I YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA101BS</td>
<td>Mathematics-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CH102BS</td>
<td>Chemistry</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EE103ES</td>
<td>Basic Electrical Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ME105ES</td>
<td>Engineering Workshop</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>EN105HS</td>
<td>English</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>CH106BS</td>
<td>Engineering Chemistry Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>EN107HS</td>
<td>English Language and Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>EE108ES</td>
<td>Basic Electrical Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Induction Programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>12</td>
<td>3</td>
<td>10</td>
<td>19</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EE301ES</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>EE302PC</td>
<td>Electrical Circuit Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EE303PC</td>
<td>Analog Electronics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EE304PC</td>
<td>Electrical Machines-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>EE305PC</td>
<td>Electromagnetic Fields</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EE306PC</td>
<td>Electrical Machines Lab-I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>EE307PC</td>
<td>Analog Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>EE308PC</td>
<td>Electrical Circuits Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*MC309</td>
<td>Gender Sensitization Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>15</td>
<td>3</td>
<td>8</td>
<td>21</td>
</tr>
</tbody>
</table>

II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA401BS</td>
<td>Laplace Transforms, Numerical Methods & Complex variables</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech. in ELECTRICAL AND ELECTRONICS ENGINEERING
COURSE STRUCTURE & SYLLABUS (R18)

Applicable From 2018-19 Admitted Batch
<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>EE402PC</td>
<td>Electrical Machines – II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EE403PC</td>
<td>Digital Electronics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EE404PC</td>
<td>Control Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>EE405PC</td>
<td>Power System - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EE406PC</td>
<td>Digital Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>EE407PC</td>
<td>Electrical Machines Lab - II</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>EE408PC</td>
<td>Control Systems Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*MC409</td>
<td>Constitution of India</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>18</td>
<td>3</td>
<td>6</td>
<td>21</td>
</tr>
</tbody>
</table>

III YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EE501PE</td>
<td>Power Electronics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>EE502PE</td>
<td>Power System-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EE503PE</td>
<td>Measurements and Instrumentation</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Professional Elective-I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>SM504MS</td>
<td>Business Economics and Financial Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EE505PC</td>
<td>Power System Simulation Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>EE506PC</td>
<td>Power Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>EE507PC</td>
<td>Measurements and Instrumentation Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>EN508HS</td>
<td>Advanced Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>*MC510</td>
<td>Intellectual Property Rights</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>18</td>
<td>3</td>
<td>8</td>
<td>22</td>
</tr>
</tbody>
</table>

III YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open Elective-I</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Professional Elective-II</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EE601PC</td>
<td>Signals and Systems</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EE602PC</td>
<td>Microprocessors & Microcontrollers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EE603PC</td>
<td>Power System Protection</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>EE604PC</td>
<td>Power System Operation and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>EE605PC</td>
<td>Power System Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>EE606PC</td>
<td>Microprocessors & Microcontrollers Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>EE607PC</td>
<td>Signals and Systems Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>*MC609</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>20</td>
<td>2</td>
<td>6</td>
<td>22</td>
</tr>
</tbody>
</table>

*MC609 - Environmental Science – Should be Registered by Lateral Entry Students Only.

IV YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open Elective-II</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Professional Elective-III</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Professional Elective-IV</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>SM701MS</td>
<td>Fundamentals of Management for Engineers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EE701PC</td>
<td>Electrical & Electronics Design Lab</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
IV YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EE511PE</td>
<td>Computer Architecture</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EE512PE</td>
<td>High Voltage Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EE513PE</td>
<td>Electrical Machine Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EE801PC</td>
<td>Project Stage - II</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>9</td>
<td>0</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

*MC – Satisfactory/Unsatisfactory

NOTE: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

Professional Elective - I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE511PE</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>EE512PE</td>
<td>High Voltage Engineering</td>
</tr>
<tr>
<td>EE513PE</td>
<td>Electrical Machine Design</td>
</tr>
</tbody>
</table>

Professional Elective - II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE611PE</td>
<td>Optimization Techniques</td>
</tr>
<tr>
<td>EE612PE</td>
<td>Power Semiconductor Drives</td>
</tr>
<tr>
<td>EE613PE</td>
<td>Wind and Solar Energy systems</td>
</tr>
</tbody>
</table>

Professional Elective - III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE711PE</td>
<td>Digital Control systems</td>
</tr>
<tr>
<td>EE712PE</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>EE713PE</td>
<td>Electrical and Hybrid Vehicles</td>
</tr>
</tbody>
</table>

Professional Elective - IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE721PE</td>
<td>HVDC Transmission</td>
</tr>
<tr>
<td>EE722PE</td>
<td>Power System Reliability</td>
</tr>
<tr>
<td>EE723PE</td>
<td>Industrial Electrical Systems</td>
</tr>
</tbody>
</table>

Professional Elective - V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE811PE</td>
<td>Power Quality & FACTS</td>
</tr>
<tr>
<td>EE812PE</td>
<td>Control Systems Design</td>
</tr>
<tr>
<td>EE813PE</td>
<td>AI Techniques in Electrical Engineering</td>
</tr>
</tbody>
</table>

Professional Elective - VI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE821PE</td>
<td>Smart Grid Technologies</td>
</tr>
<tr>
<td>EE822PE</td>
<td>Electrical Distribution Systems</td>
</tr>
<tr>
<td>EE823PE</td>
<td>Advanced Control of Electric Drives</td>
</tr>
</tbody>
</table>
MA101BS: MATHEMATICS - I

B.Tech. I Year I Sem.

Course Objectives: To learn
- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of Eigen values and eigenvectors and to reduce the quadratic form to canonical form.
- Concept of Sequence.
- Concept of nature of the series.
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.

Course Outcomes: After learning the contents of this paper the student must be able to
- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- Find the Eigen values and Eigen vectors
- Reduce the quadratic form to canonical form using orthogonal transformations.
- Analyse the nature of sequence and series.
- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions
- Find the extreme values of functions of two variables with/ without constraints.

UNIT-I: Matrices
Matrices: Types of Matrices, Symmetric; Hermitian; Skew-symmetric; Skew-Hermitian; orthogonal matrices; Unitary Matrices; rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method; System of linear equations; solving system of Homogeneous and Non-Homogeneous equations. Gauss elimination method; Gauss Seidel Iteration Method.

UNIT-II: Eigen values and Eigen vectors
Linear Transformation and Orthogonal Transformation: Eigen values and Eigenvectors and their properties: Diagonalization of a matrix; Cayley-Hamilton Theorem (without proof); finding inverse and power of a matrix by Cayley-Hamilton Theorem; Quadratic forms and Nature of the Quadratic Forms; Reduction of Quadratic form to canonical forms by Orthogonal Transformation

UNIT-III: Sequences & Series
Sequence: Definition of a Sequence, limit; Convergent, Divergent and Oscillatory sequences. Series: Convergent, Divergent and Oscillatory Series; Series of positive terms; Comparison test, p-test, D-Alembert’s ratio test; Raabe’s test; Cauchy’s Integral test; Cauchy’s root test; logarithmic test. Alternating series: Leibnitz test; Alternating Convergent series: Absolute and Conditionally Convergence.

UNIT-IV: Calculus
Mean value theorems: Rolle’s theorem, Lagrange’s Mean value theorem with their Geometrical Interpretation and applications, Cauchy’s Mean value Theorem. Taylor’s Series.
Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT-V: Multivariable calculus (Partial Differentiation and applications)
Definitions of Limit and continuity.
Partial Differentiation; Euler’s Theorem; Total derivative; Jacobian; Functional dependence & independence, Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

TEXTBOOKS:

REFERENCES:
CH102BS/CH202BS: CHEMISTRY

B.Tech. I Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
- To bring adaptability to the concepts of chemistry and to acquire the required skills to become a perfect engineer.
- To impart the basic knowledge of atomic, molecular and electronic modifications which makes the student to understand the technology based on them.
- To acquire the knowledge of electrochemistry, corrosion and water treatment which are essential for the Engineers and in industry.
- To acquire the skills pertaining to spectroscopy and to apply them for medical and other fields.
- To impart the knowledge of stereochemistry and synthetic aspects useful for understanding reaction pathways.

Course Outcomes: The basic concepts included in this course will help the student to gain:
- The knowledge of atomic, molecular and electronic changes, band theory related to conductivity.
- The required principles and concepts of electrochemistry, corrosion and in understanding the problem of water and its treatments.
- The required skills to get clear concepts on basic spectroscopy and application to medical and other fields.
- The knowledge of configurational and conformational analysis of molecules and reaction mechanisms.

UNIT - I:
Molecular structure and Theories of Bonding: Atomic and Molecular orbitals. Linear Combination of Atomic Orbitals (LCAO), molecular orbitals of diatomic molecules, molecular orbital energy level diagrams of N\textsubscript{2}, O\textsubscript{2} and F\textsubscript{2} molecules. π molecular orbitals of butadiene and benzene. Crystal Field Theory (CFT): Salient Features of CFT – Crystal Field Splitting of transition metal ion d-orbitals in Tetrahedral, Octahedral and square planar geometries. Band structure of solids and effect of doping on conductance.

UNIT - II:

UNIT - III:
UNIT - IV:

UNIT - V:
Spectroscopic techniques and applications: Principles of spectroscopy, selection rules and applications of electronic spectroscopy. vibrational and rotational spectroscopy. Basic concepts of Nuclear magnetic resonance Spectroscopy, chemical shift. Introduction to Magnetic resonance imaging.

TEXT BOOKS:
1. Physical Chemistry, by P.W. Atkins
3. Fundamentals of Molecular Spectroscopy, by C.N. Banwell
6. Engineering Chemistry (NPTEL Web-book), by B.L. Tembe, Kamaluddin and M.S. Krishnan
EE103ES/EE203ES: BASIC ELECTRICAL ENGINEERING

L T P C
3 0 0 3

Course Objectives:
- To introduce the concepts of electrical circuits and its components
- To understand magnetic circuits, DC circuits and AC single phase & three phase circuits
- To study and understand the different types of DC/AC machines and Transformers.
- To import the knowledge of various electrical installations.
- To introduce the concept of power, power factor and its improvement.

Course Outcomes:
- To analyze and solve electrical circuits using network laws and theorems.
- To understand and analyze basic Electric and Magnetic circuits
- To study the working principles of Electrical Machines
- To introduce components of Low Voltage Electrical Installations

UNIT-I: D.C. Circuits
Time-domain analysis of first-order RL and RC circuits.

UNIT-II: A.C. Circuits
Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit.
Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III: Transformers
Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV: Electrical Machines
Construction and working of synchronous generators.

UNIT-V: Electrical Installations
Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT BOOKS/REFERENCE BOOKS:
ME105ES/ME205ES: ENGINEERING WORKSHOP

B.Tech. I Year I Sem.

L T P C
1 0 3 2.5

Pre-requisites: Practical skill

Course Objectives:
- To study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

Course Outcomes: At the end of the course, the student will be able to:
- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including pluming, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

1. TRADES FOR EXERCISES:
At least two exercises from each trade:
I. Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
II. Fitting – (V-Fit, Dovetail Fit & Semi-circular fit)
III. Tin-Smithy – (Square Tin, Rectangular Tray & Conical Funnel)
IV. Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern)
V. Welding Practice – (Arc Welding & Gas Welding)
VI. House-wiring – (Parallel & Series, Two-way Switch and Tube Light)
VII. Black Smithy – (Round to Square, Fan Hook and S-Hook)

2. TRADES FOR DEMONSTRATION & EXPOSURE:
Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working

TEXT BOOKS:
1. Workshop Practice /B. L. Juneja / Cengage

REFERENCE BOOKS:
2. Workshop Manual / Venkat Reddy/ BSP
EN105HS/EN205HS: ENGLISH

B.Tech. I Year I Sem. L T P C
2 0 0 2

INTRODUCTION
In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire language skills, the syllabus of English has been designed to develop linguistic, communicative and critical thinking competencies of Engineering students.

In English classes, the focus should be on the skills development in the areas of vocabulary, grammar, reading and writing. For this, the teachers should use the prescribed text for detailed study. The students should be encouraged to read the texts leading to reading comprehension and different passages may be given for practice in the class. The time should be utilized for working out the exercises given after each excerpt, and also for supplementing the exercises with authentic materials of a similar kind, for example, newspaper articles, advertisements, promotional material etc. The focus in this syllabus is on skill development, fostering ideas and practice of language skills in various contexts and cultures.

Learning Objectives: The course will help to
- Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- Equip students to study academic subjects more effectively and critically using the theoretical and practical components of English syllabus.
- Develop study skills and communication skills in formal and informal situations.

Course Outcomes: Students should be able to
- Use English Language effectively in spoken and written forms.
- Comprehend the given texts and respond appropriately.
- Communicate confidently in various contexts and different cultures.
- Acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

SYLLABUS

UNIT –I
‘The Raman Effect’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary Building: The Concept of Word Formation --The Use of Prefixes and Suffixes.
Grammar: Identifying Common Errors in Writing with Reference to Articles and Prepositions.
Reading: Reading and Its Importance- Techniques for Effective Reading.

UNIT –II
‘Ancient Architecture in India’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Synonyms and Antonyms.
Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-verb Agreement.
Reading: Improving Comprehension Skills – Techniques for Good Comprehension
UNIT –III
‘Blue Jeans’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Acquaintance with Prefixes and Suffixes from Foreign Languages in English to form Derivatives-Words from Foreign Languages and their Use in English.
Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.
Reading: Sub-skills of Reading- Skimming and Scanning
Writing: Nature and Style of Sensible Writing- Defining- Describing Objects, Places and Events – Classifying- Providing Examples or Evidence

UNIT –IV
‘What Should You Be Eating’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Standard Abbreviations in English
Grammar: Redundancies and Clichés in Oral and Written Communication.
Reading: Comprehension- Intensive Reading and Extensive Reading
Writing: Writing Practices -Writing Introduction and Conclusion - Essay Writing-Précis Writing.

UNIT –V
‘How a Chinese Billionaire Built Her Fortune’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.
Vocabulary: Technical Vocabulary and their usage
Grammar: Common Errors in English
Reading: Reading Comprehension-Exercises for Practice
Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing a Report.

TEXT BOOK:

REFERENCE BOOKS:
CH106BS/CH206ES: ENGINEERING CHEMISTRY LAB

B.Tech. I Year I Sem.

Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness and chloride content in water to check its suitability for drinking purpose.
- To determine the rate constant of reactions from concentrations as an function of time.
- The measurement of physical properties like adsorption and viscosity.
- To synthesize the drug molecules and check the purity of organic molecules by thin layer chromatographic (TLC) technique.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness and chloride content in water.
- Estimation of rate constant of a reaction from concentration – time relationships.
- Determination of physical properties like adsorption and viscosity.
- Calculation of R_f values of some organic molecules by TLC technique.

List of Experiments:
1. Determination of total hardness of water by complexometric method using EDTA
2. Determination of chloride content of water by Argentometry
3. Estimation of an HCl by Conductometric titrations
4. Estimation of Acetic acid by Conductometric titrations
5. Estimation of HCl by Potentiometric titrations
6. Estimation of Fe$^{2+}$ by Potentiometry using KMnO$_4$
7. Determination of rate constant of acid catalysed hydrolysis of methyl acetate
8. Synthesis of Aspirin and Paracetamol
9. Thin layer chromatography calculation of R_f values. eg ortho and para nitro phenols
10. Determination of acid value of coconut oil
11. Verification of freundlich adsorption isotherm-adsorption of acetic acid on charcoal
12. Determination of viscosity of castor oil and ground nut oil by using Ostwald’s viscometer.
13. Determination of partition coefficient of acetic acid between n-butanol and water.

