. S. Sharma (Vikas publishing, N. Delhi)
EN107HS/EN207HS: ENGLISH LANGUAGE AND COMMUNICATION SKILLS LAB

B.Tech. I Year II Sem.

L T P C
0 0 2 1

The Language Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Course Objectives:
- To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- To sensitize students to the nuances of English speech sounds, word accent, intonation and rhythm
- To bring about a consistent accent and intelligibility in students’ pronunciation of English by providing an opportunity for practice in speaking
- To improve the fluency of students in spoken English and neutralize their mother tongue influence
- To train students to use language appropriately for public speaking and interviews

Course Outcomes: Students will be able to attain
- Better understanding of nuances of English language through audio-visual experience and group activities
- Neutralization of accent for intelligibility
- Speaking skills with clarity and confidence which in turn enhances their employability skills

Syllabus

English Language and Communication Skills Lab (ELCS) shall have two parts:
- Computer Assisted Language Learning (CALL) Lab
- Interactive Communication Skills (ICS) Lab

Listening Skills
Objectives
1. To enable students develop their listening skills so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.
- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills
Objectives
1. To involve students in speaking activities in various contexts
2. To enable students express themselves fluently and appropriately in social and professional contexts
 - Oral practice: Just A Minute (JAM) Sessions
 - Describing objects/situations/people
 - Role play – Individual/Group activities

The following course content is prescribed for the English Language and Communication Skills Lab based on Unit-6 of AICTE Model Curriculum 2018 for B.Tech First English. As the syllabus is very limited, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning and timesaving in the Lab)
Exercise – I
CALL Lab:
Understand: Listening Skill- Its importance – Purpose- Process- Types- Barriers of Listening.
ICS Lab:
Understand: Communication at Work Place- Spoken vs. Written language.

Exercise – II
CALL Lab:
Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms in Context.
ICS Lab:

Exercise - III
CALL Lab:
Understand: Intonation-Errors in Pronunciation-the Influence of Mother Tongue (MTI).
Practice: Common Indian Variants in Pronunciation – Differences in British and American Pronunciation.
ICS Lab:
Understand: How to make Formal Presentations.
Practice: Formal Presentations.

Exercise – IV
CALL Lab:
Understand: Listening for General Details.
Practice: Listening Comprehension Tests.
ICS Lab:
Understand: Public Speaking – Exposure to Structured Talks.
Practice: Making a Short Speech – Extempore.

Exercise – V
CALL Lab:
Understand: Listening for Specific Details.
Practice: Listening Comprehension Tests.
ICS Lab:
Understand: Interview Skills.
Practice: Mock Interviews.

Minimum Requirement of infrastructural facilities for ELCS Lab:
1. **Computer Assisted Language Learning (CALL) Lab:**
 The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self-study by students.

 System Requirement (Hardware component):

 Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

 i) Computers with Suitable Configuration
 ii) High Fidelity Headphones

2. **Interactive Communication Skills (ICS) Lab:**
 The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public-Address System, a LCD and a projector etc.
EE108ES/EE208ES: BASIC ELECTRICAL ENGINEERING LAB

B.Tech. I Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Course Objectives:
- To analyze a given network by applying various electrical laws and network theorems
- To know the response of electrical circuits for different excitations
- To calculate, measure and know the relation between basic electrical parameters.
- To analyze the performance characteristics of DC and AC electrical machines

Course Outcomes:
- Get an exposure to basic electrical laws.
- Understand the response of different types of electrical circuits to different excitations.
- Understand the measurement, calculation and relation between the basic electrical parameters
- Understand the basic characteristics of transformers and electrical machines.

List of experiments/demonstrations:
1. Verification of Ohms Law
2. Verification of KVL and KCL
3. Transient Response of Series RL and RC circuits using DC excitation
4. Transient Response of RLC Series circuit using DC excitation
5. Resonance in series RLC circuit
6. Calculations and Verification of Impedance and Current of RL, RC and RLC series circuits
8. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
9. Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star)
10. Measurement of Active and Reactive Power in a balanced Three-phase circuit
11. Performance Characteristics of a Separately/Self Excited DC Shunt/Compound Motor
12. Torque-Speed Characteristics of a Separately/Self Excited DC Shunt/Compound Motor
13. Performance Characteristics of a Three-phase Induction Motor
14. Torque-Speed Characteristics of a Three-phase Induction Motor
15. No-Load Characteristics of a Three-phase Alternator
CS301ES: ANALOG AND DIGITAL ELECTRONICS

B.TECH II Year I Sem. L T P C

3 1 0 4

Course Objectives:
- To introduce components such as diodes, BJTs and FETs.
- To know the applications of components.
- To give understanding of various types of amplifier circuits
- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand the concepts of combinational logic circuits and sequential circuits.

Course Outcomes: Upon completion of the Course, the students will be able to:
- Know the characteristics of various components.
- Understand the utilization of components.
- Design and analyze small signal amplifier circuits.
- Learn Postulates of Boolean algebra and to minimize combinational functions
- Design and analyze combinational and sequential circuits
- Know about the logic families and realization of logic gates.

UNIT - I
Diodes and Applications: Junction diode characteristics: Open circuited p-n junction, p-n junction as a rectifier, V-I characteristics, effect of temperature, diode resistance, diffusion capacitance, diode switching times, breakdown diodes, Tunnel diodes, photo diode, LED.

Diode Applications - clipping circuits, comparators, Half wave rectifier, Full wave rectifier, rectifier with capacitor filter.

UNIT - II
BJTs: Transistor characteristics: The junction transistor, transistor as an amplifier, CB, CE, CC configurations, comparison of transistor configurations, the operating point, self-bias or Emitter bias, bias compensation, thermal runaway and stability, transistor at low frequencies, CE amplifier response, gain bandwidth product, Emitter follower, RC coupled amplifier, two cascaded CE and multi stage CE amplifiers.

UNIT - III
FETs and Digital Circuits: FETs: JFET, V-I characteristics, MOSFET, low frequency CS and CD amplifiers, CS and CD amplifiers.

Digital Circuits: Digital (binary) operations of a system, OR gate, AND gate, NOT, EXCLUSIVE OR gate, De Morgan Laws, NAND and NOR DTL gates, modified DTL gates, HTL and TTL gates, output stages, RTL and DCTL, CMOS, Comparison of logic families.

UNIT - IV

UNIT - V
Sequential Logic Circuits: Sequential Circuits, Storage Elements: Latches and flip flops, Analysis of Clocked Sequential Circuits, State Reduction and Assignment, Shift Registers, Ripple Counters, Synchronous Counters, Random-Access Memory, Read-Only Memory.

TEXT BOOKS:

REFERENCE BOOKS:
CS302PC: DATA STRUCTURES

B.TECH II Year I Sem.

L T P C
3 1 0 4

Prerequisites: A course on “Programming for Problem Solving”.

Course Objectives:
- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms

Course Outcomes:
- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I
Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues-operations, array and linked representations.

UNIT - II
Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

UNIT - IV
Graphs: Graph Implementation Methods. Graph Traversal Methods.
Sorting: Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT - V
Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

REFERENCE BOOK:
EM304PC: SIGNALS, SYSTEMS AND SIGNAL PROCESSING

B.TECH II Year I Sem. L T P C
 3 0 0 3

Pre-requisite: Nil

Course Objectives:
- This gives the basics of Signals and Systems required for all Electrical Engineering related courses.
- To understand the behavior of signal in time and frequency domain
- To understand the characteristics of LTI systems
- This gives concepts of Signals and Systems and its analysis using different transform techniques.

Course Outcomes: Upon completing this course, the student will be able to
- Differentiate various signal functions.
- Represent any arbitrary signal in time and frequency domain.
- Understand the characteristics of linear time invariant systems.
- Analyze the signals with different transform technique

UNIT - I
Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex functions, Classification of Signals and systems, Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum function.

UNIT – II
Fourier series: Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet’s conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum.