REFERENCE BOOKS:
1. Senior practical physical chemistry, B.D. Khosla, A. Gulati and V. Garg (R. Chand & Co., Delhi)
2. An introduction to practical chemistry, K.K. Sharma and D. S. Sharma (Vikas publishing, N. Delhi)
3. Vogel’s text book of practical organic chemistry 5th edition
EN107HS/EN207HS: ENGLISH LANGUAGE
AND COMMUNICATION SKILLS LAB

B.Tech. I Year I Sem.

The Language Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Course Objectives:
- To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- To sensitize students to the nuances of English speech sounds, word accent, intonation and rhythm
- To bring about a consistent accent and intelligibility in students’ pronunciation of English by providing an opportunity for practice in speaking
- To improve the fluency of students in spoken English and neutralize their mother tongue influence
- To train students to use language appropriately for public speaking and interviews

Learning Outcomes: Students will be able to attain
- Better understanding of nuances of English language through audio-visual experience and group activities
- Neutralization of accent for intelligibility
- Speaking skills with clarity and confidence which in turn enhances their employability skills

Syllabus

English Language and Communication Skills Lab (ELCS) shall have two parts:

a. Computer Assisted Language Learning (CALL) Lab
b. Interactive Communication Skills (ICS) Lab

Listening Skills

Objectives
1. To enable students develop their listening skills so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.
- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills

Objectives
1. To involve students in speaking activities in various contexts
2. To enable students express themselves fluently and appropriately in social and professional contexts
 - Oral practice: Just A Minute (JAM) Sessions
The following course content is prescribed for the English Language and Communication Skills Lab based on Unit-6 of AICTE Model Curriculum 2018 for B.Tech First English. As the syllabus is very limited, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning and timesaving in the Lab.

Exercise – I

CALL Lab:
Understand: Listening Skill- Its importance – Purpose- Process- Types- Barriers of Listening.

ICS Lab:
Understand: Communication at Work Place- Spoken vs. Written language.

Exercise – II

CALL Lab:
Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms in Context.

ICS Lab:

Exercise - III

CALL Lab:
Understand: Intonation-Errors in Pronunciation-the Influence of Mother Tongue (MTI).
Practice: Common Indian Variants in Pronunciation – Differences in British and American Pronunciation.

ICS Lab:
Understand: How to make Formal Presentations.
Practice: Formal Presentations.

Exercise – IV

CALL Lab:
Understand: Listening for General Details.
Practice: Listening Comprehension Tests.

ICS Lab:
Understand: Public Speaking – Exposure to Structured Talks.
Practice: Making a Short Speech – Extempore.

Exercise – V

CALL Lab:
Understand: Listening for Specific Details.
Practice: Listening Comprehension Tests.

ICS Lab:
Understand: Interview Skills.
Practice: Mock Interviews.
Minimum Requirement of infrastructural facilities for ELCS Lab:

1. **Computer Assisted Language Learning (CALL) Lab:**

The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self-study by students.

System Requirement (Hardware component):

Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

i) Computers with Suitable Configuration

ii) High Fidelity Headphones

2. **Interactive Communication Skills (ICS) Lab:**

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public-Address System, a LCD and a projector etc.
Course Objectives:
- To analyze a given network by applying various electrical laws and network theorems
- To know the response of electrical circuits for different excitations
- To calculate, measure and know the relation between basic electrical parameters.
- To analyze the performance characteristics of DC and AC electrical machines

Course Outcomes:
- Get an exposure to basic electrical laws.
- Understand the response of different types of electrical circuits to different excitations.
- Understand the measurement, calculation and relation between the basic electrical parameters.
- Understand the basic characteristics of transformers and electrical machines.

List of experiments/demonstrations:
1. Verification of Ohms Law
2. Verification of KVL and KCL
3. Transient Response of Series RL and RC circuits using DC excitation
4. Transient Response of RLC Series circuit using DC excitation
5. Resonance in series RLC circuit
6. Calculations and Verification of Impedance and Current of RL, RC and RLC series circuits
8. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
9. Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star)
10. Measurement of Active and Reactive Power in a balanced Three-phase circuit
11. Performance Characteristics of a Separately/Self Excited DC Shunt/Compound Motor
12. Torque-Speed Characteristics of a Separately/Self Excited DC Shunt/Compound Motor
13. Performance Characteristics of a Three-phase Induction Motor
14. Torque-Speed Characteristics of a Three-phase Induction Motor
15. No-Load Characteristics of a Three-phase Alternator
MA201BS: MATHEMATICS - II

B.Tech. I Year II Sem.

Course Objectives: To learn
- Methods of solving the differential equations of first and higher order.
- Evaluation of multiple integrals and their applications
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course Outcomes: After learning the contents of this paper the student must be able to
- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real world problems
- Evaluate the multiple integrals and apply the concept to find areas, volumes, centre of mass and Gravity for cubes, sphere and rectangular parallelopiped
- Evaluate the line, surface and volume integrals and converting them from one to another

UNIT-I: First Order ODE
Exact, linear and Bernoulli’s equations; Applications : Newton’s law of cooling, Law of natural growth and decay; Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut’s type.

UNIT-II: Ordinary Differential Equations of Higher Order
Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type $e^{ax}, \sin ax, \cos ax$, polynomials in x, $e^{ax}V(x)$ and $x V(x)$; method of variation of parameters; Equations reducible to linear ODE with constant coefficients: Legendre’s equation, Cauchy-Euler equation.

UNIT-III: Multivariable Calculus (Integration)
Evaluation of Double Integrals (Cartesian and polar coordinates); change of order of integration (only Cartesian form); Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals. Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals), Centre of mass and Gravity (constant and variable densities) by double and triple integrals (applications involving cubes, sphere and rectangular parallelopiped).

UNIT-IV: Vector Differentiation

UNIT-V: Vector Integration
Line, Surface and Volume Integrals. Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:
REFERENCE BOOKS:
AP102BS/AP202BS: APPLIED PHYSICS

B.Tech. I Year II Sem.

L T P C
3 1 0 4

Course Objectives:
- Students will demonstrate skills in scientific inquiry, problem solving and laboratory techniques.
- Students will be able to demonstrate competency and understanding of the concepts found in Quantum Mechanics, Fiber optics and lasers, Semiconductor physics and Electromagnetic theory and a broad base of knowledge in physics.
- The graduates will be able to solve non-traditional problems that potentially draw on knowledge in multiple areas of physics.
- To study applications in engineering like memory devices, transformer core and electromagnetic machinery.

Course Outcomes: Upon graduation:
- The student would be able to learn the fundamental concepts on Quantum behaviour of matter in its micro state.
- The knowledge of fundamentals of Semiconductor physics, Optoelectronics, Lasers and fibre optics enable the students to apply to various systems like communications, solar cell, photo cells and so on.
- Design, characterization and study of properties of material help the students to prepare new materials for various engineering applications.
- The course also helps the students to be exposed to the phenomena of electromagnetism and also to have exposure on magnetic materials and dielectric materials.

UNIT-I: Quantum Mechanics
Introduction to quantum physics, Black body radiation, Planck’s law, Photoelectric effect, Compton effect, de-Broglie’s hypothesis, Wave-particle duality, Davisson and Germer experiment, Heisenberg’s Uncertainty principle, Born’s interpretation of the wave function, Schrodinger’s time independent wave equation, Particle in one dimensional box.

UNIT-II: Semiconductor Physics
Intrinsic and Extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature, Carrier generation and recombination, Carrier transport: diffusion and drift, Hall effect, p-n junction diode, Zener diode and their V-I Characteristics, Bipolar Junction Transistor (BJT): Construction, Principle of operation.

UNIT-III: Optoelectronics

UNIT-IV: Lasers and Fibre Optics

UNIT-V: Electromagnetism and Magnetic Properties of Materials
Laws of electrostatics, Electric current and the continuity equation, Ampere’s and Faraday’s laws, Maxwell’s equations, Polarisation, Permittivity and Dielectric constant, Internal fields in a solid, Clausius-Mossotti equation, Ferroelectrics and Piezoelectrics. Magnetisation, permeability and
susceptibility, Classification of magnetic materials, Ferromagnetism and ferromagnetic domains, Hysteresis, Applications of magnetic materials.

TEXT BOOKS:
3. A textbook of Engineering Physics, Dr. M. N. Avadhanulu, Dr. P.G. Kshirsagar - S. Chand

REFERENCE BOOKS:
1. Richard Robinett, Quantum Mechanics
3. Online Course: “Optoelectronic Materials and Devices” by Monica Katiyar and Deepak Guptaha on NPTEL
CS103ES/CS203ES: PROGRAMMING FOR PROBLEM SOLVING

B.Tech. I Year II Sem. L T P C
3 1 0 4

Course Objectives:
- To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of C programming language.
- To learn the usage of structured programming approach in solving problems.

Course Outcomes: The student will learn
- To write algorithms and to draw flowcharts for solving problems.
- To convert the algorithms/flowcharts to C programs.
- To code and test a given logic in C programming language.
- To decompose a problem into functions and to develop modular reusable code.
- To use arrays, pointers, strings and structures to write C programs.
- Searching and sorting problems.

UNIT - I: Introduction to Programming
Introduction to components of a computer system: disks, primary and secondary memory, processor, operating system, compilers, creating, compiling and executing a program etc., Number systems
Introduction to Algorithms: steps to solve logical and numerical problems. Representation of Algorithm, Flowchart/Pseudo code with examples, Program design and structured programming
Introduction to C Programming Language: variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code , Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments
Bitwise operations: Bitwise AND, OR, XOR and NOT operators
Conditional Branching and Loops: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do-while loops
I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr.
Command line arguments

UNIT - II: Arrays, Strings, Structures and Pointers:
Arrays: one- and two-dimensional arrays, creating, accessing and manipulating elements of arrays
Strings: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings
Structures: Defining structures, initializing structures, unions, Array of structures
Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self-referential structures, usage of self referential structures in linked list (no implementation)
Enumeration data type

UNIT - III: Preprocessor and File handling in C:
Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef
Files: Text and Binary files, Creating and Reading and writing text and binary files,Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions.

UNIT - IV: Function and Dynamic Memory Allocation:
Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries
Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions
Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of different data types

UNIT - V: Introduction to Algorithms:
Algorithms for finding roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a number is prime number, etc.
Basic searching in an array of elements (linear and binary search techniques),
Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms),
Basic concept of order of complexity through the example programs

TEXT BOOKS:

REFERENCE BOOKS:
2. Hall of India
3. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
ME104ES/ME204ES: ENGINEERING GRAPHICS

B.Tech. I Year II Sem.

Pre-requisites: Nil
Course objectives:
- To provide basic concepts in engineering drawing.
- To impart knowledge about standard principles of orthographic projection of objects.
- To draw sectional views and pictorial views of solids.

Course Outcomes: At the end of the course, the student will be able to:
- Preparing working drawings to communicate the ideas and information.
- Read, understand and interpret engineering drawings.

UNIT – I

UNIT- II

UNIT – III
Projections of Regular Solids – Auxiliary Views - Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views – Sections of Sphere

UNIT – IV
Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone, Intersection of Solids: Intersection of – Prism vs Prism- Cylinder Vs Cylinder

UNIT – V

Introduction to CAD: (For Internal Evaluation Weightage only):
Introduction to CAD Software Package Commands. - Free Hand Sketches of 2D- Creation of 2D Sketches by CAD Package

TEXT BOOKS:
1. Engineering Drawing N.D. Bhatt / Charotar
2. Engineering Drawing / N. S. Parthasarathy and Vela Murali/ Oxford

REFERENCE BOOKS:
1. Engineering Drawing / Basant Agrawal and McAgrawal/ McGraw Hill
2. Engineering Drawing/ M. B. Shah, B.C. Rane / Pearson.
AP105BS/AP205BS: APPLIED PHYSICS LAB

B.Tech. I Year II Sem.

List of Experiments:

1. Energy gap of P-N junction diode:
 To determine the energy gap of a semiconductor diode.

2. Solar Cell:
 To study the V-I Characteristics of solar cell.

3. Light emitting diode:
 Plot V-I and P-I characteristics of light emitting diode.

4. Stewart – Gee’s experiment:
 Determination of magnetic field along the axis of a current carrying coil.

5. Hall effect:
 To determine Hall co-efficient of a given semiconductor.

6. Photoelectric effect:
 To determine work function of a given material.

7. LASER:
 To study the characteristics of LASER sources.

8. Optical fibre:
 To determine the bending losses of Optical fibres.

9. LCR Circuit:
 To determine the Quality factor of LCR Circuit.

10. R-C Circuit:
 To determine the time constant of R-C circuit.

Note: Any 8 experiments are to be performed
CS106ES/CS206ES: PROGRAMMING FOR PROBLEM SOLVING LAB

B.Tech. I Year II Sem.

L T P C
0 0 3 1.5

[Note: The programs may be executed using any available Open Source/ Freely available IDE
Some of the Tools available are:
CodeLite: https://codelite.org/
Code::Blocks: http://www.codeblocks.org/
DevCpp: http://www.bloodshed.net/devcpp.html
Eclipse: http://www.eclipse.org
This list is not exhaustive and is NOT in any order of preference]

Course Objectives: The students will learn the following:
- To work with an IDE to create, edit, compile, run and debug programs
- To analyze the various steps in program development.
- To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- To Write programs using the Dynamic Memory Allocation concept.
- To create, read from and write to text and binary files

Course Outcomes: The candidate is expected to be able to:
- formulate the algorithms for simple problems
- translate given algorithms to a working and correct program
- correct syntax errors as reported by the compilers
- identify and correct logical errors encountered during execution
- represent and manipulate data with arrays, strings and structures
- use pointers of different types
- create, read and write to and from simple text and binary files
- modularize the code with functions so that they can be reused

Practice sessions:
- Write a simple program that prints the results of all the operators available in C (including pre/post increment, bitwise and/or/not, etc.). Read required operand values from standard input.
- Write a simple program that converts one given data type to another using auto conversion and casting. Take the values from standard input.

Simple numeric problems:
- Write a program for finding the max and min from the three numbers.
- Write the program for the simple, compound interest.
- Write a program that declares Class awarded for a given percentage of marks, where mark <40% = Failed, 40% to <60% = Second class, 60% to <70% = First class, >= 70% = Distinction. Read percentage from standard input.
- Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be:
 - 5 x 1 = 5
 - 5 x 2 = 10
 - 5 x 3 = 15
- Write a program that shows the binary equivalent of a given positive number between 0 to 255.
Expression Evaluation:

a. A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of the building. Find the time taken by the ball to reach each floor. (Use the formula \(s = ut + \frac{1}{2}at^2 \) where \(u \) and \(a \) are the initial velocity in m/sec (= 0) and acceleration in m/sec\(^2\) (= 9.8 m/s\(^2\)).

b. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement)

c. Write a program that finds if a given number is a prime number

d. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.

e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first \(n \) terms of the sequence.

f. Write a C program to generate all the prime numbers between 1 and \(n \), where \(n \) is a value supplied by the user.

g. Write a C program to find the roots of a Quadratic equation.

h. Write a C program to calculate the following, where \(x \) is a fractional value.

i. \(1 - \frac{x}{2} + \frac{x^2}{4} - \frac{x^3}{6} \)

j. Write a C program to read in two numbers, \(x \) and \(n \), and then compute the sum of this geometric progression: \(1 + x + x^2 + x^3 + \ldots + x^n \). For example: if \(n \) is 3 and \(x \) is 5, then the program computes 1+5+25+125.

Arrays and Pointers and Functions:

a. Write a C program to find the minimum, maximum and average in an array of integers.

b. Write a functions to compute mean, variance, Standard Deviation, sorting of \(n \) elements in single dimension array.

c. Write a C program that uses functions to perform the following:

d. Addition of Two Matrices

e. Multiplication of Two Matrices

f. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be same.

g. Write C programs that use both recursive and non-recursive functions

h. To find the factorial of a given integer.

i. To find the GCD (greatest common divisor) of two given integers.

j. To find \(x^n \)

k. Write a program for reading elements using pointer into array and display the values using array.

l. Write a program for display values reverse order from array using pointer.

m. Write a program through pointer variable to sum of \(n \) elements from array.

Files:

a. Write a C program to display the contents of a file to standard output device.

b. Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.

c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.

d. Write a C program that does the following:

 It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function)

 Now the program asks for an index and a value from the user and the value at that index should be changed to the new value in the file. (hint: use fseek function)
The program should then read all 10 values and print them back.

e. Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

Strings:

a. Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.
b. Write a C program that converts a number ranging from 1 to 50 to Roman equivalent
c. Write a C program that uses functions to perform the following operations:
d. To insert a sub-string in to a given main string from a given position.
e. ii. To delete n Characters from a given position in a given string.
f. Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcbca, etc.)
g. Write a C program that displays the position of a character ch in the string S or −1 if S doesn’t contain ch.
h. Write a C program to count the lines, words and characters in a given text.

Miscellaneous:

a. Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered.

b. Write a C program to construct a pyramid of numbers as follows:

```
1
1 2
1 2 3
```

Sorting and Searching:

a. Write a C program that uses non recursive function to search for a Key value in a given list of integers using linear search method.
b. Write a C program that uses non recursive function to search for a Key value in a given sorted list of integers using binary search method.
c. Write a C program that implements the Bubble sort method to sort a given list of integers in ascending order.
d. Write a C program that sorts the given array of integers using selection sort in descending order

e. Write a C program that sorts the given array of integers using insertion sort in ascending order

Suggested Reference Books for solving the problems:

i. Byron Gottfried, Schaum’s Outline of Programming with C, McGraw-Hill

iii. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

iv. Hall of India

v. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)

MC109ES/MC209ES: ENVIRONMENTAL SCIENCE

B.Tech. I Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives:
- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations

Course Outcomes:
- Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT-I
Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT-II
Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

UNIT-III
Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT-IV

UNIT-V

TEXT BOOKS:
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:
6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.
EE301ES: ENGINEERING MECHANICS

B.Tech. II Year I Sem.

L T P C
3 1 0 4

Prerequisites: Nil

Course Objectives: The objectives of this course are to

- Explain the resolution of a system of forces, compute their resultant and solve problems using equations of equilibrium.
- Perform analysis of bodies lying on rough surfaces.
- Locate the centroid of a body and compute the area moment of inertia and mass moment of inertia of standard and composite sections.
- Explain kinetics and kinematics of particles, projectiles, curvilinear motion, centroidal motion and plane motion of rigid bodies.
- Explain the concepts of work-energy method and its applications to translation, rotation and plane motion and the concept of vibrations.

Course Outcomes: At the end of the course, students will be able to

- Determine resultant of forces acting on a body and analyse equilibrium of a body subjected to a system of forces.
- Solve problem of bodies subjected to friction.
- Find the location of centroid and calculate moment of inertia of a given section.
- Understand the kinetics and kinematics of a body undergoing rectilinear, curvilinear, rotatory motion and rigid body motion.
- Solve problems using work energy equations for translation, fixed axis rotation and plane motion and solve problems of vibration.

UNIT - I

UNIT - II
Friction: Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack; Centroid and Centre of Gravity -Centroid of Lines, Areas and Volumes from first principle, centroid of composite sections; Centre of Gravity and its implications. – Theorem of Pappus.

UNIT - III
Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Product of Inertia, Parallel Axis Theorem, Perpendicular Axis Theorem

UNIT - IV
Review of particle dynamics- Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates), 3-D curvilinear motion; Relative and constrained motion; Newton’s 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique).
UNIT - V
Kinetics of Rigid Bodies - Basic terms, general principles in dynamics; Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert’s principle and its applications in plane motion and connected bodies; Work Energy principle and its application in plane motion of connected bodies; Kinetics of rigid body rotation.

TEXT BOOKS:

REFERENCE BOOKS:
EE302PC: ELECTRICAL CIRCUIT ANALYSIS

B.Tech. II Year I Sem.
L T P C
3 1 0 4

Prerequisite: Mathematics - II (Ordinary Differential Equations and Multivariable Calculus) & Basic Electrical Engineering

Course Objectives:
- To understand Magnetic Circuits, Network Topology and Three phase circuits.
- To analyze transients in Electrical systems.
- To evaluate Network parameters of given Electrical network
- To design basic filter configurations

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Apply network theorems for the analysis of electrical circuits.
- Obtain the transient and steady-state response of electrical circuits.
- Analyze circuits in the sinusoidal steady-state (single-phase and three-phase).
- Analyze two port circuit behavior.

UNIT - I

UNIT - II
Solution of First and Second order Networks: Solution of first and second order differential equations for Series and parallel R-L, R-C, RL-C circuits, initial and final conditions in network elements, forced and free response, time constants, steady state and transient state response for DC and AC Excitations.

UNIT - III
Sinusoidal Steady State Analysis: Representation of sine function as rotating phasor, phasor diagrams, impedances and admittances, AC circuit analysis, effective or RMS values, average power and complex power. Three-phase circuits. Mutual coupled circuits, Dot Convention in coupled circuits, Ideal Transformer.

UNIT - IV

UNIT - V
Two Port Network and Network Functions: Two Port Networks, terminal pairs, relationship of two port variables, impedance parameters, admittance parameters, transmission parameters and hybrid parameters, interconnections of two port networks.

TEXT BOOKS:
REFERENCE BOOKS:
EE303PC: ANALOG ELECTRONICS

B.Tech. II Year I Sem. L T P C
3 0 0 3

Course Objectives:
- To introduce components such as diodes, BJT$s and FET$s their switching characteristics, applications.
- Learn the concepts of high frequency analysis of transistors.
- To give understanding of various types of basic and feedback amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.
- To introduce the basic building blocks of linear integrated circuits.
- To introduce the concepts of waveform generation and introduce some special function IC$s.

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Know the characteristics, utilization of various components.
- Understand the biasing techniques.
- Design and analyze various rectifiers, small signal amplifier circuits.
- Design sinusoidal and non-sinusoidal oscillators.
- A thorough understanding, functioning of OP-AMP, design OP-AMP based circuits with linear integrated circuits.

UNIT - I
Diode Circuits: P-N junction diode, I-V characteristics of a diode; review of half-wave and full-wave rectifiers, clamping and clamping circuits. Input output characteristics of BJT in CB, CE, CC configurations, biasing circuits, Load line analysis, common-emitter, common-base and common collector amplifiers; Small signal equivalent circuits.

UNIT - II
MOSFET Circuits: MOSFET structure and I-V characteristics. MOSFET as a switch. small signal equivalent circuits - gain, input and output impedances, small-signal model and common-source, common-gate and common-drain amplifiers, trans conductance, high frequency equivalent circuit.

UNIT - III
Multi-Stage and Power Amplifiers: Direct coupled and RC Coupled multi-stage amplifiers; Differential Amplifiers, Power amplifiers - Class A, Class B, Class C

UNIT - IV

UNIT - V
Operational Amplifiers: Ideal op-amp, Output offset voltage, input bias current, input offset current, slew rate, gain bandwidth product, Inverting and non-inverting amplifier, Differentiator, integrator, Square-wave and triangular-wave generators.

TEXT BOOKS:

REFERENCE BOOKS:
EE304PC: ELECTRICAL MACHINES - I

B.Tech. II Year I Sem. L T P C
3 1 0 4

Prerequisite: Basic Electrical Engineering

Course Objectives:
- To study and understand different types of DC generators, Motors and Transformers, their construction, operation and applications.
- To analyze performance aspects of various testing methods.

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Identify different parts of a DC machine & understand its operation
- Carry out different testing methods to predetermine the efficiency of DC machines
- Understand different excitation and starting methods of DC machines
- Control the voltage and speed of a DC machines
- Analyze single phase and three phase transformers circuits.

UNIT - I

UNIT – II

UNIT - III
Testing of DC Machines: Methods of Testing – direct, indirect, and regenerative testing – Brake test – Swinburne’s test – Hopkinson’s test – Field’s test - separation of stray losses in a d.c. motor test.

UNIT - IV
Single Phase Transformers: Types - constructional details-minimization of hysteresis and eddy current losses - EMF equation - operation on no load and on load - phasor diagrams Equivalent circuit - losses and efficiency – regulation - All day efficiency - effect of variations of frequency & supply voltage on iron losses.

UNIT - V
TEXT BOOKS:

REFERENCE BOOKS:
EE305PC: ELECTROMAGNETIC FIELDS

B.Tech. II Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite: Mathematics-II (Ordinary Differential Equations and Multivariable Calculus) & Applied Physics

Course Objectives:
- To introduce the concepts of electric field and magnetic field.
- Applications of electric and magnetic fields in the development of the theory for power transmission lines and electrical machines.

Course Outcomes: At the end of the course, students will demonstrate the ability
- To understand the basic laws of electromagnetism.
- To obtain the electric and magnetic fields for simple configurations under static conditions.
- To analyze time varying electric and magnetic fields.
- To understand Maxwell’s equation in different forms and different media.
- To understand the propagation of EM waves.

UNIT - I
Static Electric Field: Review of conversion of a vector from one coordinate system to another coordinate system, Coulomb’s law, Electric field intensity, Electrical field due to point charges. Line, Surface and Volume charge distributions. Gauss law and its applications. Absolute Electric potential, potential difference, Calculation of potential differences for different configurations. Electric dipole, Electrostatic Energy and Energy density.

UNIT - II
Conductors, Dielectrics and Capacitance: Current and current density, Ohms Law in Point form, Continuity equation, Boundary conditions of conductors and dielectric materials. Capacitance, Capacitance of a two-wire line, Poisson’s equation, Laplace’s equation, Solution of Laplace and Poisson’s equation.

UNIT - III

UNIT - IV
Time Varying Fields and Maxwell’s Equations: Faraday’s law for Electromagnetic induction, Displacement current, Point form of Maxwell’s equation, Integral form of Maxwell’s equations, Motional Electromotive forces.

UNIT - V
Electromagnetic Waves: Derivation of Wave Equation, Uniform Plane Waves, Maxwell’s equation in Phasor form, Wave equation in Phasor form, Plane wave in free space and in a homogenous material. Wave equation for a conducting medium, Plane waves in lossy dielectrics, Propagation in good conductors. Poynting theorem.
TEXT BOOKS:

REFERENCE BOOKS:
EE306PC: ELECTRICAL MACHINES LAB – I

B.Tech. II Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisite: Electrical Machines-I

Course Objectives:
- To expose the students to the operation of DC Generator
- To expose the students to the operation of DC Motor.
- To examine the self-excitation in DC generators.

Course Outcomes: After completion of this lab the student is able to
- Start and control the Different DC Machines.
- Assess the performance of different machines using different testing methods
- Identify different conditions required to be satisfied for self-excitation of DC Generators.
- Separate iron losses of DC machines into different components

The following experiments are required to be conducted compulsory experiments:
1. Magnetization characteristics of DC shunt generator
 (Determination of critical field resistance and critical speed)
2. Load test on DC shunt generator (Determination of characteristics)
3. Load test on DC series generator (Determination of characteristics)
4. Load test on DC compound generator (Determination of characteristics)
5. Hopkinson’s test on DC shunt machines (Predetermination of efficiency)
6. Fields test on DC series machines (Determination of efficiency)
7. Swinburne’s test and speed control of DC shunt motor (Predetermination of efficiencies)
8. Brake test on DC compound motor (Determination of performance curves)

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted:

9. Brake test on DC shunt motor (Determination of performance curves)
10. Retardation test on DC shunt motor (Determination of losses at rated speed)

TEXT BOOKS:

REFERENCE BOOKS:
EE307PC: ANALOG ELECTRONICS LAB

B.Tech. II Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisite: Analog Electronics

Course Objectives:
- To introduce components such as diodes, BJTs and FETs their switching characteristics, applications
- Learn the concepts of high frequency analysis of transistors.
- To give understanding of various types of basic and feedback amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.
- To introduce the basic building blocks of linear integrated circuits.
- To introduce the concepts of waveform generation and introduce some special function ICs.

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Know the characteristics, utilization of various components.
- Understand the biasing techniques
- Design and analyze various rectifiers, small signal amplifier circuits.
- Design sinusoidal and non-sinusoidal oscillators.
- A thorough understanding, functioning of OP-AMP, design OP-AMP based circuits with linear integrated circuits.

List of Experiments
1. PN Junction diode characteristics A) Forward bias B) Reverse bias.
2. Full Wave Rectifier with & without filters
3. Common Emitter Amplifier Characteristics
4. Common Base Amplifier Characteristics
5. Common Source amplifier Characteristics
6. Measurement of h-parameters of transistor in CB, CE, CC configurations
11. Current Shunt Feedback amplifier
12. RC Phase shift Oscillator
13. Hartley and Colpitt’s Oscillators
14. Class A power amplifier
EE308PC: ELECTRICAL CIRCUITS LAB

B.Tech. II Year I Sem. L T P C
0 0 2 1

Prerequisite: Basic Electrical Engineering, Electrical Circuit Analysis

Course Objectives:
- To design electrical systems
- To analyze a given network by applying various Network Theorems
- To measure three phase Active and Reactive power.
- To understand the locus diagrams

Course Outcomes: After Completion of this lab the student is able to
- Analyze complex DC and AC linear circuits
- Apply concepts of electrical circuits across engineering
- Evaluate response in a given network by using theorems

The following experiments are required to be conducted as compulsory experiments
- Verification of Thevenin’s and Norton’s Theorems
- Verification of Superposition, Reciprocity and Maximum Power Transfer theorems
- Locus Diagrams of RL and RC Series Circuits
- Series and Parallel Resonance
- Time response of first order RC / RL network for periodic non – sinusoidal inputs – Time constant and Steady state error determination.
- Two port network parameters – Z – Y parameters, Analytical verification.
- Two port network parameters – A, B, C, D & Hybrid parameters, Analytical verification
- Separation of Self and Mutual inductance in a Coupled Circuit. Determination of Co-efficient of Coupling.