UNIT - III
Signal Transmission through Linear Systems: Linear System, Impulse response, Response of a Linear System, Linear Time Invariant (LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution.

UNIT – IV

UNIT - V
DFT: Properties of DFT, Linear Convolution of Sequences using DFT, Computation of DFT: Over-Lap Add Method, Over-Lap Save Method
IIR Digital Filters: Analog filter approximations – Butterworth and Chebyshev, Design of IIR Digital Filters from Analog Filters.
FIR Digital Filters: Characteristics of FIR Digital Filters, Frequency Response. Design of FIR Filters: Fourier Method

TEXT BOOKS:
1. Signals, Systems & Communications - B.P. Lathi, 2013, BSP.

REFERENCE BOOKS:
CS305PC: OBJECT ORIENTED PROGRAMMING USING C++

Course Objectives:
- Introduces Object Oriented Programming concepts using the C++ language.
- Introduces the principles of data abstraction, inheritance and polymorphism;
- Introduces the principles of virtual functions and polymorphism
- Introduces handling formatted I/O and unformatted I/O
- Introduces exception handling

Course Outcomes:
- Able to develop programs with reusability
- Develop programs for file handling
- Handle exceptions in programming
- Develop applications for a range of problems using object-oriented programming techniques

UNIT - I
Object-Oriented Thinking: Different paradigms for problem solving, need for OOP paradigm, differences between OOP and Procedure oriented programming, Overview of OOP concepts- Abstraction, Encapsulation, Inheritance and Polymorphism.

UNIT - II
C++ Classes and Data Abstraction: Class definition, Class structure, Class objects, Class scope, this pointer, Friends to a class, Static class members, Constant member functions, Constructors and Destructors, Dynamic creation and destruction of objects, Data abstraction, ADT and information hiding.

UNIT - III
Inheritance: Defining a class hierarchy, Different forms of inheritance, Defining the Base and Derived classes, Access to the base class members, Base and Derived class construction, Destructors, Virtual base class.

Virtual Functions and Polymorphism: Static and Dynamic binding, virtual functions, Dynamic binding through virtual functions, Virtual function call mechanism, Pure virtual functions, Abstract classes, Implications of polymorphic use of classes, Virtual destructors.

UNIT - IV
C++ I/O: I/O using C functions, Stream classes hierarchy, Stream I/O, File streams and String streams, Overloading operators, Error handling during file operations, Formatted I/O.

UNIT - V
Exception Handling: Benefits of exception handling, Throwing an exception, The try block, Catching an exception, Exception objects, Exception specifications, Stack unwinding, Rethrowing an exception, Catching all exceptions.

TEXT BOOKS:

REFERENCE BOOKS:
SM306MS: BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

B.Tech. II Year I Sem.

Course Objective: To learn the basic Business types, impact of the Economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm’s financial position by analysing the Financial Statements of a Company.

UNIT – I
Introduction to Business and Economics:

UNIT - II
Demand and Supply Analysis:

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

UNIT - III
Production, Cost, Market Structures & Pricing:

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition.

UNIT - IV

UNIT - V

TEXT BOOKS:

REFERENCE BOOKS:
CS306ES: ANALOG AND DIGITAL ELECTRONICS LAB

B.TECH II Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Course Objectives
- To introduce components such as diodes, BJTs and FETs.
- To know the applications of components.
- To give understanding of various types of amplifier circuits.
- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand the concepts of combinational logic circuits and sequential circuits.

Course Outcomes: Upon completion of the Course, the students will be able to:
- Know the characteristics of various components.
- Understand the utilization of components.
- Design and analyze small signal amplifier circuits.
- Postulate of Boolean algebra and to minimize combinational functions.
- Design and analyze combinational and sequential circuits.
- Known about the logic families and realization of logic gates.