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted
- Verification of compensation & Milliman’s theorems
- Harmonic Analysis of non-sinusoidal waveform signals using Harmonic Analyzer and plotting frequency spectrum.
- Determination of form factor for non-sinusoidal waveform
- Measurement of Active Power for Star and Delta connected balanced loads
- Measurement of Reactive Power for Star and Delta connected balanced loads

TEXT BOOKS:

REFERENCE BOOKS:
MC309: GENDER SENSITIZATION LAB
(An Activity-based Course)

B.Tech. II Year I Sem. L T P C
0 0 2 0

COURSE DESCRIPTION
This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course:
- To develop students’ sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes:
- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT - I: UNDERSTANDING GENDER
UNIT – II: GENDER ROLES AND RELATIONS
Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles-Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences-Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

UNIT – III: GENDER AND LABOUR

UNIT – IV: GENDER - BASED VIOLENCE

UNIT – V: GENDER AND CULTURE

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

- **Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on “Gender”.

ASSESSMENT AND GRADING:
- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%
MA401BS: LAPLACE TRANSFORMS, NUMERICAL METHODS AND COMPLEX VARIABLES

B.Tech. II Year II Sem.

Pre-requisites: Mathematics courses of first year of study.

Course Objectives:
- Concept, properties of Laplace transforms
- Solving ordinary differential equations using Laplace transforms techniques.
- Various methods to find the roots of an equation.
- Concept of finite differences and to estimate the value for the given data using interpolation.
- Evaluation of integrals using numerical techniques.
- Solving ordinary differential equations using numerical techniques.
- Differentiation and integration of complex valued functions.
- Evaluation of integrals using Cauchy’s integral formula and Cauchy’s residue theorem.
- Expansion of complex functions using Taylor’s and Laurent’s series.

Course Outcomes: After learning the contents of this paper the student must be able to
- Use the Laplace transforms techniques for solving ODE’s
- Find the root of a given equation.
- Estimate the value for the given data using interpolation.
- Find the numerical solutions for a given ODE’s
- Analyze the complex function with reference to their analyticity, integration using Cauchy’s integral and residue theorems.
- Taylor’s and Laurent’s series expansions of complex function

UNIT - I
Laplace Transforms: Laplace Transforms; Laplace Transform of standard functions; first shifting theorem; Laplace transforms of functions when they are multiplied and divided by ‘t’. Laplace transforms of derivatives and integrals of function; Evaluation of integrals by Laplace transforms; Laplace transforms of Special functions; Laplace transform of periodic functions. Inverse Laplace transform by different methods, convolution theorem (without Proof), solving ODEs by Laplace Transform method.

UNIT - II

UNIT - III

UNIT - IV
Complex Variables (Differentiation): Limit, Continuity and Differentiation of Complex functions. Cauchy-Riemann equations (without proof), Milne- Thomson methods, analytic functions, harmonic functions, finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties.
UNIT - V

Complex Variables (Integration): Line integrals, Cauchy’s theorem, Cauchy’s Integral formula, Liouville’s theorem, Maximum-Modulus theorem (All theorems without proof); zeros of analytic functions, singularities, Taylor’s series, Laurent’s series; Residues, Cauchy Residue theorem (without proof).

TEXT BOOKS:

REFERENCE BOOKS:
EE402PC: ELECTRICAL MACHINES – II

B.Tech. II Year II Sem.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: Basic Electrical Engineering, Electrical Machines-I

Course Objectives:
- To deal with the detailed analysis of poly-phase induction motors & Alternators
- To understand operation, construction and types of single-phase motors and their applications in house hold appliances and control systems.
- To introduce the concept of parallel operation of alternators
- To introduce the concept of regulation and its calculations.

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand the concepts of rotating magnetic fields.
- Understand the operation of ac machines.
- Analyze performance characteristics of ac machines.

UNIT - I
Poly-Phase Induction Machines: Constructional details of cage and wound rotor machines-production of a rotating magnetic field - principle of operation - rotor EMF and rotor frequency - rotor reactance, rotor current and Power factor at standstill and during operation.

UNIT - II
Characteristics of Induction Machines: Rotor power input, rotor copper loss and mechanical power developed and their inter relation-torque equation-deduction from torque equation - expressions for maximum torque and starting torque - torque slip characteristic - equivalent circuit - phasor diagram - crawling and cogging - No-load Test and Blocked rotor test –Predetermination of performance-Methods of starting and starting current and Torque calculations.

Speed Control Methods: Change of voltage, change of frequency, voltage/frequency, injection of an EMF into rotor circuit (qualitative treatment only)-induction generator-principle of operation.

UNIT - III

UNIT - IV

UNIT – V:
Single Phase & Special Machines: Single phase induction motor – Constructional features-Double revolving field theory – split-phase motors – shaded pole motor.

TEXT BOOKS:

REFERENCE BOOKS:
EE403PC: DIGITAL ELECTRONICS

B.Tech. II Year II Sem.

Prerequisite: Analog Electronics

Course Objectives:
- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand common forms of number representation in digital electronic circuits and to be able to convert between different representations.
- To implement simple logical operations using combinational logic circuits.
- To design combinational logic circuits, sequential logic circuits.
- To impart to students the concepts of sequential circuits, enabling them to analyze sequential systems in terms of state machines.
- To implement synchronous state machines using flip-flops.

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand working of logic families and logic gates.
- Design and implement Combinational and Sequential logic circuits.
- Understand the process of Analog to Digital conversion and Digital to Analog conversion.
- Be able to use PLDs to implement the given logical problem.

UNIT - I

Fundamentals of Digital Systems and Logic Families: Digital signals, digital circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal hexadecimal number, binary arithmetic, one’s and two’s complements arithmetic, codes, error detecting and correcting codes, characteristics of digital ICs, digital logic families, TTL, Schottky TTL and CMOS logic, interfacing CMOS and TTL, Tri-state logic.

UNIT - II

Combinational Digital Circuits: Standard representation for logic functions, K-map representation, and simplification of logic functions using K-map, minimization of logical functions. Don’t care conditions, Multiplexer, De-Multiplexer/Decoders, Adders, Subtractors, BCD arithmetic, carry look ahead adder, serial ladder, ALU, elementary ALU design, popular MSI chips, digital comparator, parity checker/generator, code converters, priority encoders, decoders/drivers for display devices, Q-M method of function realization.

UNIT - III

Sequential Circuits and Systems: A 1-bit memory, the circuit properties of Bi-stable latch, the clocked SR flip flop, J, K, T and D types flip-flops, applications of flip-flops, shift registers, applications of shift registers, serial to parallel converter, parallel to serial converter, ring counter, sequence generator, ripple (Asynchronous) counters, synchronous counters, counters design using flip-flops, special counter IC’s, asynchronous sequential counters, applications of counters.

UNIT - IV

A/D and D/A Converters: Digital to analog converters: weighted resistor/converter, R-2R Ladder D/A converter, specifications for D/A converters, examples of D/A converter ICs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D converter ICs
UNIT - V
Semiconductor Memories and Programmable Logic Devices: Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read-only memory (ROM), read and write memory (RAM), content addressable memory (CAM), charge coupled device memory (CCD), commonly used memory chips, ROM as a PLD, Programmable logic array, Programmable array logic, complex Programmable logic devices (CPLDS), Field Programmable Gate Array (FPGA).

TEXT BOOKS:

REFERENCE BOOK:
EE404PC: CONTROL SYSTEMS

B.Tech. II Year II Sem.

L T P C

3 1 0 4

Prerequisite: Linear Algebra and Calculus, Ordinary Differential Equations and Multivariable Calculus, Laplace Transforms, Numerical Methods and Complex variables

Course objectives:
- To understand the different ways of system representations such as Transfer function representation and state space representations and to assess the system dynamic response
- To assess the system performance using time domain analysis and methods for improving it
- To assess the system performance using frequency domain analysis and techniques for improving the performance
- To design various controllers and compensators to improve system performance

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand the modeling of linear-time-invariant systems using transfer function and state-space representations.
- Understand the concept of stability and its assessment for linear-time invariant systems.
- Design simple feedback controllers.

UNT - I

UNT - II

UNT - III

UNT - IV

UNT - V

TEXT BOOKS:

REFERENCE BOOKS:
EE405PC: POWER SYSTEM - I

B.Tech. II Year II Sem. L T P C
3 0 0 3

Prerequisite: Basic Electrical Engineering, Electrical Machines-I, Electrical Machines-II

Course Objectives:
- To understand the different types of power generating stations.
- To examine A.C. and D.C. distribution systems.
- To understand and compare overhead line insulators and Insulated cables.
- To illustrate the economic aspects of power generation and tariff methods.
- To evaluate the transmission line parameters calculations
- To understand the concept of corona

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand the concepts of power systems.
- Understand the operation of conventional generating stations and renewable sources of electrical power.
- Evaluate the power tariff methods.
- Determine the electrical circuit parameters of transmission lines
- Understand the layout of substation and underground cables and corona.

UNIT - I
Generation of Electric Power

UNIT - II
Economics of Generation: Introduction, definitions of connected load, maximum demand, demand factor, load factor, diversity factor, Load duration curve, number and size of generator units. Base load and peak load plants. Cost of electrical energy-fixed cost, running cost, Tariff on charge to customer.

UNIT - III
Overhead Line Insulators & Insulated Cables: Introduction, types of insulators, Potential distribution over a string of suspension insulators, Methods of equalizing the potential, testing of insulators. Introduction, insulation, insulating materials, Extra high voltage cables, grading of cables, insulation resistance of a cable, Capacitance of a single core and three core cables, Overhead lines versus underground cables, types of cables.

UNIT - IV
Inductance & Capacitance Calculations of Transmission Lines: Line conductors, inductance and capacitance of single phase and three phase lines with symmetrical and unsymmetrical spacing, Composite conductors-transposition, bundled conductors, and effect of earth on capacitance.
Corona: Introduction, disruptive critical voltage, corona loss, Factors affecting corona loss and methods of reducing corona loss, Disadvantages of corona, interference between power and Communication lines.
UNIT-V

A.C. Distribution: Introduction, AC distribution, Single phase, 3-phase, 3 phase 4 wire system, bus bar arrangement, Selection of site for substation. Voltage Drop Calculations (Numerical Problems) in A.C. Distributors for the following cases: Power Factors referred to receiving end voltage and with respect to respective load voltages.

DC Distribution: Classification of Distribution Systems.- Comparison of DC vs. AC and Under-Ground vs. Over- Head Distribution Systems.- Requirements and Design features of Distribution Systems.- Voltage Drop Calculations (Numerical Problems) in D.C Distributors for the following cases: Radial D.C Distributor fed one end and at the both the ends (equal/unequal Voltages) and Ring Main Distributor.

TEXT BOOKS:

REFERENCE BOOKS:
EE406PC: DIGITAL ELECTRONICS LAB

B.Tech. II Year II Sem. L T P C
0 0 2 1

Prerequisite: Digital Electronics, Analog Electronics

Course Objectives:
- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand common forms of number representation in digital electronic circuits and to be able to convert between different representations.
- To implement simple logical operations using combinational logic circuits.
- To design combinational logic circuits, sequential logic circuits.
- To impart to student the concepts of sequential circuits, enabling them to analyze sequential systems in terms of state machines.
- To implement synchronous state machines using flip-flops.

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand working of logic families and logic gates.
- Design and implement Combinational and Sequential logic circuits.
- Understand the process of Analog to Digital conversion and Digital to Analog conversion.
- Be able to use PLDs to implement the given logical problem.

List of Experiments:
1. Realization of Boolean Expressions using Gates
2. Design and realization logic gates using universal gates
3. Generation of clock using NAND / NOR gates
4. Design a 4 – bit Adder / Subtractor
5. Design and realization a 4 – bit gray to Binary and Binary to Gray Converter
6. Design and realization of a 4-bit pseudo random sequence generator using logic gates.
8. Design and realization a Synchronous and Asynchronous counters using flip-flops
9. Design and realization of Asynchronous counters using flip-flops
10. Design and realization 8x1 using 2x1 mux
11. Design and realization 2-bit comparator
12. Verification of truth tables and excitation tables
13. Realization of logic gates using DTL, TTL, ECL, etc.,
14. State machines

TEXT BOOKS:

REFERENCE BOOK:
EE407PC: ELECTRICAL MACHINES LAB – II

B.Tech. II Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisite: Electrical Machines – I & Electrical Machines – II

Course Objectives:
- To understand the operation of synchronous machines
- To understand the analysis of power angle curve of a synchronous machine
- To understand the equivalent circuit of a single-phase transformer and single-phase induction motor
- To understand the circle diagram of an induction motor by conducting a blocked rotor test.

Course Outcomes: After the completion of this laboratory course, the student will be able
- Assess the performance of different machines using different testing methods
- To convert the Phase from three phase to two phase and vice versa
- Compensate the changes in terminal voltages of synchronous generator after estimating the change by different methods
- Control the active and reactive power flows in synchronous machines
- Start different machines and control the speed and power factor

The following experiments are required to be conducted as compulsory experiments
1. O.C. & S.C. Tests on Single phase Transformer
2. Sumpner’s test on a pair of single-phase transformers
3. No-load & Blocked rotor tests on three phase Induction motor
4. Regulation of a three—phase alternator by synchronous impedance &m.m.f. methods
5. V and Inverted V curves of a three—phase synchronous motor.
6. Equivalent Circuit of a single-phase induction motor
7. Determination of Xd and Xq of a salient pole synchronous machine
8. Load test on three phase Induction Motor

In addition to the above experiments, at least any two of the following experiments are required to be conducted from the following list
1. Separation of core losses of a single-phase transformer
2. Efficiency of a three-phase alternator
3. Parallel operation of Single-phase Transformers
4. Regulation of three-phase alternator by Z.P.F. and A.S.A methods
5. Heat run test on a bank of 3 Nos. of single-phase Delta connected transformers
7. Vector grouping of Three Transformer
8. Scott Connection of transformer

TEXT BOOKS:

REFERENCE BOOKS:
EE408PC: CONTROL SYSTEMS LAB

B.Tech. II Year II Sem. L T P C
0 0 2 1

Prerequisite: Control Systems

Course Objectives:
- To understand the different ways of system representations such as Transfer function representation and state space representations and to assess the system dynamic response
- To assess the system performance using time domain analysis and methods for improving it
- To assess the system performance using frequency domain analysis and techniques for improving the performance
- To design various controllers and compensators to improve system performance

Course Outcomes: After completion of this lab the student is able to
- How to improve the system performance by selecting a suitable controller and/or a compensator for a specific application
- Apply various time domain and frequency domain techniques to assess the system performance
- Apply various control strategies to different applications (example: Power systems, electrical drives etc)
- Test system controllability and observability using state space representation and applications of state space representation to various systems

The following experiments are required to be conducted compulsory experiments:
1. Time response of Second order system
2. Characteristics of Synchros
3. Programmable logic controller – Study and verification of truth tables of logic gates, simple Boolean expressions, and application of speed control of motor.
4. Effect of feedback on DC servo motor
5. Transfer function of DC motor
6. Transfer function of DC generator
7. Temperature controller using PID
8. Characteristics of AC servo motor

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted
1. Effect of P, PD, PI, PID Controller on a second order systems
2. Lag and lead compensation – Magnitude and phase plot
3. (a) Simulation of P, PI, PID Controller.
4. (b) Linear system analysis (Time domain analysis, Error analysis) using suitable software
5. Stability analysis (Bode, Root Locus, Nyquist) of Linear Time Invariant system using suitable software
6. State space model for classical transfer function using suitable software -Verification.
7. Design of Lead-Lag compensator for the given system and with specification using suitable software

TEXT BOOKS:
REFERENCE BOOKS:
The Constitution of India is the supreme law of India. Parliament of India cannot make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the “basic structure” of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of “Constitutionalism” – a modern and progressive concept historically developed by the thinkers of “liberalism” – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of “constitutionalism” in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India’s legacy of “diversity”. It has been said that Indian constitution reflects ideals of its freedom movement; however, few critics have argued that it does not truly incorporate our own ancient legal heritage and cultural values. No law can be “static” and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution but also strengthened the same through progressive interpretations of the text of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it “as one of the strongest court in the world”.