List of Experiments
1. Full Wave Rectifier with & without filters
2. Common Emitter Amplifier Characteristics
3. Common Base Amplifier Characteristics
4. Common Source amplifier Characteristics
5. Measurement of h-parameters of transistor in CB, CE, CC configurations
6. Input and Output characteristics of FET in CS configuration
7. Realization of Boolean Expressions using Gates
8. Design and realization logic gates using universal gates
9. generation of clock using NAND / NOR gates
10. Design a 4 – bit Adder / Subtractor
11. Design and realization a Synchronous and Asynchronous counter using flip-flops
12. Realization of logic gates using DTL, TTL, ECL, etc.
CS307PC: DATA STRUCTURES LAB

B.TECH II Year I Sem.

L T P C
0 0 3 1.5

Prerequisites: A Course on “Programming for problem solving”.

Course Objectives:
- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:
- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists.
- Ability to Implement searching and sorting algorithms

List of Experiments
1. Write a program that uses functions to perform the following operations on singly linked list.:
 i) Creation
 ii) Insertion
 iii) Deletion
 iv) Traversal
2. Write a program that uses functions to perform the following operations on doubly linked list.:
 i) Creation
 ii) Insertion
 iii) Deletion
 iv) Traversal
3. Write a program that uses functions to perform the following operations on circular linked list.:
 i) Creation
 ii) Insertion
 iii) Deletion
 iv) Traversal
4. Write a program that implement stack (its operations) using
 i) Arrays
 ii) Pointers
5. Write a program that implement Queue (its operations) using
 i) Arrays
 ii) Pointers
6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order
 i) Bubble sort
 ii) Selection sort
 iii) Insertion sort
7. Write a program that use both recursive and non recursive functions to perform the following searching operations for a Key value in a given list of integers:
 i) Linear search
 ii) Binary search
8. Write a program to implement the tree traversal methods.
9. Write a program to implement the graph traversal methods.

TEXT BOOKS:

REFERENCE BOOK:
CS309PC: C++ PROGRAMMING LAB

B.TECH II Year I Sem.

L T P C
0 0 2 1

Prerequisites: A course on “Programming for Problem Solving”.

Course Objectives:
- Introduces object-oriented programming concepts using the C++ language.
- Introduces the principles of data abstraction, inheritance and polymorphism;
- Introduces the principles of virtual functions and polymorphism
- Introduces handling formatted I/O and unformatted I/O
- Introduces exception handling

Course Outcome:
- Ability to develop applications for a range of problems using object-oriented programming techniques

List of Experiments
1. Write a C++ Program to display Names, Roll No., and grades of 3 students who have appeared in the examination. Declare the class of name, Roll No. and grade. Create an array of class objects. Read and display the contents of the array.

2. Write a C++ program to declare Struct. Initialize and display contents of member variables.

3. Write a C++ program to declare a class. Declare pointer to class. Initialize and display the contents of the class member.

4. Given that an EMPLOYEE class contains following members: data members: Employee number, Employee name, Basic, DA, IT, Net Salary and print data members.

5. Write a C++ program to read the data of N employee and compute Net salary of each employee (DA=52% of Basic and Income Tax (IT) =30% of the gross salary).

6. Write a C++ to illustrate the concepts of console I/O operations.

7. Write a C++ program to use scope resolution operator. Display the various values of the same variables declared at different scope levels.

8. Write a C++ program to allocate memory using new operator.

9. Write a C++ program to create multilevel inheritance. (Hint: Classes A1, A2, A3)

10. Write a C++ program to create an array of pointers. Invoke functions using array objects.

11. Write a C++ program to use pointer for both base and derived classes and call the member function. Use Virtual keyword.
The Constitution of India is the supreme law of India. Parliament of India cannot make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the “basic structure” of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of “Constitutionalism” – a modern and progressive concept historically developed by the thinkers of “liberalism” – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of “constitutionalism” in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India’s legacy of “diversity”. It has been said that Indian constitution reflects ideals of its freedom movement; however, few critics have argued that it does not truly incorporate our own ancient legal heritage and cultural values. No law can be “static” and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution but also strengthened the same through progressive interpretations of the text of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it “as one of the strongest court in the world”.

Course content
1. Meaning of the constitution law and constitutionalism
2. Historical perspective of the Constitution of India
3. Salient features and characteristics of the Constitution of India
4. Scheme of the fundamental rights
5. The scheme of the Fundamental Duties and its legal status
6. The Directive Principles of State Policy – Its importance and implementation
7. Federal structure and distribution of legislative and financial powers between the Union and the States
8. Parliamentary Form of Government in India – The constitution powers and status of the President of India
9. Amendment of the Constitutional Powers and Procedure
10. The historical perspectives of the constitutional amendments in India
12. Local Self Government – Constitutional Scheme in India
13. Scheme of the Fundamental Right to Equality
14. Scheme of the Fundamental Right to certain Freedom under Article 19
15. Scope of the Right to Life and Personal Liberty under Article 21
EM401ES: PROBABILITY THEORY AND STOCHASTIC PROCESSES

B.Tech. II Year II Sem.

Pre-requisite: Nil

Course Objectives:
- This gives basic understanding of random signals and processes sing
- Utilization of Random signals and systems in Communications and Signal Processing areas.
- To know the Spectral and temporal characteristics of Random Process.
- To Learn the Basic concepts of Noise sources

Course Outcomes: Upon completing this course, the student will be able to
- Understand the concepts of Random Process and its Characteristics.
- Understand the response of linear time Invariant system for a Random Processes.
- Determine the Spectral and temporal characteristics of Random Signals.
- Understand the concepts of Noise in Communication systems.

UNIT - I

UNIT - II

UNIT - III

UNIT - IV

UNIT - V

Noise Sources & Information Theory: Resistive/Thermal Noise Source, Arbitrary Noise Sources, Effective Noise Temperature, Noise equivalent bandwidth, Average Noise Figures, Average Noise Figure of cascaded networks, Narrow Band noise, Quadrature representation of narrow band noise & its properties. Entropy, Information rate, Source coding: Huffman coding, Shannon Fano coding, Mutual information, Channel capacity of discrete channel, Shannon-Hartley law; Trade -off between bandwidth and SNR.

TEXT BOOKS:
2. Principles of Communication systems by Taub and Schilling (TMH), 2008

REFERENCE BOOKS:
1. Random Processes for Engineers-Bruce Hajck, Cambridge unipress, 2015
EC403PC: ANALOG AND DIGITAL COMMUNICATIONS

B.TECH II Year II Semester

Prerequisite: Probability theory and Stochastic Processes

Course Objectives:
- To develop ability to analyze system requirements of analog and digital communication systems.
- To understand the generation, detection of various analog and digital modulation techniques.
- To acquire theoretical knowledge of each block in AM, FM transmitters and receivers.
- To understand the concepts of baseband transmissions.

Course Outcomes: Upon completing this course, the student will be able to
- Analyze and design of various continuous wave and angle modulation and demodulation techniques
- Understand the effect of noise present in continuous wave and angle modulation techniques.
- Attain the knowledge about AM, FM Transmitters and Receivers
- Analyze and design the various Pulse Modulation Techniques.
- Understand the concepts of Digital Modulation Techniques and Baseband transmission.

UNIT - I

UNIT - II

UNIT - III
Transmitters: Classification of Transmitters, AM Transmitters, FM Transmitters
Receivers: Radio Receiver - Receiver Types - Tuned radio frequency receiver, Superheterodyne receiver, RF section and Characteristics - Frequency changing and tracking, Intermediate frequency, Image frequency, AGC, Amplitude limiting, FM Receiver, Comparison of AM and FM Receivers.

UNIT - IV
Pulse Modulation: Types of Pulse modulation- PAM, PWM and PPM. Comparison of FDM and TDM.
Pulse Code Modulation: PCM Generation and Reconstruction, Quantization Noise, Non-Uniform Quantization and Comping, DPCM, Adaptive DPCM, DM and Adaptive DM, Noise in PCM and DM.