Course content
1. Meaning of the constitution law and constitutionalism
2. Historical perspective of the Constitution of India
3. Salient features and characteristics of the Constitution of India
4. Scheme of the fundamental rights
5. The scheme of the Fundamental Duties and its legal status
6. The Directive Principles of State Policy – Its importance and implementation
7. Federal structure and distribution of legislative and financial powers between the Union and the States
8. Parliamentary Form of Government in India – The constitution powers and status of the President of India
9. Amendment of the Constitutional Powers and Procedure
10. The historical perspectives of the constitutional amendments in India
12. Local Self Government – Constitutional Scheme in India
13. Scheme of the Fundamental Right to Equality
14. Scheme of the Fundamental Right to certain Freedom under Article 19
15. Scope of the Right to Life and Personal Liberty under Article 21
EE501PE: POWER ELECTRONICS

B.Tech. III Year I Sem.

Prerequisite: Analog Electronics, Digital Electronics

Course Objectives:
- To Design/develop suitable power converter for efficient control or conversion of power in drive applications
- To Design / develop suitable power converter for efficient transmission and utilization of power in power system applications.

Course Outcomes: At the end of this course students will demonstrate the ability to
- Understand the differences between signal level and power level devices.
- Analyze controlled rectifier circuits.
- Analyze the operation of DC-DC choppers.
- Analyze the operation of voltage source inverters.

UNIT - I:
Power Switching Devices: Concept of power electronics, scope and applications, types of power converters; Power semiconductor switches and their V-I characteristics - Power Diodes, Power BJT, SCR, Power MOSFET, Power IGBT; Thyristor ratings and protection, methods of SCR commutation, UJT as a trigger source, gate drive circuits for BJT and MOSFETs

UNIT - II:

UNIT - III:

UNIT - IV:

UNIT - V:

TEXT BOOKS:

REFERENCE BOOKS:
EE502PE: POWER SYSTEM – II

B.Tech. III Year I Sem.

Prerequisite: Power System –I and Electro Magnetic Fields

Course Objectives:

- To analyze the performance of transmission lines.
- To understand the voltage control and compensation methods.
- To understand the per unit representation of power systems.
- To examine the performance of travelling waves.
- To know the methods of overvoltage protection and Insulation coordination of transmission lines.
- To know the symmetrical components and fault calculation analysis.

Course Outcomes:

- Analyze transmission line performance.
- Apply load compensation techniques to control reactive power.
- Understand the application of per unit quantities.
- Design over voltage protection and insulation coordination.
- Determine the fault currents for symmetrical and unbalanced faults.

UNIT- I:
Performance of Lines: Representation of lines, short transmission lines, medium length lines, nominal T and PI representations, long transmission lines. The equivalent circuit representation of a long Line, A, B, C, D constants, Ferranti Effect, Power flow through a transmission line, receiving end power circle diagram.

UNIT- II:

UNIT- III:
Per Unit Representation of Power Systems: The one-line diagram, impedance and reactance diagrams, per unit quantities, changing the base of per unit quantities, advantages of per unit system.
Travelling Waves on Transmission Lines: Production of travelling waves, open circuited line, short circuited line, line terminated through a resistance, line connected to a cable, reflection and refraction at T-junction line terminated through a capacitance, capacitor connection at a T-junction, Attenuation of travelling waves.

UNIT- IV:
Overvoltage Protection and Insulation Coordination: Over voltage due to arcing ground and Peterson coil, lightning, horn gaps, surge diverters, rod gaps, expulsion type lightning arrester, valve type lightning arrester, ground wires, ground rods, counter poise, surge absorbers, insulation coordination, volt-time curves.

UNIT - V:
Symmetrical Components and Fault Calculations: Significance of positive, negative and zero sequence components, Average 3-phase power in terms of symmetrical components, sequence.
impedances and sequence networks, fault calculations, sequence network equations, single line to
ground fault, line to line fault, double line to ground fault, three phase fault, faults on power systems,
faults with fault impedance, reactors and their location, short circuit capacity of a bus.

TEXT BOOKS:

REFERENCE BOOKS:
EE503PE: MEASUREMENTS AND INSTRUMENTATION

B.Tech. Ill Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Pre-requisite: Basic Electrical Engineering, Analog Electronics, Electrical Circuit Analysis & Electro Magnetic fields.

Course objectives:
- To introduce the basic principles of all measuring instruments
- To deal with the measurement of voltage, current, Power factor, power, energy and magnetic measurements.
- To understand the basic concepts of smart and digital metering.

Course Outcomes: After completion of this course, the student able to
- Understand different types of measuring instruments, their construction, operation and characteristics
- Identify the instruments suitable for typical measurements
- Apply the knowledge about transducers and instrument transformers to use them effectively.
- Apply the knowledge of smart and digital metering for industrial applications

UNIT- I: Introduction to Measuring Instruments
Classification – deflecting, control and damping torques – Ammeters and Voltmeters – PMMC, moving iron type instruments – expression for the deflecting torque and control torque – Errors and compensations, extension of range using shunts and series resistance. Electrostatic Voltmeters-electrometer type and attracted disc type – extension of range of E.S. Voltmeters.

UNIT- II: Potentiometers & Instrument Transformers

UNIT- III: Measurement of Power & Energy

UNIT- IV: DC & AC Bridges
Method of measuring low, medium and high resistance – sensitivity of Wheat-stone's bridge – Carey Foster’s bridge, Kelvin’s double bridge for measuring low resistance, measurement of high resistance – loss of charge method.
UNIT-V:
Transducers
Definition of transducers, Advantages of Electrical transducers, Characteristics and choice of transducers; Principle operation of LVDT and capacitor transducers; LVDT Applications, Strain gauge and its principle of operation, gauge factor, Thermistors, Thermocouples, Piezo electric transducers, photovoltaic, photo conductive cells, and photo diodes.

Introduction to Smart and Digital Metering: Digital Multi-meter, True RMS meters, Clamp-on meters, Digital Storage Oscilloscope

TEXT BOOKS:

REFERENCES:
EE511PE: COMPUTER ARCHITECTURE (Professional Elective - I)

B.Tech. III Year I Sem.

Prerequisite: Digital Electronics

Course Objectives:
- To understand basic components of computers.
- To understand the architecture of 8086 processor.
- To understand the instruction sets, instruction formats and various addressing modes of 8086.
- To understand the representation of data at the machine level and how computations are performed at machine level.
- To understand the memory organization and I/O organization.
- To understand the parallelism both in terms of single and multiple processors.

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand the concepts of microprocessors, their principles and practices.
- Write efficient programs in assembly language of the 8086 family of microprocessors.
- Organize a modern computer system and be able to relate it to real examples.
- Develop the programs in assembly language for 80286, 80386 and MIPS processors in real and protected modes.
- Implement embedded applications using ATOM processor.

UNIT- I
Introduction to Computer Organization
Architecture and function of general computer system, CISC Vs RISC, Data types, Integer Arithmetic - Multiplication, Division, Fixed and Floating-point representation and arithmetic, Control unit operation, Hardware implementation of CPU with Micro instruction, microprogramming, System buses, Multi-bus organization.

UNIT- II
Memory Organization
System memory, Cache memory - types and organization, Virtual memory and its implementation, Memory management unit, Magnetic Hard disks, Optical Disks.

Input – Output Organization

UNIT- III
16 AND 32 Microprocessors
80x86 Architecture, IA – 32 and IA – 64, Programming model, Concurrent operation of EU and BIU, Real mode addressing, Segmentation, addressing modes of 80x86, Instruction set of 80x86, I/O addressing in 80x86

UNIT- IV
Pipelining
Introduction to pipelining, Instruction level pipelining (ILP), compiler techniques for ILP, Data hazards, Dynamic scheduling, Dependability, Branch cost, Branch Prediction, Influence on instruction set.
UNIT-V:
Different Architectures
VLIW Architecture, DSP Architecture, SoC architecture, MIPS Processor and programming

TEXT BOOKS:

REFERENCE BOOKS:
EE512PE: HIGH VOLTAGE ENGINEERING (Professional Elective-I)

B.Tech. III Year I Sem. L T P C
 3 0 0 3

Prerequisite: Power Systems – I, Electro Magnetic Fields

Course Objectives:
- To deal with the detailed analysis of Breakdown occurring in gaseous, liquids and solid dielectrics
- To inform about generation and measurement of High voltage and current
- To introduce High voltage testing methods

Course outcomes: At the end of the course, the student will demonstrate
- Understand the basic physics related to various breakdown processes in solid, liquid and gaseous insulating materials.
- Knowledge of generation and measurement of D. C., A.C., & Impulse voltages.
- Knowledge of tests on H. V. equipment and on insulating materials, as per the standards.
- Knowledge of how over-voltages arise in a power system, and protection against these over-voltages.

UNIT - I
Breakdown in Gases
Ionization processes and de-ionization processes, Types of Discharge, Gases as insulating materials, Breakdown in Uniform gap, non-uniform gaps, Townsend’s theory, Streamer mechanism, Corona discharge

Breakdown in Liquid and Solid Insulating Materials
Breakdown in pure and commercial liquids, Solid dielectrics and composite dielectrics, intrinsic breakdown, electromechanical breakdown and thermal breakdown, Partial discharge, applications of insulating materials.

UNIT - II
Generation of High Voltages
Generation of high voltages, generation of high D. C. and A.C. voltages, generation of impulse voltages, generation of impulse currents, tripping and control of impulse generators.

UNIT - III
Measurements of High Voltages and Currents
Peak voltage, impulse voltage and high direct current measurement method, cathode ray oscillographs for impulse voltage and current measurement, measurement of dielectric constant and loss factor, partial discharge measurements.

UNIT - IV
LIGHTNING AND SWITCHING OVER-VOLTAGES
Charge formation in clouds, Stepped leader, Dart leader, Lightning Surges. Switching overvoltages, Protection against over-voltages, Surge diverters, Surge modifiers.

UNIT - V
High Voltage Testing of Electrical Apparatus and High Voltage Laboratories Various standards for HV Testing of electrical apparatus, IS, IEC standards, Testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables, power transformers and some high voltage equipment, High voltage laboratory layout, indoor and outdoor laboratories, testing facility requirements, safety precautions in H. V. Labs.
TEXT BOOKS:

REFERENCE BOOKS:
4. Various IS standards for HV Laboratory Techniques and Testing
EE513PE: ELECTRICAL MACHINE DESIGN (Professional Elective - I)

B.Tech. III Year I Sem.

Prerequisite: Electrical Machines-I, Electrical Machines-II

Course Objectives:
- To know the major considerations in electrical machine design, electrical engineering materials, space factor, choice of specific electrical and magnetic loadings,
- To analyze the thermal considerations, heat flow, temperature rise, rating of machines.
- To understand the design of transformers
- To study the design of induction motors
- To know the design of synchronous machines
- To understand the CAD design concepts

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand the construction and performance characteristics of electrical machines.
- Understand the various factors which influence the design: electrical, magnetic and thermal loading of electrical machines
- Understand the principles of electrical machine design and carry out a basic design of an ac machine.
- Use software tools to do design calculations.

UNIT - I
Introduction
Major considerations in electrical machine design, electrical engineering materials, space factor, choice of specific electrical and magnetic loadings, thermal considerations, heat flow, temperature rise, rating of machines.

UNIT - II
Transformers
Sizing of a transformer, main dimensions, kVA output for single- and three-phase transformers, window space factor, overall dimensions, operating characteristics, regulation, no load current, temperature rise in transformers, design of cooling tank, methods for cooling of transformers.

UNIT - III
Induction Motors
Sizing of an induction motor, main dimensions, length of air gap, rules for selecting rotor slots of squirrel cage machines, design of rotor bars & slots, design of end rings, design of wound rotor, magnetic leakage calculations, leakage reactance of poly-phase machines, magnetizing current, short circuit current, circle diagram, operating characteristics.

UNIT - IV
Synchronous Machines
Sizing of a synchronous machine, main dimensions, design of salient pole machines, short circuit ratio, shape of pole face, armature design, armature parameters, estimation of airgap length, design of rotor, design of damper winding, determination of full load field mmf, design of field winding, design of turbo alternators, rotor design.
UNIT - V
Computer Aided Design (CAD)
Limitations (assumptions) of traditional designs need for CAD analysis, synthesis and hybrid methods, design optimization methods, variables, constraints and objective function, problem formulation. Introduction to FEM based machine design. Introduction to complex structures of modern machines-PMSMs, BLDCs, SRM and claw-pole machines.

TEXT BOOKS:

REFERENCE BOOKS:
5. Electrical machines and equipment design exercise examples using Ansoft’s Maxwell 2D machine design package.
SM504MS: BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

B.Tech. III Year I Sem. L T P C 3 0 0 3

Course Objective: To learn the basic business types, impact of the economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm’s financial position by analysing the Financial Statements of a Company.

UNIT – I: Introduction to Business and Economics

UNIT - II: Demand and Supply Analysis
Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

UNIT- III: Production, Cost, Market Structures & Pricing
Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.
Cost analysis: Types of Costs, Short run and Long run Cost Functions.
Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition.

TEXT BOOKS:
REFERENCE BOOKS:
EE505PC: POWER SYSTEM SIMULATION LAB

B.Tech. III Year I Sem. L T P C
 0 0 2 1

Prerequisites: Power System-I, Power System-II

Course Objectives:
- To perform voltage distributions across insulator strings
- To understand the high frequency transients
- To perform parameter estimation and fault analysis on Transmission lines
- To calculate Time constant calculations
- To perform Tariff Estimation
- To perform resonance circuit simulation

Course Outcomes: After completion of this lab, the student will be able to
- Perform various transmission line calculations
- Understand Different circuits time constants
- Analyze the experimental data and draw the conclusions.

List of Experiments:
1. Generation of high frequency transients through RLC circuit
2. Voltage distribution across insulator string
3. Comparison of lumped and distributed transmission lines
4. Calculation of fault currents of transmission line
5. Time constant calculation of RL circuit
6. Time constant calculation of RC circuit
7. Time constant calculation of RLC circuit
8. Simulation of Resonance circuit
10. Estimation of TARIFF based on load curve

NOTE: The above experiments shall be conducted using any software tool
EE506PC: POWER ELECTRONICS LAB

B.Tech. III Year I Sem.

Prerequisite: Power Electronics

Course Objectives:
- Apply the concepts of power electronic converters for efficient conversion/control of power from source to load.
- Design the power converter with suitable switches meeting a specific load requirement.

Course Outcomes: After completion of this course, the student is able to
- Understand the operating principles of various power electronic converters.
- Use power electronic simulation packages & hardware to develop the power converters.
- Analyze and choose the appropriate converters for various applications

Any eight experiments should be conducted
1. Study of Characteristics of SCR, MOSFET & IGBT,
2. Gate firing circuits for SCR's
3. Single Phase AC Voltage Controller with R and RL Loads
4. Single Phase half controlled & fully controlled bridge converter with R and RL loads
5. Forced Commutation circuits (Class A, Class B, Class C, Class D & Class E)
6. Single Phase Cyclo-converter with R and RL loads
7. Single Phase series & parallel inverter with R and RL loads
8. Single Phase Bridge inverter with R and RL loads

Any two experiments should be conducted
1. DC Jones chopper with R and RL Loads
2. Three Phase half-controlled bridge converter with R-load
3. Single Phase dual converter with RL loads
4. (a) Simulation of single-phase Half wave converter using R and RL loads
 (b) Simulation of single-phase full converter using R, RL and RLE loads
 (c) Simulation of single-phase Semi converter using R, RL and RLE loads
5. (a) Simulation of Single-phase AC voltage controller using R and RL loads
 (b) Simulation of Single phase Cyclo-converter with R and RL-loads
6. Simulation of Buck chopper
7. Simulation of single-phase Inverter with PWM control
8. Simulation of three phase fully controlled converter with R and RL loads, with and without freewheeling diode. Observation of waveforms for Continuous and Discontinuous modes of operation.
9. Study of PWM techniques

TEXT BOOKS:
2. User’s manual of related software’s

REFERENCE BOOKS:
1. Reference guides of related software’s
2. Rashid, Spice for power electronics and electric power, CRC Press
EE507PC: MEASUREMENTS AND INSTRUMENTATION LAB

B.Tech. III Year I Sem. L T P C
Pre-requisite: Measurements and Instrumentation

Course Objectives:
- To calibrate LPF Watt Meter, energy meter, P. F Meter using electro dynamo meter type instrument as the standard instrument
- To determine unknown inductance, resistance, capacitance by performing experiments on D.C Bridges & A. C Bridges
- To determine three phase active & reactive powers using single wattmeter method practically
- To determine the ratio and phase angle errors of current transformer and potential transformer.

Course Outcomes: After completion of this lab the student is able to
- to choose instruments
- test any instrument
- find the accuracy of any instrument by performing experiment
- calibrate PMMC instrument using D.C potentiometer

The following experiments are required to be conducted as compulsory experiments
2. Calibration of dynamometer power factor meter.
5. Dielectric oil testing using H.T. testing Kit.
7. Measurement of 3 - Phase reactive power with single-phase wattmeter.
8. Measurement of displacement with the help of LVDT.

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted
9. Calibration LPF wattmeter – by Phantom testing.
10. Measurement of 3-phase power with single watt meter and two CTs.
11. C.T. testing using mutual Inductor – Measurement of % ratio error and phase angle of given CT by Null method.
12. PT testing by comparison – V. G. as Null detector – Measurement of % ratio error and phase angle of the given PT
13. Transformer turns ratio measurement using AC bridges.
14. Measurement of % ratio error and phase angle of given CT by comparison.

TEXT BOOKS:

REFERENCE BOOKS:
EN508HS: ADVANCED COMMUNICATION SKILLS LAB

B.Tech. III Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1. INTRODUCTION:
The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context.

The proposed course should be a laboratory course to enable students to use ‘good’ English and perform the following:

- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

2. OBJECTIVES:
This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students’ fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS:
The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

1. Activities on Fundamentals of Inter-personal Communication and Building Vocabulary
 - Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals - Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.

2. Activities on Reading Comprehension
 - General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading & effective googling.

3. Activities on Writing Skills

4. Activities on Presentation Skills
 - Oral presentations (individual and group) through JAM sessions/seminars/PPTs and written presentations through posters/projects/reports/ e-mails/assignments etc.

5. Activities on Group Discussion and Interview Skills
 - Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening
strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4. MINIMUM REQUIREMENT:
The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- T. V, a digital stereo & Camcorder
- Headphones of High quality

5. SUGGESTED SOFTWARE:
The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dream tech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

TEXT BOOKS:

REFERENCES:
UNIT – I
Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT – II
Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT – III
Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.
Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT – IV
Trade Secrets: Trade secret law, determination of trade secret status, liability for misappropriations of trade secrets, protection for submission, trade secret litigation.
Unfair competition: Misappropriation right of publicity, false advertising.

UNIT – V
New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.
International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

TEXT & REFERENCE BOOKS:
1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
EE611PE: OPTIMIZATION TECHNIQUES (Professional Elective - III)

B.Tech. III Year II Sem.

Prerequisite: Mathematics –I, Mathematics –II

Course Objectives:
- To introduce various optimization techniques i.e classical, linear programming, transportation problem, simplex algorithm, dynamic programming
- Constrained and unconstrained optimization techniques for solving and optimizing an electrical and electronic engineering circuits design problems in real world situations.
- To explain the concept of Dynamic programming and its applications to project implementation.

Course Outcomes: After completion of this course, the student will be able to
- explain the need of optimization of engineering systems
- understand optimization of electrical and electronics engineering problems
- apply classical optimization techniques, linear programming, simplex algorithm, transportation problem
- apply unconstrained optimization and constrained non-linear programming and dynamic programming
- Formulate optimization problems.

UNIT - I

UNIT - II
Transportation Problem: Finding initial basic feasible solution by north – west corner rule, least cost method and Vogel’s approximation method – testing for optimality of balanced transportation problems.

UNIT - III
Unconstrained Non-linear Programming: One dimensional minimization methods, Classification, Fibonacci method and Quadratic interpolation method
Unconstrained Optimization Techniques: Uni-variant method, Powell’s method and steepest descent method.

UNIT - IV
UNIT - V

TEXT BOOKS:

REFERENCE BOOKS:
EE612PE: POWER SEMICONDUCTOR DRIVES (Professional Elective - II)

B.Tech. III Year II Sem.

Prerequisite: Power Electronics, Electrical Machines – I, Electrical Machines – II

Course Objectives:
- To introduce the drive system and operating modes of drive and its characteristics
- To understand Speed – Torque characteristics of different motor drives by various power converter topologies
- To appreciate the motoring and braking operations of drive
- To differentiate DC and AC drives

Course Outcomes: After completion of this course the student is able to
- Identify the drawbacks of speed control of motor by conventional methods.
- Differentiate Phase controlled and chopper-controlled DC drives speed-torque characteristics merits and demerits
- Understand Ac motor drive speed–torque characteristics using different control strategies its merits and demerits
- Describe Slip power recovery schemes

UNIT - I
Control of DC Motors
Introduction to Thyristor controlled Drives, Single Phase semi and fully controlled converters connected to d.c separately excited and d.c series motors – continuous current operation – output voltage and current waveforms – Speed and Torque expressions – Speed – Torque Characteristics- Problems on Converter fed d.c motors.
Three phase semi and fully controlled converters connected to d.c separately excited and d.c series motors – output voltage and current waveforms – Speed and Torque expressions – Speed – Torque characteristics – Problems.

UNIT - II
Four Quadrant Operation of DC Drives
Introduction to Four quadrant operation – Motoring operations, Electric Braking – Plugging, Dynamic, and Regenerative Braking operations. Four quadrant operation of D.C motors by single phase and three phase dual converters – Closed loop operation of DC motor (Block Diagram Only)
Control of DC Motors By Choppers: Single quadrant, Two quadrant and four quadrant chopper fed d.c separately excited and series motors – Continuous current operation – Output voltage and current wave forms – Speed and torque expressions – speed-torque characteristics – Problems on Chopper fed D.C Motors – Closed Loop operation (Block Diagram Only)

UNIT - III
Control of Induction Motor
Variable voltage characteristics-Control of Induction Motor by Ac Voltage Controllers – Waveforms – speed torque characteristics.
Variable frequency characteristics-Variable frequency control of induction motor by Voltage source and current source inverter and cyclo converters- PWM control – Comparison of VSI and CSI operations – Speed torque characteristics – numerical problems on induction motor drives – Closed loop operation of induction motor drives (Block Diagram Only)

UNIT - IV
Rotor Side Control of Induction Motor

UNIT - V
Control of Synchronous Motors
Separate control and self-control of synchronous motors – Operation of self-controlled synchronous motors by VSI, CSI and cyclo converters. Load commutated CSI fed Synchronous Motor – Operation – Waveforms – speed torque characteristics – Applications – Advantages and Numerical Problems – Closed Loop control operation of synchronous motor drives (Block Diagram Only), variable frequency control - Cyclo converter, PWM based VSI & CSI.

TEXT BOOKS:

REFERENCE BOOKS:
EE613PE: WIND AND SOLAR ENERGY SYSTEMS (Professional Elective - II)

B.Tech. III Year II Sem. L T P C 3 0 0 3

Prerequisite: Renewable Energy Systems

Course Objectives:
- To study the physics of wind power and energy
- To understand the principle of operation of wind generators
- To know the solar power resources
- To analyze the solar photo-voltaic cells
- To discuss the solar thermal power generation
- To identify the network integration issues

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand the energy scenario and the consequent growths of the power generate renewable energy sources.
- Understand the basic physics of wind and solar power generation.
- Understand the power electronic interfaces for wind and solar generation.
- Understand the issues related to the grid-integration of solar and wind energy systems

UNIT - I
Physics of Wind Power
History of wind power, Indian and Global statistics, Wind physics, Betz limit ratio, stall and pitch control, Wind speed statistics-probability distributions, and Wind power-cumulative distribution functions.

UNIT - II
Wind Generator Topologies

UNIT - III
The Solar Resource
Introduction, solar radiation spectra, solar geometry, Earth Sun angles, observer Sun angles, solar day length, Estimation of solar energy availability.

Solar Photovoltaic

UNIT - IV
Network Integration Issues
Overview of grid code technical requirements. Fault ride-through for wind farms - real and reactive power regulation, voltage and frequency operating limits, solar PV and wind farm behavior during grid disturbances. Power quality issues. Power system interconnection experiences in the world. Hybrid and isolated operations of solar PV and wind systems.

UNIT - V
Solar Thermal Power Generation
Technologies, Parabolic trough, central receivers, parabolic dish, Fresnel, solar pond, elementary analysis.
TEXT BOOKS:

REFERENCE BOOKS:
EE601PC: SIGNALS AND SYSTEMS

B.Tech. III Year II Sem.

<table>
<thead>
<tr>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
- This gives the basics of Signals and Systems required for all Electrical Engineering related courses.
- To understand the behavior of signal in time and frequency domain
- To understand the characteristics of LTI systems
- This gives concepts of Signals and Systems and its analysis using different transform techniques.

Course Outcomes: Upon completing this course, the student will be able to
- Differentiate various signal functions.
- Represent any arbitrary signal in time and frequency domain.
- Understand the characteristics of linear time invariant systems.
- Analyze the signals with different transform technique

UNIT - I
Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex functions, Classification of Signals and systems, Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum function.

UNIT – II
Fourier series: Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet’s conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum.

UNIT - III
Signal Transmission through Linear Systems: Linear System, Impulse response, Response of a Linear System, Linear Time Invariant(LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution.

UNIT – IV
UNIT - V

Sampling theorem: Graphical and analytical proof for Band Limited Signals, Impulse Sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, Effect of under sampling – Aliasing, Introduction to Band Pass Sampling.

TEXT BOOKS:
1. Signals, Systems & Communications - B.P. Lathi, 2013, BSP.

REFERENCE BOOKS:
EE602PC: MICROPROCESSORS & MICROCONTROLLERS

B.Tech. III Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite: Nil

Course Objectives:
1. To familiarize the architecture of microprocessors and micro controllers
2. To provide the knowledge about interfacing techniques of bus & memory.
3. To understand the concepts of ARM architecture
4. To study the basic concepts of Advanced ARM processors

Course Outcomes: Upon completing this course, the student will be able to
1. Understands the internal architecture, organization and assembly language programming of 8086 processors.
2. Understands the internal architecture, organization and assembly language programming of 8051/controllers
3. Understands the interfacing techniques to 8086 and 8051 based systems.
4. Understands the internal architecture of ARM processors and basic concepts of advanced ARM processors.

UNIT - I:
Instruction Set and Assembly Language Programming of 8086: Instruction formats, Addressing modes, Instruction Set, Assembler Directives, Macros, and Simple Programs involving Logical, Branch and Call Instructions, Sorting, String Manipulations.

UNIT - II:
Introduction to Microcontrollers: Overview of 8051 Microcontroller, Architecture, I/O Ports, Memory Organization, Addressing Modes and Instruction set of 8051.
8051 Real Time Control: Programming Timer Interrupts, Programming External Hardware Interrupts, Programming the Serial Communication Interrupts, Programming 8051 Timers and Counters

UNIT – III:
I/O and Memory Interface: LCD, Keyboard, External Memory RAM, ROM Interface, ADC, DAC Interface to 8051.
Serial Communication and Bus Interface: Serial Communication Standards, Serial Data Transfer Scheme, On board Communication Interfaces-I2C Bus, SPI Bus, UART; External Communication Interfaces-RS232, USB.

UNIT – IV:
ARM Architecture: ARM Processor fundamentals, ARM Architecture – Register, CPSR, Pipeline, exceptions and interrupts interrupt vector table, ARM instruction set – Data processing, Branch instructions, load store instructions, Software interrupt instructions, Program status register instructions, loading constants, Conditional execution, Introduction to Thumb instructions.

UNIT – V:
TEXT BOOKS:

REFERENCE BOOKS:
EE603PC: POWER SYSTEM PROTECTION

B.Tech. III Year II Sem. L T P C

Pre-requisites: Power Systems-I, Power Systems-II

Course Objectives:
- To introduce all kinds of circuit breakers and relays for protection of Generators, Transformers and feeder bus bars from Over voltages and other hazards.
- To describe neutral grounding for overall protection.
- To understand the phenomenon of Over Voltages and it’s classification.

Course Outcomes: At the end of the course the student will be able to:
- Compare and contrast electromagnetic, static and microprocessor-based relays
- Apply technology to protect power system components.
- Select relay settings of over current and distance relays.
- Analyze quenching mechanisms used in air, oil and vacuum circuit breakers

UNIT - I
Protective Relays
Introduction, Need for power system protection, effects of faults, evolution of protective relays, zones of protection, primary and backup protection, essential qualities of protection, classification of protective relays and schemes, current transformers, potential transformers, basic relay terminology.

Operating Principles and Relay Construction: Electromagnetic relays, thermal relays, static relays, microprocessor based protective relays.

UNIT - II
Over-Current Protection
Time-current characteristics, current setting, over current protective schemes, directional relay, protection of parallel feeders, protection of ring mains, Phase fault and earth fault protection, Combined earth fault and phase fault protective scheme, Directional earth fault relay.

Distance Protection: Impedance relay, reactance relay, MHO relay, input quantities for various types of distance relays, Effect of arc resistance, Effect of power swings, effect of line length and source impedance on the performance of distance relays, selection of distance relays, MHO relay with blinders, Reduction of measuring units, switched distance schemes, auto re-closing.