UNIT - V
Digital Modulation Techniques: ASK- Modulator, Coherent ASK Detector, FSK- Modulator, Non-Coherent FSK Detector, BPSK- Modulator, Coherent BPSK Detection. Principles of QPSK, Differential PSK and QAM.

TEXT BOOKS:
REFERENCE BOOKS:
Course Objectives:
- To understand the structure of a computer and its operations.
- To understand the RTL and Micro-level operations and control in a computer.
- Understanding the concepts of I/O and memory organization and operating systems.

Course Outcomes:
- Able to visualize the organization of different blocks in a computer.
- Able to use micro-level operations to control different units in a computer.
- Able to use Operating systems in a computer.

UNIT - I:
Basic Structure of Computers: Computer Types, Functional Unit, Basic OPERATIONAL Concepts, Bus Structures, Software, Performance, Multiprocessors and Multi Computers, Data Representation, Fixed Point Representation, Floating – Point Representation.

UNIT - II:
Micro Programmed Control: Control Memory, Address Sequencing, Microprogram Examples, Design of Control Unit, Hard Wired Control, Microprogrammed Control

The Memory System: Basic Concepts of Semiconductor RAM Memories, Read-Only Memories, Cache Memories Performance Considerations, Virtual Memories Secondary Storage, Introduction to RAID.

UNIT - III:

UNIT - IV:

Memory Management: Swapping, Contiguous Memory Allocation, Paging, Structure of The Page Table, Segmentation, Virtual Memory, Demand Paging, Page-Replacement Algorithms, Allocation of Frames, Thrashing Case Studies - UNIX, Linux, Windows

Principles of Deadlock: System Model, Deadlock Characterization, Deadlock Prevention, Detection and Avoidance, Recovery from Deadlock.

UNIT - V:

File System Implementation: File System Structure, File System Implementation, Directory Implementation, Allocation Methods, Free-Space Management.

TEXT BOOKS:
REFERENCE BOOKS:
CS404PC: DATABASE MANAGEMENT SYSTEMS

B.TECH II Year II Sem.

Prerequisites: A course on “Data Structures”.

Course Objectives:
- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:
- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I
Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS
Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II
Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering tables and views.
Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III
SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active data bases.

UNIT - IV

UNIT - V

TEXT BOOKS:
REFERENCE BOOKS:
2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C. J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI
EC405PC: ELECTRONIC CIRCUIT ANALYSIS

B.TECH II Year II Sem.

Pre-requisite: Electronic Devices and Circuits

Course Objectives:
- Learn the concepts of high frequency analysis of transistors.
- To give understanding of various types of amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.
- To familiarize the Concept of feedback in amplifiers so as to differentiate between negative and positive feedback.
- To construct various multivibrators using transistors and sweep circuits.

Course Outcomes: Upon completing this course, the student will be able to
- Design the multistage amplifiers and understand the concepts of High Frequency Analysis of Transistors.
- Utilize the Concepts of negative feedback to improve the stability of amplifiers and positive feedback to generate sustained oscillations.
- Design and realize different classes of Power Amplifiers and tuned amplifiers useable for audio and Radio applications.
- Design Multivibrators and sweep circuits for various applications.

UNIT – I
Multistage Amplifiers: Classification of Amplifiers, Distortion in amplifiers, Different coupling schemes used in amplifiers, Frequency response and Analysis of multistage amplifiers, Casca RC Coupled amplifiers, Cascode amplifier, Darlington pair.

Transistor at High Frequency: Hybrid - model of Common Emitter transistor model, f_α, f_β and unity gain bandwidth, Gain-bandwidth product.

UNIT II

UNIT III

UNIT -IV
Large Signal Amplifiers: Class A Power Amplifier- Series fed and Transformer coupled, Conversion Efficiency, Class B Power Amplifier- Push Pull and Complimentary Symmetry configurations, Conversion Efficiency, Principle of operation of Class AB and Class –C Amplifiers.

UNIT –V

Time Base Generators: General features of a Time base Signal, Methods of Generating Time Base Waveform, concepts of Transistor Miller and Bootstrap Time Base Generator, Methods of Linearity improvement.

TEXT BOOKS:
1. Integrated Electronics, Jacob Millman, Christos C Halkias, McGraw Hill Education.
REFERENCE BOOKS:
EC406PC: ANALOG AND DIGITAL COMMUNICATIONS LAB

B.TECH II Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Note:
- Minimum 12 experiments should be conducted:
- All these experiments are to be simulated first either using MATLAB, COMSIM or any other simulation package and then to be realized in hardware

List of Experiments:
1. (i) Amplitude modulation and demodulation
 (ii) Spectrum analysis of AM
2. (i) Frequency modulation and demodulation
 (ii) Spectrum analysis of FM
3. DSB-SC Modulator & Detector
4. SSB-SC Modulator & Detector (Phase Shift Method)
5. Frequency Division Multiplexing & De multiplexing
6. Pulse Amplitude Modulation & Demodulation
7. Pulse Width Modulation & Demodulation
8. Pulse Position Modulation & Demodulation
9. PCM Generation and Detection
10. Delta Modulation
11. Frequency Shift Keying: Generation and Detection
12. Binary Phase Shift Keying: Generation and Detection
13. Generation and Detection (i) DPSK (ii) QPSK

Major Equipment required for Laboratories:
1. CROs: 20MHz
2. Function Generators: 2MHz
3. Spectrum Analyzer
4. Regulated Power Supplies: 0-30V
5. MAT Lab/Equivalent Simulation Package with Communication tool box
6. Analog and Digital Modulation and Demodulation Trainer Kits.
CS406PC: OPERATING SYSTEMS LAB
(Using UNIX/LINUX)

B.TECH II Year II Sem.

L T P C 0 0 3 1.5

Prerequisites:
• A course on “Programming for Problem Solving”.
• A course on “Computer Organization and Operating Systems”.

Co-requisite:
• A course on “Operating Systems”.

Course Objectives:
• To provide an understanding of the design aspects of operating system concepts through simulation
• Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:
• Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management.
• Able to implement C programs using Unix system calls

List of Experiments:
1. Write C programs to simulate the following CPU Scheduling algorithms
 a) FCFS b) SJF c) Round Robin d) priority
2. Write programs using the I/O system calls of UNIX/LINUX operating system
 (open, read, write, close, fcntl, seek, stat, opendir, readdir)
3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
4. Write a C program to implement the Producer – Consumer problem using semaphores using UNIX/LINUX system calls.
5. Write C programs to illustrate the following IPC mechanisms
 a) Pipes b) FIFOs c) Message Queues d) Shared Memory
6. Write C programs to simulate the following memory management techniques
 a) Paging b) Segmentation

TEXT BOOKS:

REFERENCE BOOKS:
2. Operating System - A Design Approach-Crowley, TMH.
4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education
CS407PC: DATABASE MANAGEMENT SYSTEMS LAB

B.TECH II Year II Sem. Rs 0 0 3 1.5

Co-requisites:
- Co-requisite of course “Database Management Systems”

Course Objectives:
- Introduce ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation

Course Outcomes:
- Design database schema for a given application and apply normalization
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for database applications using procedures, cursors and triggers

List of Experiments:
1. Concept design with E-R Model
2. Relational Model
3. Normalization
4. Practicing DDL commands
5. Practicing DML commands
6. Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.)
7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
8. Triggers (Creation of insert trigger, delete trigger, update trigger)
9. Procedures
10. Usage of Cursors

TEXT BOOKS:

REFERENCES BOOKS:
2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C.J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
MC409/MC309: GENDER SENSITIZATION LAB
(An Activity-based Course)

B.TECH II Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION

This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course:
- To develop students’ sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes:
- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT - I: Understanding Gender

UNIT – II: Gender Roles and Relations

Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences-Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

UNIT – III: Gender and Labour

Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming

UNIT – IV: Gender - Based Violence
The Concept of Violence- Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No! -Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: “Chupulu”.

UNIT – V: Gender and Culture
Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on “Gender”.

Assessment and Grading:
- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%