UNIT - III
Pilot Relaying Schemes - Wire Pilot protection, Carrier current protection.

AC Machines and Bus Zone Protection: Protection of Generators, Protection of transformers, Bus-zone protection, frame leakage protection.

UNIT - IV:
Static Relays
Amplitude and Phase comparators, Duality between AC and PC, Static amplitude comparator, integrating and instantaneous comparators, static phase comparators, coincidence type of phase comparator, static over current relays, static directional relay, static differential relay, static distance relays, Multi input comparators, concept of Quadrilateral and Elliptical relay characteristics.

Microprocessor Based Relays: Advantages, over current relays, directional relays, distance relays.

UNIT - V:
Circuit Breakers
Introduction, arcing in circuit breakers, arc interruption theories, re-striking and recovery voltage, resistance switching, current chopping, interruption of capacitive current, oil circuit breaker, air blast
circuit breakers, SF6 circuit breaker, operating mechanism, selection of circuit breakers, high voltage d.c. breakers, ratings of circuit breakers, testing of circuit breakers.

FUSES: Introduction, fuse characteristics, types of fuses, application of HRC fuses, discrimination.

TEXT BOOKS:

REFERENCE BOOKS:
2. L.P.Singh “Protective relaying from Electromechanical to Microprocessors”, New Age International
EE604PC: POWER SYSTEM OPERATION AND CONTROL

Pre-requisites: Power System-I, Power System-II

Course Objectives:
- To understand real power control and operation
- To know the importance of frequency control
- To analyze different methods to control reactive power
- To understand unit commitment problem and importance of economic load dispatch
- To understand real time control of power systems

Course Outcomes: At the end of the course the student will be able to:
- Understand operation and control of power systems.
- Analyze various functions of Energy Management System (EMS) functions.
- Analyze whether the machine is in stable or unstable position.
- Understand power system deregulation and restructuring

UNIT - I
Load Flow Studies

UNIT - II
Economic Operation of Power Systems
Distribution of load between units within a plant-Transmission loss as a function of plant generation, Calculation of loss coefficients-Distribution of load between plants.

UNIT - III
Load Frequency Control
Introduction, load frequency problem-Megawatt frequency (or P-f) control channel, MVAR voltages (or Q-V) control channel-Dynamic interaction between P-f and Q-V loops. Mathematical model of speed-governing system-Turbine models, division of power system into control areas, P-f control of single control area (the uncontrolled and controlled cases)-P-f control of two area systems (the uncontrolled cases and controlled cases)

UNIT - IV
Power System Stability

UNIT - V
Computer Control of Power Systems
Need of computer control of power systems. Concept of energy control centre (or) load dispatch centre and the functions - system monitoring - data acquisition and control. System hardware configuration – SCADA and EMS functions. Network topology – Importance of Load Forecasting and simple techniques of forecasting.
TEXT BOOKS

REFERENCE BOOKS:
EE605PC: POWER SYSTEM LAB

B.Tech. III Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisite: Power System-I, Power System-II, Power System Protection, Power System Operation and Control, Electrical Machines

Course Objectives:
- perform testing of CT, PT's and Insulator strings
- To find sequence impedances of 3-Φ synchronous machine and Transformer
- To perform fault analysis on Transmission line models and Generators.

Course Outcomes: After completion of this lab, the student will be able to
- Perform various load flow techniques
- Understand Different protection methods
- Analyze the experimental data and draw the conclusions.

The following experiments are required to be conducted as compulsory experiments:

Part - A
2. Differential protection of 1-Φ transformer.
4. A,B,C,D constants of a Long Transmission line
5. Finding the sequence impedances of 3-Φ synchronous machine.
6. Finding the sequence impedances of 3-Φ Transformer.

In addition to the above six experiments, at least any four of the experiments from the following list are required to be conducted.

Part - B
1. Formation of Y_{BUS}.
4. Formation of Z_{BUS}.
5. Simulation of Compensated Line

TEXT BOOKS:

REFERENCE BOOK:
EE606PC: MICROPROCESSORS & MICROCONTROLLERS LAB

B.Tech. III Year II Sem. L T P C

Cycle 1: Using 8086 Processor Kits and/or Assembler (5 Weeks)
- Assembly Language Programs to 8086 to Perform
 1. Arithmetic, Logical, String Operations on 16 Bit and 32-Bit Data.
 2. Bit level Logical Operations, Rotate, Shift, Swap and Branch Operations.

Cycle 2: Using 8051 Microcontroller Kit (6 weeks)
- Introduction to IDE
 1. Assembly Language Programs to Perform Arithmetic (Both Signed and Unsigned) 16 Bit Data Operations, Logical Operations (Byte and Bit Level Operations), Rotate, Shift, Swap and Branch Instructions
 2. Time delay Generation Using Timers of 8051.
 3. Serial Communication from / to 8051 to / from I/O devices.
 4. Program Using Interrupts to Generate Square Wave 10 KHZ Frequency on P2.1 Using Timer 0 8051 in 8 bit Auto reload Mode and Connect a 1 HZ Pulse to INT1 pin and Display on Port 0. Assume Crystal Frequency as 11.0592 MHZ

Cycle 3: Interfacing I/O Devices to 8051 (5 Weeks)
 1. 7 Segment Display to 8051.
 2. Matrix Keypad to 8051.
 3. Sequence Generator Using Serial Interface in 8051.
 4. 8 bit ADC Interface to 8051.
 5. Triangular Wave Generator through DAC interfaces to 8051.

TEXT BOOKS:
EE607PC: SIGNALS AND SYSTEMS LAB

B.Tech. III Year II Sem.

Prerequisites: Signals and Systems

Course Objectives:
- To develop ability to analyze linear systems and signals
- To develop critical understanding of mathematical methods to analyze linear systems and signals
- To know the various transform techniques
- To analyse sampling principles

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand the concepts of continuous time and discrete time systems.
- Analyse systems in complex frequency domain.
- Understand sampling theorem and its implications.

List of Experiments:
1. Frequency Spectrum of continuous signal
2. Frequency Spectrum of impulse signals (Time Bounded signals)
3. Frequency Response Analysis using any Software
4. Frequency Response Analysis for any Transfer Function (Preferably Transformer)
5. Write a program to generate the discrete sequences
 (i) Unit step(ii) Unit impulse(iii) Ramp(iv) Periodic sinusoidal sequences.
 (Plot all the sequences).
6. Find the Fourier transform of a square pulse.
 (Plot its amplitude and phase spectrum).
7. Write a program to convolve two discrete time sequences. (Plot all the sequences). Verify the result by analytical calculation.
8. Write a program to find the trigonometric Fourier series coefficients of a rectangular periodic signal. Reconstruct the signal by combining the Fourier series coefficients with appropriate weightings.
9. Write a program to find the trigonometric and exponential Fourier series coefficients of a periodic rectangular signal. Plot the discrete spectrum of the signal.
10. Generate a discrete time sequence by sampling a continuous time signal. Show that with sampling rates less than Nyquist rate, aliasing occurs while reconstructing the signal.
11. Write a program to find the magnitude and phase response of first order low pass and high pass filter. Plot the responses in logarithmic scale.
12. Write a program to find the response of a low pass filter and high pass filter, when a speech signal is passed through these filters.

TEXT BOOKS:

REFERENCE BOOKS:
MC609: ENVIRONMENTAL SCIENCE

B.Tech. III Year II Sem.

<table>
<thead>
<tr>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives:
- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures
- Understanding the environmental policies and regulations

Course Outcomes: Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I
Ecosystems: Definition, Scope and Importance of ecosystem. Classification, structure, and function of an ecosystem. Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II
Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT - III
Biodiversity and Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT - IV

UNIT - V

TEXT BOOKS:
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:
EE711PE: DIGITAL CONTROL SYSTEMS (PE – III)

B.Tech. IV Year I Sem.

Prerequisite: Control Systems

Course Objectives:
- To understand the fundamentals of digital control systems, z-transforms
- To understand state space representation of the control systems, concepts of controllability and observability
- To study the estimation of stability in different domains
- To understand the design of discrete time control systems, compensators, state feedback controllers, state observers through various transformations

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Obtain discrete representation of LTI systems.
- Analyze stability of open loop and closed loop discrete-time systems.
- Design and analyze digital controllers.
- Design state feedback and output feedback controllers.

UNIT - I

UNIT - II

Discrete System Analysis: Z-Transform and Inverse Z Transform for analyzing discrete time systems. Pulse Transfer function. Pulse transfer function of closed loop systems. Mapping from s-plane to z plane. Solution of Discrete time systems. Time response of discrete time system.

UNIT - III

UNIT - IV

UNIT - V

Discrete Output Feedback Control: Design of discrete output feedback control. Fast output sampling (FOS) and periodic output feedback controller design for discrete time systems.

TEXT BOOKS:

REFERENCE BOOKS:
EE712PE: DIGITAL SIGNAL PROCESSING (PE – III)

B.Tech. IV Year I Sem. L T P C
3 0 0 3

Prerequisite: Signals and Systems

Course Objectives:
- To provide background and fundamental material for the analysis and processing of digital signals.
- To understand the fast computation of DFT and appreciate the FFT processing.
- To study the designs and structures of digital (IIR and FIR) filters and analyze and synthesize for a given specifications.
- To acquaint in Multi-rate signal processing techniques and finite word length effects.

Course Outcomes: Upon completing this course, the student will be able to
- Understand the LTI system characteristics and Multirate signal processing.
- Understand the inter-relationship between DFT and various transforms.
- Design a digital filter for a given specification.
- Understand the significance of various filter structures and effects of round off errors

UNIT - I

UNIT - II

UNIT - III

UNIT - IV

UNIT - V

TEXT BOOKS:

REFERENCE BOOKS:
EE713PE: ELECTRICAL AND HYBRID VEHICLES (PE – III)

B.Tech. IV Year I Sem.

L T P C
3 0 0 3

Prerequisite: Power Semiconductor Drives, Electrical Drives and Control, Utilization of Electric Energy

Course Objectives:
- To understand the fundamental concepts, principles, analysis and design of hybrid and electric vehicles.
- To know the various aspects of hybrid and electric drive train such as their configuration, types of electric machines that can be used energy storage devices, etc.

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand the models to describe hybrid vehicles and their performance.
- Understand the different possible ways of energy storage.
- Understand the different strategies related to energy storage systems.

UNIT - I
Introduction: Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.

UNIT - II
Introduction To Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.
Hybrid Electric Drive-Trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

UNIT - III
Electric Trains: Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.
Electric Propulsion Unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

UNIT - IV
Energy Storage: Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

UNIT - V
TEXT BOOKS:

REFERENCE BOOKS:
EE721PE: HVDC TRANSMISSION (PE – IV)

B.Tech. IV Year I Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite: Power System-I, Power System-II, Power System Protection, Power System Operation and Control, Power Electronics

Course Objectives:
- To compare EHV AC and HVDC systems
- To analyze Graetz circuit and also explain 6 and 12 pulse converters
- To control HVDC systems with various methods and to perform power flow analysis in AC/DC systems
- To describe various protection methods for HVDC systems and Harmonics

Course Outcomes: After completion of this course the student is able to
- Compare EHV AC and HVDC system and to describe various types of DC links
- Analyze Graetz circuit for rectifier and inverter mode of operation
- Describe various methods for the control of HVDC systems and to perform power flow analysis in AC/DC systems
- Describe various protection methods for HVDC systems and classify Harmonics and design different types of filters

UNIT-I
Basic Concepts

Analysis of HVDC Converters:

UNIT-II
Converter and HVDC System Control:
Principle of DC Link Control, Converters Control Characteristics, Firing angle control, Current and extinction angle control, Effect of source inductance on the system, Starting and stopping of DC link, Power Control.

Reactive Power Control in HVDC:
Introduction, Reactive Power Requirements in steady state, sources of reactive power- Static VAR Compensators, Reactive power control during transients.

UNIT-III
Power Flow Analysis in AC/DC Systems:

UNIT-IV
Converter Faults and Protection:
Converter faults, protection against over current and over voltage in converter station, surge arresters, smoothing reactors, DC breakers, Audible noise, space charge field, corona effects on DC lines, Radio interference.

UNIT-V:
Harmonics:
Generation of Harmonics, Characteristics harmonics, calculation of AC Harmonics, Non-Characteristics harmonics, adverse effects of harmonics, Calculation of voltage and Current harmonics, Effect of Pulse number on harmonics
Filters: Types of AC filters, Design of Single tuned filters – Design of High pass filters.

TEXT BOOKS:

REFERENCE BOOKS:
EE722PE: POWER SYSTEM RELIABILITY (PE – IV)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Prerequisite: Reliability Engineering, Power System-I, Power System-II, Power System Operation and Control

Course Objectives:
- To describe the generation system model and recursive relation for capacitive model building
- To explain the equivalent transitional rates, cumulative probability and cumulative frequency
- To develop the understanding of risk, system and load point reliability indices
- To explain the basic and performance reliability indices

Course Outcomes: Upon the completion of this course, the student will be able to
- Estimate loss of load and energy indices for generation systems model
- Describe merging generation and load models
- Apply various indices for distribution systems
- Evaluate reliability of interconnected systems

UNIT- I
Basic Probability Theory: Elements of probability, probability distributions, Random variables, Density and Distribution functions- Binomial distribution- Expected value and standard deviation - Binomial distribution, Poisson distribution, normal distribution, exponential distribution, Weibull distribution. Definition of Reliability: Definition of terms used in reliability, Component reliability, Hazard rate, derivation of the reliability function in terms of the hazard rate. Hazard models - Bath tub curve, Effect of preventive maintenance. Measures of reliability: Mean Time to Failure and Mean Time between Failures.

UNIT - II

UNIT- III

Inter Connected System Reliability Analysis: Probability array method – Two inter connected systems with independent loads – effects of limited and unlimited tie capacity - imperfect tie – Two connected Systems with correlated loads – Expression for cumulative probability and cumulative frequency.

UNIT- IV
UNIT- V

TEXT BOOKS:

REFERENCE BOOKS:
3. Reliability Engineering by E. Balaguruswamy, TMH Publications.
EE723PE: INDUSTRIAL ELECTRICAL SYSTEMS (PE – IV)

Prerequisite: Utilization of Electric Energy

Course Objectives:
- To understand the various electrical system components
- To know the residential and commercial electrical systems
- To study the illumination systems
- To discuss about the industrial electrical systems

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand the electrical wiring systems for residential, commercial and industrial consumers, representing the systems with standard symbols and drawings, SLD.
- Understand various components of industrial electrical systems.
- Analyze and select the proper size of various electrical system components.

UNIT- I
Electrical System Components: LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components- Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices

UNIT- II
Residential and Commercial Electrical Systems: Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components.

UNIT- III:
Illumination Systems: Understanding various terms regarding light, lumen, intensity, candle power, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of a lighting scheme for a residential and commercial premise, flood lighting.

UNIT- IV:

UNIT- V:
Industrial Electrical Systems – II: DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks.

TEXT BOOKS:
REFERENCE BOOKS:
2. Web site for IS Standards.
SM701MS: FUNDAMENTALS OF MANAGEMENT FOR ENGINEERS

B.Tech. IV Year I Sem. L T P C
3 0 0 3

Course Objective:
- To understand the Management Concepts, applications of Concepts in Practical aspects of business and development of Managerial Skills for Engineers.

Course Outcome:
- The students understand the significance of Management in their Profession. The various Management Functions like Planning, Organizing, Staffing, Leading, Motivation and Control aspects are learnt in this course. The students can explore the Management Practices in their domain area.

UNIT- I:
Introduction to Management: Definition, Nature and Scope, Functions, Managerial Roles, Levels of Management, Managerial Skills, Challenges of Management; Evolution of Management- Classical Approach- Scientific and Administrative Management; The Behavioral approach; The Quantitative approach; The Systems Approach; Contingency Approach, IT Approach.

UNIT – II:
Planning and Decision Making: General Framework for Planning - Planning Process, Types of Plans, Management by Objectives; Production Planning and Control. Decision making and Problem Solving - Programmed and Non Programmed Decisions, Steps in Problem Solving and Decision Making; Bounded Rationality and Influences on Decision Making; Group Problem Solving and Decision Making, Creativity and Innovation in Managerial Work.

UNIT- III:
Organization and HRM: Principles of Organization: Organizational Design & Organizational Structures; Departmentalization, Delegation; Empowerment, Centralization, Decentralization, Recentralization; Organizational Culture; Organizational Climate and Organizational Change.

UNIT- IV:
Leading and Motivation: Leadership, Power and Authority, Leadership Styles; Behavioral Leadership, Situational Leadership, Leadership Skills, Leader as Mentor and Coach, Leadership during adversity and Crisis; Handling Employee and Customer Complaints, Team Leadership.
Motivation - Types of Motivation; Relationship between Motivation, Performance and Engagement, Content Motivational Theories - Needs Hierarchy Theory, Two Factor Theory, Theory X and Theory Y.

UNIT- V:
Controlling: Control, Types and Strategies for Control, Steps in Control Process, Budgetary and Non-Budgetary Controls. Characteristics of Effective Controls, Establishing control systems, Control frequency and Methods.

TEXT BOOKS:
REFERENCE BOOKS:
EE701PC: ELECTRICAL & ELECTRONICS DESIGN LAB

B.Tech. IV Year I Sem.

L T P C
1 0 4 3

Prerequisite: Basics of Electrical Engineering

Course Objectives:
- To enhance practical knowledge related to different subjects
- To develop hardware skills such as soldering, winding etc.
- To develop debugging skills.
- To increase ability for analysis and testing of circuits.
- To give an exposure to market survey for available components
- To develop an ability for proper documentation of experimentation.
- To enhance employability of a student.
- To prepare students for working on different hardware projects.

Course Outcomes: After completion of course, student will be able to
- Get practical knowledge related to electrical
- Fabricate basic electrical circuit elements/networks
- Trouble shoot the electrical circuits
- Design filter circuit for application
- Get hardware skills such as soldering, winding etc.
- Get debugging skills.

Group A:
1. Design and fabrication of reactor/ electromagnet for different inductance values.
2. Design and fabrication of single-phase Induction/three phase motor stator.
4. Wiring of distribution box with MCB, ELCB, RCCB and MCCB.
5. Wiring of 40 W tube, T-5, LED, Metal Halide lamps and available latest luminaries.
6. Assembly of various types of contactors with wiring.
7. Assembly of DOL and 3-point starter with NVC connections and overload operation.

Group B: This group consists of electronic circuits which must be assembled and tested on general purpose PCB or bread boards.
1. Design and development of 5 V regulated power supply.
2. Design and development of precision rectifier.
3. Design and development of first order/ second order low pass/high pass filters with an application.
5. Peak detector using op-ampifiers.
7. PCB design and layout.
EE811PE: POWER QUALITY AND FACTS (PE - V)

B.Tech. IV Year II Sem.

Prerequisite: Power Electronics, Power System Operation and Control, HVDC Transmission

Course Objectives:
- Definition of power quality and different terms of power quality.
- Study of voltage power quality issue – short and long interruption.
- Detail study of characterization of voltage sag magnitude and three phase unbalanced voltage sag.
- Know the behaviour of power electronics loads; induction motors, synchronous motor etc by the power quality issues.
- Overview of mitigation of power quality issues by the VSI converters.
- To understand the fundamentals of FACTS Controllers,
- To know the importance of controllable parameters and types of FACTS controllers & their benefits
- To understand the objectives of Shunt and Series compensation
- To Control STATCOM and SVC and their comparison and the regulation of STATCOM, Functioning and control of GCSC, TSSC and TCSC

Course Outcomes: After completion of this course, the student will be able to:
- Know the severity of power quality problems in distribution system
- Understand the concept of voltage sag transformation from up-stream (higher voltages) to down-stream (lower voltage)
- Concept of improving the power quality to sensitive load by various mitigating custom power devices
- Choose proper controller for the specific application based on system requirements
- Understand various systems thoroughly and their requirements
- Understand the control circuits of Shunt Controllers SVC & STATCOM for various functions viz. Transient stability Enhancement, voltage instability prevention and power oscillation damping
- Understand the Power and control circuits of Series Controllers GCSC, TSSC and TCSC

UNIT - I

UNIT - II

UNIT- III
Static Shunt Compensators: Objectives of shunt compensation, Methods of controllable VAR generation, Static Var Compensator, its characteristics, TCR, TSC, FC-TCR configurations, STATCOM, basic operating principle, control approaches and characteristics

UNIT- IV
Static Series Compensators: Objectives of series compensator, variable impedance type of series compensators, TCSC, TSSC-operating principles and control schemes, SSSC, Power Angle
characteristics, Control range and VAR rating, Capability to provide reactive power compensation, external control

UNIT-V:
Combined Compensators: Introduction to Unified Power Flow Controller, Basic operating principles, Conventional control capabilities, Independent control of real and reactive power.

TEXT BOOKS:

REFERENCE BOOKS:
1. Power Quality, C.Sankaran, CRC Press
EE812PE: CONTROL SYSTEMS DESIGN (PE – V)

B.Tech. IV Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite: Control Systems

Course Objectives:
- To know the time and frequency domain design problem specifications.
- To understand the design of classical control systems in time-domain
- To analyze the design aspects of classical control systems in frequency-domain
- To know the design of various compensator controllers
- To identify the performance of the systems by design them in state-space
- To study the effects of nonlinearities on various systems performance

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand various design specifications.
- Design controllers to satisfy the desired design specifications using simple controller structures (P, PI, PID, compensators).
- Design controllers using the state-space approach.

UNIT - I

UNIT - II

UNIT - III
Design of Classical Control System In Frequency Domain: Compensator design in frequency domain to improve steady state and transient response. Feedback and Feed forward compensator design using bode diagram.

UNIT - IV:
Design of PID Controllers: Design of P, PI, PD and PID controllers in time domain and frequency domain for first, second and third order systems. Control loop with auxiliary feedback – Feed forward control.

UNIT - V:

TEXT BOOKS:
REFERENCE BOOKS:
EE813PE: AI TECHNIQUES IN ELECTRICAL ENGINEERING (PE – V)

B.Tech. IV Year II Sem.
L T P C
3 0 0 3

Pre-requisites: Power Systems Operation and Control
Course Objectives:
- To locate soft commanding methodologies, such as artificial neural networks, Fuzzy logic and genetic Algorithms.
- To observe the concepts of feed forward neural networks and about feedback neural networks.
- To practice the concept of fuzziness involved in various systems and comprehensive knowledge of fuzzy logic control and to design the fuzzy control
- To analyze genetic algorithm, genetic operations and genetic mutations.

Course Outcomes: Upon the completion of this course, the student will be able to
- Understand feed forward neural networks, feedback neural networks and learning techniques.
- Understand fuzziness involved in various systems and fuzzy set theory.
- Develop fuzzy logic control for applications in electrical engineering
- Develop genetic algorithm for applications in electrical engineering.

UNIT - I

UNIT - II
ANN Paradigms: Multi-layer perceptron using Back propagation Algorithm (BPA), Self –Organizing Map (SOM), Radial Basis Function Network-Functional Link Network (FLN), Hopfield Network.

UNIT - III

UNIT - IV
Genetic Algorithms: Introduction-Encoding –Fitness Function-Reproduction operators, Genetic Modeling –Genetic operators-Cross over-Single site cross over, Two point cross over –Multi point cross over Uniform cross over, Matrix cross over-Cross over Rate-Inversion & Deletion, Mutation operator – Mutation –Mutation Rate-Bit-wise operators, Generational cycle-convergence of Genetic Algorithm.

UNIT - V
Applications of AI Techniques: Load forecasting, Load flow studies, Economic load dispatch, Load frequency control, Single area system and two area system, Reactive power control, Speed control of DC and AC Motors.

TEXT BOOKS
REFERENCE BOOKS:

2. Bart Kosko; Neural Network & Fuzzy System, Prentice Hall, 1992
EE821PE: SMART GRID TECHNOLOGIES (PE – VI)

B.Tech. IV Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisites: None

Course Objectives:
- To group various aspects of the smart grid.
- To defend smart grid design to meet the needs of a utility
- To select issues and challenges that remain to be solved
- To analyze basics of electricity, electricity generation, economics of supply and demand, and the various aspects of electricity market operations in both regulated and deregulated environment.

Course Outcomes: At the end of the course the student will be able to:
- Understand the features of small grid in the context of Indian grid.
- Understand the role of automation in transmission and distribution.
- Apply evolutionary algorithms for smart grid.
- Understand operation and maintenance of PMUs, PDCs, WAMs, and voltage and frequency control in micro grid.

UNIT- I

Introduction to Smart Grid: What is Smart Grid? Working definitions of Smart Grid and Associated Concepts – Smart grid Functions - Traditional Power Grid and Smart Grid – New Technologies for Smart Grid – Advantages – Indian Smart Grid – Key Challenges for Smart Grid.

UNIT- II

Smart Grid Architecture: Components and Architecture of Smart Grid Design – Review of the proposed architectures for Smart Grid. The fundamental components of Smart Grid designs – Transmission Automation – Distribution Automation – Renewable Integration.

UNIT- III

Tools and Techniques for Smart Grid: Computational Techniques – Static and Dynamic Optimization Techniques – Computational Intelligence Techniques – Evolutionary Algorithms – Artificial Intelligence techniques.

UNIT- IV

Communication Technologies and Smart Grid: Introduction to Communication Technology – Synchro-Phasor Measurement Units (PMUs) – Wide Area Measurement Systems (WAMS).

UNIT- V

Control of Smart Power Grid System: Load Frequency Control (LFC) in Micro Grid System – Voltage Control in Micro Grid System – Reactive Power Control in Smart Grid. Case Studies and Test beds for the Smart Grids.

TEXT BOOKS:

REFERENCE BOOKS:
EE822PE: ELECTRICAL DISTRIBUTION SYSTEMS (PE - VI)

B.Tech. IV Year II Sem. L T P C
3 0 0 3

Prerequisites: Power System – I, Power System - II

Course Objectives:
- To distinguish between transmission and distribution systems
- To understand design considerations of feeders
- To compute voltage drop and power loss in feeders
- To understand protection of distribution systems
- To examine the power factor improvement and voltage control

Course Outcomes: After completion of this course, the student able to
- distinguish between transmission, and distribution line and design the feeders
- compute power loss and voltage drop of the feeders
- design protection of distribution systems
- understand the importance of voltage control and power factor improvement

UNIT - I
General Concepts: Introduction to distribution system, Distribution system planning, Factors effecting the Distribution system planning, Load modelling and characteristics. Coincidence factor - contribution factor - Loss factor - Relationship between the load factor and loss factor. Load growth, Classification of loads (Residential, commercial, Agricultural and Industrial) and their characteristics.

Distribution Feeders: Design Considerations of Distribution Feeders: Radial, loop and network types of primary feeders, Introduction to low voltage distribution systems (LVDS) and High voltage distribution systems (HVDS), voltage levels, Factors effecting the feeder voltage level, feeder loading, Application of general circuit constants (A,B,C,D) to radial feeders, basic design practice of the secondary distribution system, secondary banking, secondary network types, secondary mains.

UNIT - II
Substations: Location of Substations: Rating of distribution substation, service area with ‘n’ primary feeders. Benefits derived through optimal location of substations. Optimal location of Substations (Perpendicular bisector rule and X, Y co-ordinate method).

System Analysis: Voltage drop and power-loss calculations: Derivation for voltage drop and power loss in lines, manual methods of solution for radial networks, three phase balanced primary lines, analysis of non-three phase systems, method to analyze the distribution feeder cost.

UNIT - III

Coordination: Coordination of Protective Devices: Objectives of protection co-ordination, general coordination procedure, Types of protection coordination: Fuse to Fuse, Auto-Recloser to Fuse, Circuit breaker to Fuse, Circuit breaker to Auto-Recloser.

UNIT - IV
Compensation for Power Factor Improvement: Capacitive compensation for power-factor control - Different types of power capacitors, shunt and series capacitors, effect of shunt capacitors (Fixed and switched), effect of series capacitors, difference between shunt and series capacitors, Calculation of Power factor correction, capacitor allocation - Economic justification of capacitors - Procedure to determine the best capacitor location.
UNIT - V
Voltage Control: Importance of voltage control, methods of voltage control, equipment for voltage control, effect of shunt capacitors, effect of series capacitors, effect of AVB/AVR on voltage control, line drop compensation, voltage fluctuations.

TEXT BOOKS:

REFERENCE BOOKS:
EE823PE: ADVANCED CONTROL OF ELECTRIC DRIVES (PE – VI)

B.Tech. IV Year II Sem.

Prerequisites: Power Electronics, Power Semiconductor Drives

Course Objectives:
- To know the power electronic converters
- To analyze the various control strategies of power converters for drives control
- To understand the advanced control techniques for DC and AC motor drives
- To go through the control strategies for drives using digital signal processors.

Course Outcomes: At the end of this course, students will demonstrate the ability to
- Understand the operation of power electronic converters and their control strategies.
- Understand the vector control strategies for ac motor drives
- Understand the implementation of the control strategies using digital signal processors.

UNIT - I
Power Converters for AC Drives: PWM control of inverter, selected harmonic elimination, space vector modulation, current control of VSI, three level inverter, Different topologies, SVM for 3 level inverter, Diode rectifier with boost chopper, PWM converter as line side rectifier, current fed inverters with self-commutated devices. Control of CSI, H Bridge as a 4-Q drive.

UNIT - II
Induction Motor Drives: Different transformations and reference frame theory, modeling of induction machines, voltage fed inverter control-v/f control, vector control, direct torque and flux control (DTC).

UNIT - III
Synchronous Motor Drives: Modeling of synchronous machines, open loop v/f control, vector control, direct torque control, CSI fed synchronous motor drives.

UNIT - IV
Permanent Magnet Motor Drives: Introduction to various PM motors, BLDC and PMSM drive configuration, comparison, block diagrams, Speed and torque control in BLDC and PMSM.
Switched Reluctance Motor Drives: Evolution of switched reluctance motors; various topologies for SRM drives, comparison, closed loop speed and torque control of SRM.

UNIT - V
DSP Based Motion Control: Use of DSPs in motion control, various DSPs available, and realization of some basic blocks in DSP for implementation of DSP based motion control.

TEXT BOOKS:

REFERENCE BOOKS: