JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD R18 B.TECH. List of Open Electives Applicable From 2018-19 Admitted Batch

Branch	III Yr II Sem Open Elective (OE – I)	IV Yr I Sem Open Elective (OE – II)	IV Yr II Sem Open Elective (OE – III)
Civil Engineering	Disaster Preparedness & Planning	Remote Sensing & GIS	Environmental Impact Assessment
	Management		
Computer Science &	1. Entrepreneurship	1. Data Structures	1. Machine Learning
Engineering / Information	2. Fundamentals of Management for	2. Artificial Intelligence	2. Mobile Application Development
Technology	Engineers	3. Python Programming	3. Scripting Languages
	3. Cyber Law & Ethics	4. Java Programming	4. Database Management Systems
Electronics and Instrumentation	Basics of Sensors Technology	Fundamentals of Biomedical	Basics of Virtual Instrumentation
Engineering		Applications	
Electronics and Communication	Fundamentals of Internet of Things	Electronic Sensors	Measuring Instruments
Engineering			
Electrical and Electronics	1. Reliability Engineering	1. Utilization of Electrical Energy	1. Basics of Power Plant Engineering
Engineering	2. Renewable Energy Sources	2. Electric Drives and Control	2. Energy Sources and Applications
Mechanical Engineering	Quantitative Analysis for Business	Basic Mechanical Engineering	Non-Conventional Sources of energy
	Decisions		
Aeronautical Engineering	Quantitative Analysis for Business	Basics of Aeronautical Engineering	Elements of Rocket Propulsion
	Decisions		
Mechatronics	1. Industrial Management	1. Intellectual Property Rights	1. Fundamentals of Robotics
	2. Non-Conventional Energy Sources	2. Principles of Entrepreneurship	2. Linear and Non-Linear
		3. Basic Mechanical Engineering	Optimization Techniques
Petroleum Engineering	General Geology	Natural Gas Engineering	Green Fuel Technologies
Metallurgical and Materials	1 Testing of Materials	1 Engineering Materials	1 High Temperature Materials
Engineering	2 Allov Steels	2 Surface Engineering	2. Light Metals and Allovs
Mining Engineering	1 Introduction to Mining Technology	1 Health & Safety in Mines	1 Solid Fuel Technology
	2 Coal Gasification CBM & Shale	2. Material Handling in Mines	2. Remote Sensing and GIS in Mining
	Gas		
	040		

*Note: Students should take Open Electives from the List of Open Electives Offered by Other Departments/Branches Only.

CE600OE: DISASTER PREPAREDNESS & PLANNING MANAGEMENT (Open Elective - I)

B.Tech. Civil Engg. III Year II Sem.

L T/P/D C 3 0/0/0 3

Course Objectives: The objectives of the course are

- To Understand basic concepts in Disaster Management.
- To Understand Definitions and Terminologies used in Disaster Management.
- To Understand Types and Categories of Disasters.
- To Understand the Challenges posed by Disasters.
- To understand Impacts of Disasters Key Skills.

Course Outcomes: The student will develop competencies in

- the application of Disaster Concepts to Management.
- Analyzing Relationship between Development and Disasters.
- Ability to understand Categories of Disasters.
- Realization of the responsibilities to society.

UNIT - I:

Introduction - Concepts and definitions: disaster, hazard, vulnerability, resilience, risks severity, frequency and details, capacity, impact, prevention, mitigation.

UNIT - II

Disasters - Disasters classification; natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, coastal erosion, soil erosion, forest fires etc.); manmade disasters (industrial pollution, artificial flooding in urban areas, nuclear radiation, chemical spills, transportation accidents, terrorist strikes, etc.); hazard and vulnerability profile of India, mountain and coastal areas, ecological fragility.

UNIT - III

Disaster Impacts - Disaster impacts (environmental, physical, social, ecological, economic, political, etc.); health, psycho-social issues; demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends; climate change and urban disasters.

UNIT - IV

Disaster Risk Reduction (DRR) - Disaster management cycle – its phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Post disaster environmental response (water, sanitation, food safety, waste management, disease control, security, communications); Roles and responsibilities of government, community, local institutions, NGOs and other stakeholders; Policies and legislation for disaster risk reduction, DRR programmes in India and the activities of National Disaster Management Authority.

UNIT - V

Disasters, Environment and Development - Factors affecting vulnerability such as impact of developmental projects and environmental modifications (including of dams, landuse changes, urbanization etc.), sustainable and environmental friendly recovery; reconstruction and development methods.

TEXT BOOKS:

- 1. Pradeep Sahni, 2004, Disaster Risk Reduction in South Asia, Prentice Hall.
- 2. Singh B.K., 2008, Handbook of Disaster Management: Techniques & Guidelines, Rajat Publication.

3. Ghosh G.K., 2006, Disaster Management, APH Publishing Corporation

- 1. http://ndma.gov.in/ (Home page of National Disaster Management Authority)
- 2. http://www.ndmindia.nic.in/ (National Disaster management in India, Ministry of Home Affairs).
- 3. Disaster Medical Systems Guidelines. Emergency Medical Services Authority, State of California, EMSA no.214, June 2003
- 4. Inter-Agency Standing Committee (IASC) (Feb. 2007). IASC Guidelines on Mental Health and Psychosocial Support in Emergency Settings. Geneva: IASC

CE700OE: REMOTE SENSING & GIS (Open Elective - II)

B.Tech. Civil Engg. IV Year I Sem.

L T/P/D C 3 0/0/0 3

Course Objectives: The objectives of the course are to

- Know the concepts of Remote Sensing, its interpreting Techniques and concepts of Digital images
- know the concept of Geographical Information System (GIS), coordinate system GIS Data and its types
- Understand the students managing the spatial Data Using GIS.
- Understand Implementation of GIS interface for practical usage.

Course Outcomes: After the completion of the course student should be able to:

- Describe different concepts and terms used in Remote Sensing and its data
- Understand the Data conversion and Process in different coordinate systems of GIS interface
- Evaluate the accuracy of Data and implementing a GIS
- Understand the applicability of RS and GIS for various applications

UNIT – I

Concepts of Remote Sensing Basics of remote sensing- elements involved in remote sensing, electromagnetic spectrum, remote sensing terminology & units, energy resources, energy interactions with earth surface features & atmosphere, atmospheric effects, satellite orbits, Sensor Resolution, types of sensors. Remote Sensing Platforms and Sensors, IRS satellites.

Remote Sensing Data Interpretation Visual interpretation techniques, basic elements, converging evidence, interpretation for terrain evaluation, spectral properties of soil, water and vegetation. Concepts of Digital image processing, image enhancements, qualitative & quantitative analysis and pattern recognition, classification techniques and accuracy estimation.

UNIT-II:

Introduction to GIS: Introduction, History of GIS, GIS Components, GIS Applications in Real life, The Nature of geographic data, Maps, Types of maps, Map scale, Types of scale, Map and Globe, Coordinate systems, Map projections, Map transformation, Geo-referencing,

UNIT-III:

Spatial Database Management System: Introduction: Spatial DBMS, Data storage, Database structure models, database management system, entity-relationship model, normalization

Data models and data structures: Introduction, GIS Data model, vector data structure, raster data structure, attribute data, geo-database and metadata,

UNIT- IV:

Spatial Data input and Editing: Data input methods – keyboard entry, digitization, scanning, conversion of existing data, remotely sensed data, errors in data input, Data accuracy, Micro and Macro components of accuracy, sources of error in GIS.

Spatial Analysis: Introduction, topology, spatial analysis, vector data analysis, Network analysis, raster data analysis, Spatial data interpolation techniques

UNIT- V: Implementing a GIS and Applications

Implementing a GIS: Awareness, developing system requirements, evaluation of alternative systems, decision making using GIS

Applications of GIS

GIS based road network planning, Mineral mapping using GIS, Shortest path detection using GIS, Hazard Zonation using remote sensing and GIS, GIS for solving multi criteria problems, GIS for business applications.

TEXT BOOKS

- 1. Remote Sensing and GIS by Basudeb Bhatta, Oxford University Press, 2nd Edition, 2011.
- Introduction to Geographic Information systems by Kang-tsung Chang, McGraw Hill Education (Indian Edition), 7th Edition, 2015.
- 3. Fundamentals of Geographic Information systems by Michael N. Demers, 4th Edition, Wiley Publishers, 2012.

- Remote Sensing and Image Interpretation by Thomas M. Lillesand and Ralph W. Kiefer, Wiley Publishers, 7th Edition, 2015.\
- Geographic Information systems An Introduction by Tor Bernhardsen, Wiley India Publication, 3rd Edition, 2010.
- 3. Advanced Surveying: Total Station, GIS and Remote Sensing by Satheesh Gopi, R. Sathi Kumar, N. Madhu, Pearson Education, 1st Edition, 2007.
- 4. Textbook of Remote Sensing and Geographical Information systems by M. Anji Reddy,

CE800OE: ENVIRONMENTAL IMPACT ASSESSMENT (Open Elective - III)

B.Tech. Civil Engg. IV Year II Sem.

Course Objectives: The objectives of the course are to

- Define and Classify Environmental Impacts and the terminology
- **Understands** the environmental Impact assessment procedure
- Explain the EIA methodology
- List and describe environmental audits

Course Outcomes: At the end of the course the student will be able to

- Identify the environmental attributes to be considered for the EIA study
- Formulate objectives of the EIA studies
- Identify the methodology to prepare rapid EIA
- Prepare EIA reports and environmental management plans

UNIT- I

Introduction: The Need for EIA, Indian Policies Requiring EIA, The EIA Cycle and Procedures, Screening, Scoping, Baseline Data, Impact Prediction, Assessment of Alternatives, Delineation of Mitigation Measure and EIA Report, Public Hearing, Decision Making, Monitoring the Clearance Conditions, Components of EIA, Roles in the EIA Process. Government of India Ministry of Environment and Forest Notification (2000), List of projects requiring Environmental clearance, Application form, Composition of Expert Committee, Ecological sensitive places, International agreements.

UNIT- II

EIA Methodologies: Environmental attributes -Criteria for the selection of EIA methodology, impact identification, impact measurement, impact interpretation & Evaluation, impact communication, Methods-Adhoc methods, Checklists methods, Matrices methods, Networks methods, Overlays methods. EIA review- Baseline Conditions -Construction Stage Impacts, post project impacts.

UNIT- III

Environmental Management Plan: EMP preparation, Monitoring Environmental Management Plan, Identification of Significant or Unacceptable Impacts Requiring Mitigation, Mitigation Plans and Relief & Rehabilitation, Stipulating the Conditions, Monitoring Methods, Pre- Appraisal and Appraisal.

UNIT- IV

Environmental Legislation and Life cycle Assessment: Environmental laws and protection acts, Constitutional provisions-powers and functions of Central and State government, The Environment (Protection) Act 1986, The Water Act 1974, The Air act 1981, Wild Life act 1972, Guidelines for control of noise, loss of biodiversity, solid and Hazardous waste management rules.

Life cycle assessment: Life cycle analysis, Methodology, Management, Flow of materials-cost criteriacase studies.

UNIT- V

Case Studies: Preparation of EIA for developmental projects- Factors to be considered in making assessment decisions, Water Resources Project, Pharmaceutical industry, thermal plant, Nuclear fuel complex, Highway project, Sewage treatment plant, Municipal Solid waste processing plant, Air ports.

TEXT BOOKS:

- 1. Anjaneyulu. Y and Manickam. V., Environmental Impact Assessment Methodologies, B.S. Publications, Hyderabad, 2007
- 2. Barthwal, R. R., Environmental Impact Assessment, New Age International Publishers, 2002

L T/P/D C 3 0/0/0 3

- 1. Jain, R.K., Urban, L.V., Stracy, G.S., Environmental Impact Analysis, Van Nostrand Reinhold Co., New York, 1991.
- 2. Rau, J.G. and Wooten, D.C., Environmental Impact Assessment, McGraw Hill Pub. Co., New York, 1996.

CS600OE: ENTREPRENEURSHIP (Open Elective - I)

B.Tech. CSE/IT III Year II Sem

L	Т	Ρ	С
3	0	0	3

Course Objective: The aim of this course is to have a comprehensive perspective of inclusive learning, ability to learn and implement the Fundamentals of Entrepreneurship.

Course Outcome: It enables students to learn the basics of Entrepreneurship and entrepreneurial development which will help them to provide vision for their own Start-up.

UNIT – I

Entrepreneurial Perspectives

Introduction to Entrepreneurship – Evolution - Concept of Entrepreneurship - Types of Entrepreneurs -Entrepreneurial Competencies, Capacity Building for Entrepreneurs. Entrepreneurial Training Methods - Entrepreneurial Motivations - Models for Entrepreneurial Development - The process of Entrepreneurial Development.

UNIT - II

New Venture Creation

Introduction, Mobility of Entrepreneurs, Models for Opportunity Evaluation; Business plans – Purpose, Contents, Presenting Business Plan, Procedure for setting up Enterprises, Central level - Startup and State level - T Hub, Other Institutions initiatives.

UNIT – III

Management of MSMEs and Sick Enterprises

Challenges of MSMEs, Preventing Sickness in Enterprises – Specific Management Problems; Industrial Sickness; Industrial Sickness in India – Symptoms, process and Rehabilitation of Sick Units.

UNIT – IV

Managing Marketing and Growth of Enterprises

Essential Marketing Mix of Services, Key Success Factors in Service Marketing, Cost and Pricing, Branding, New Techniques in Marketing, International Trade.

UNIT – V

Strategic perspectives in Entrepreneurship

Strategic Growth in Entrepreneurship, The Valuation Challenge in Entrepreneurship, The Final Harvest of New Ventures, Technology, Business Incubation, India way – Entrepreneurship; Women Entrepreneurs – Strategies to develop Women Entrepreneurs, Institutions supporting Women Entrepreneurship in India.

TEXT BOOKS:

- 1. Entrepreneurship Development and Small Business Enterprises, Poornima M. Charantimath, 2e, Pearson, 2014.
- 2. Entrepreneurship, a South Asian Perspective, D.F. Kuratko and T. V. Rao, 3e, Cengage, 2012.
- 3. Entrepreneurship, Arya Kumar, 4 e, Pearson 2015.
- 4. The Dynamics of Entrepreneurial Development and Management, Vasant Desai, Himalaya Publishing House, 2015.

CS601OE: FUNDAMENTALS OF MANAGEMENT FOR ENGINEERS (Open Elective - I)

B.Tech.	CSE/IT	III Year	II	Sem
---------	--------	-----------------	----	-----

L	Т	Ρ	С
3	0	0	3

Course Objective: To understand the Management Concepts, applications of Concepts in Practical aspects of business and development of Managerial Skills for Engineers.

Course Outcome: The students understand the significance of Management in their Profession. The various Management Functions like Planning, Organizing, Staffing, Leading, Motivation and Control aspects are learnt in this course. The students can explore the Management Practices in their domain area.

UNIT - I

Introduction to Management: Evolution of Management, Nature & Scope-Functions of Management-Role of Manager-levels of Management-Managerial Skills - Challenges-Planning-Planning Process-Types of Plans-MBO

UNIT - II

Organization Structure & HRM: Organization Design-Organizational Structure-Departmentation– Delegation-Centralization - Decentralization-Recentralization-Organizational Culture- Organizational climate- Organizational change

Human Resource Management-HR Planning - Recruitment & Selection - Training & Development-Performance appraisal - Job Satisfaction-Stress Management Practices

UNIT - III

Operation Management: Introduction to Operations Management-Principles and Types of Plant Layout-Methods of production (Job Batch and Mass production) - Method study and Work Measurement-Quality Management - TQM-Six sigma - Deming's Contribution to Quality - Inventory Management – EOQ - ABC Analysis - JIT System-Business Process Re-engineering (BPR)

UNIT - IV

Marketing Management: Introduction to Marketing-Functions of Marketing-Marketing vs. Selling-Marketing Mix - Marketing Strategies - Product Life Cycle - Market Segmentation - Types of Marketing - Direct Marketing-Network Marketing - Digital Marketing-Channels of Distribution - Supply Chain Management (SCM)

UNIT - V

Project Management: Introduction to Project Management-steps in Project Management - Project Planning - Project Life Cycle-Network Analysis-Program Evaluation & Review Technique (PERT)-Critical Path Method (CPM) - Project Cost Analysis - Project Crashing - Project Information Systems

TEXT BOOKS:

- 1. Management Essentials, Andrew DuBrin, 9e, Cengage Learning, 2012.
- 2. Fundamentals of Management, Stephen P.Robbins, Pearson Education, 2009.
- 3. Essentials of Management, Koontz Kleihrich, Tata Mc Graw Hill.
- 4. Management Fundamentals, Robert N Lussier, 5e, Cengage Learning, 2013.
- 5. Industrial Engineering and Management: Including Production Management, T.R.Banga, S.C Sharma , Khanna Publishers.

CS602OE: CYBER LAWS AND ETHICS (Open Elective - I)

L T P C 3 0 0 3

B.Tech. CSE/IT III Year II Sem

Course Objectives

- To make the students understand the types of roles they are expected to play in the society as practitioners of the civil engineering profession
- To develop some ideas of the legal and practical aspects of their profession.

Course Outcomes

- The students will understand the importance of professional practice, Law and Ethics in their personal lives and professional careers.
- The students will learn the rights and responsibilities as an employee, team member and a global citizen

UNIT - I

Introduction to Computer Security: Definition, Threats to security, Government requirements, Information Protection and Access Controls, Computer security efforts, Standards, Computer Security mandates and legislation, Privacy considerations, International security activity.

UNIT - II

Secure System Planning and administration, Introduction to the orange book, Security policy requirements, accountability, assurance and documentation requirements, Network Security, The Red book and Government network evaluations.

UNIT - III

Information security policies and procedures: Corporate policies- Tier 1, Tier 2 and Tier3 policies - process management-planning and preparation-developing policies-asset classification policy-developing standards.

UNIT - IV

Information security: fundamentals-Employee responsibilities- information classification-Information handling- Tools of information security- Information processing-secure program administration.

UNIT - V

Organizational and Human Security: Adoption of Information Security Management Standards, Human Factors in Security- Role of information security professionals.

- Debby Russell and Sr. G. T Gangemi, "Computer Security Basics (Paperback)", 2nd Edition, O' Reilly Media, 2006.
- 2. Thomas R. Peltier, "Information Security policies and procedures: A Practitioner's Reference", 2nd Edition Prentice Hall, 2004.
- 3. Kenneth J. Knapp, "Cyber Security and Global Information Assurance: Threat Analysis and Response Solutions", IGI Global, 2009.
- 4. Thomas R Peltier, Justin Peltier and John blackley," Information Security Fundamentals", 2nd Edition, Prentice Hall, 1996
- 5. Jonathan Rosenoer, "Cyber law: the Law of the Internet", Springer-verlag, 1997
- 6. James Graham, "Cyber Security Essentials" Averbach Publication T & F Group.

CS700OE: DATA STRUCTURES (Open Elective - II)

L T P C 3 0 0 3

B.Tech. CSE/IT IV Year I Sem

Prerequisite:

1. A course on "Programming for Problem Solving "

Course Objectives:

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms

Course Outcomes:

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues-operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash table representation: hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees.

UNIT - IV

Graphs: Graph Implementation Methods. Graph Traversal Methods. **Sortings:** Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT - V

Pattern matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

- 1. Fundamentals of data structures in C, 2 nd edition, E.Horowitz, S.Sahni and Susan Anderson Freed, Universities Press.
- 2. Data structures using c A.S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/pearson education.

- 1. Data structures: A Pseudocode Approach with C, 2nd edition, R.F.Gilberg And B.A.Forouzan, Cengage Learning.
- 2. Introduction to data structures in c, 1/e Ashok Kamthane.

CS701OE: ARTIFICIAL INTELLIGENCE (Open Elective - II)

L T P C 3 0 0 3

B.Tech. CSE/IT IV Year I Sem

Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Advanced Data Structures".
- 3. A course on "Design and Analysis of Algorithms".
- 4. A course on "Mathematical Foundations of Computer Science".
- 5. Some background in linear algebra, data structures and algorithms, and probability will all be helpful.

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning
- To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- Ability to formulate an efficient problem space for a problem expressed in natural language.
- Select a search algorithm for a problem and estimate its time and space complexities.
- Possess the skill for representing knowledge using the appropriate technique for a given problem.
- Possess the ability to apply AI techniques to solve problems of game playing, and machine learning.

UNIT - I

Problem Solving by Search-I: Introduction to AI, Intelligent Agents

Problem Solving by Search –II: Problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching wih Partial Observations, Online Search Agents and Unknown Environment.

UNIT - II

Problem Solving by Search-II and Propositional Logic

Adversarial Search: Games, Optimal Decisions in Games, Alpha–Beta Pruning, Imperfect Real-Time Decisions.

Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems.

Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic.

UNIT - III

Logic and Knowledge Representation

First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic.

Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events. Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

UNIT - IV

Planning

Classical Planning: Definition of Classical Planning, Algorithms for Planning with State-Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches.

Planning and Acting in the Real World: Time, Schedules, and Resources, Hierarchical Planning, Planning and Acting in Nondeterministic Domains, Multi agent Planning.

UNIT - V

Uncertain knowledge and Learning

Uncertainty: Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use,

Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory.

Learning: Forms of Learning, Supervised Learning, Learning Decision Trees. Knowledge in Learning: Logical Formulation of Learning, Knowledge in Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming.

TEXT BOOK:

1. Artificial Intelligence A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

- 1. Artificial Intelligence, 3rd Edn, E.Rich and K.Knight (TMH).
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education.

CS702OE: PYTHON PROGRAMMING (Open Elective - II)

L T P C 3 0 0 3

B.Tech. CSE/IT IV Year I Sem

-		<u> </u>		•
Course	Objectives:	This course w	ill enable stu	udents to

- Learn Syntax and Semantics and create Functions in Python.
- Handle Strings and Files in Python.
- Understand Lists, Dictionaries and Regular expressions in Python.
- Implement Object Oriented Programming concepts in Python.
- Build Web Services and introduction to Network and Database Programming in Python.

Course Outcomes: The students should be able to:

- Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.
- Demonstrate proficiency in handling Strings and File Systems.
- Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
- Interpret the concepts of Object-Oriented Programming as used in Python.
- Implement exemplary applications related to Network Programming, Web Services and Databases in Python.

UNIT - I

Python Basics, Objects- Python Objects, Standard Types, Other Built-in Types, Internal Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the Standard Types, Unsupported Types

Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex Numbers, Operators, Built-in Functions, Related Modules

Sequences - Strings, Lists, and Tuples, Mapping and Set Types

UNIT - II

FILES: File Objects, File Built-in Function [open()], File Built-in Methods, File Built-in Attributes, Standard Files, Command-line Arguments, File System, File Execution, Persistent Storage Modules, Related Modules

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context Management, *Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions, *Creating Exceptions,

Why Exceptions (Now)?, Why Exceptions at All?, Exceptions and the sys Module, Related Modules Modules: Modules and Files, Namespaces, Importing Modules, Importing Module Attributes, Module Built-in Functions, Packages, Other Features of Modules

UNIT - III

Regular Expressions: Introduction, Special Symbols and Characters, Res and Python Multithreaded Programming: Introduction, Threads and Processes, Python, Threads, and the Global Interpreter Lock, Thread Module, Threading Module, Related Modules

UNIT - IV

GUI Programming: Introduction, Tkinter and Python Programming, Brief Tour of Other GUIs, Related Modules and Other GUIs

WEB Programming: Introduction, Wed Surfing with Python, Creating Simple Web Clients, Advanced Web Clients, CGI-Helping Servers Process Client Data, Building CGI Application Advanced CGI, Web (HTTP) Servers

UNIT – V

Database Programming:

Introduction, Python Database Application Programmer's Interface (DB-API), Object Relational Managers (ORMs), Related Modules

TEXT BOOK:

1. Core Python Programming, Wesley J. Chun, Second Edition, Pearson.

CS703OE: JAVA PROGRAMMING (Open Elective - II)

B.Tech. CSE/IT IV Year I Sem

Prerequisites:

1. A course on "Computer Programming & Data Structures"

Course Objectives:

- Introduces object-oriented programming concepts using the Java language.
- Introduces the principles of inheritance and polymorphism; and demonstrates how they relate to the design of abstract classes
- Introduces the implementation of packages and interfaces
- Introduces exception handling, event handling and multithreading
- Introduces the design of Graphical User Interface using applets and AWT

Course Outcomes:

- Develop Programs with reusability
- Develop programs to handle multitasking
- Develop programs to handle exceptions
- Develop applications for a range of problems using object-oriented programming techniques
- Design simple Graphical User Interface applications

UNIT - I

Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop concepts, History of Java, Java buzzwords, data types, variables, scope and life time of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT - II

Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III

Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception sub classes. String handling, Exploring java.util.

UNIT - IV

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes.

The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, check box group, choices, lists, dialog box, handling menus, layout manager: layout manager types – border, grid, flow, card and grid bag.

UNIT V

Multi-Threading: Differences between multi-threading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, interthread communication, thread groups, daemon threads.

L	Т	Ρ	С
3	0	0	3

Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets.

TEXT BOOKS:

- 1. Java the complete reference, 7th edition, Herbert Schildt, TMH.
- 2. Understanding OOP with Java, updated edition, T. Budd, Pearson Education.

- 1. An Introduction to programming and OO design using Java, J.Nino and F.A. Hosch, John Wiley & sons.
- 2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 3. An introduction to Java programming and object-oriented application development, R.A. Johnson- Thomson.

CS800OE: MACHINE LEARNING (Open Elective - III)

L T P C 3 0 0 3

B.Tech. CSE/IT IV Year II Sem

Prerequisites:

- 1. Course on "Data Structures".
- 2. Knowledge on statistical methods.

Course Objectives:

- This course explains machine learning techniques such as decision tree learning, Bayesian learning etc.
- To understand computational learning theory.
- To study the pattern comparison techniques.

Course Outcomes:

- Understand the concepts of computational intelligence like machine learning
- Ability to get the skill to apply machine learning techniques to address the real time problems in different areas
- Understand the Neural Networks and its usage in machine learning application.

UNIT - I

Introduction - Well-posed learning problems, designing a learning system, Perspectives and issues in machine learning

Concept learning and the general to specific ordering – introduction, a concept learning task, concept learning as search, find-S: finding a maximally specific hypothesis, version spaces and the candidate elimination algorithm, remarks on version spaces and candidate elimination, inductive bias.

Decision Tree Learning – Introduction, decision tree representation, appropriate problems for decision tree learning, the basic decision tree learning algorithm, hypothesis space search in decision tree learning, inductive bias in decision tree learning, issues in decision tree learning.

UNIT - II

Artificial Neural Networks-1– Introduction, neural network representation, appropriate problems for neural network learning, perceptions, multilayer networks and the back-propagation algorithm.

Artificial Neural Networks-2- Remarks on the Back-Propagation algorithm, An illustrative example: face recognition, advanced topics in artificial neural networks.

Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling theory, a general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithms.

UNIT - III

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibs algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief networks, the EM algorithm.

Computational learning theory – Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the mistake bound model of learning.

Instance-Based Learning- Introduction, k-nearest neighbour algorithm, locally weighted regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning.

UNIT- IV

Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis space search, genetic programming, models of evolution and learning, parallelizing genetic algorithms.

Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, inverting resolution.

Reinforcement Learning – Introduction, the learning task, Q–learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.

UNIT - V

Analytical Learning-1- Introduction, learning with perfect domain theories: PROLOG-EBG, remarks on explanation-based learning, explanation-based learning of search control knowledge.

Analytical Learning-2-Using prior knowledge to alter the search objective, using prior knowledge to augment search operators.

Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis.

TEXT BOOK:

1. Machine Learning – Tom M. Mitchell, - MGH

REFERENCE BOOK:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis

CS801OE: MOBILE APPLICATION DEVELOPMENT (Open Elective - III)

LTPC

3 0 0 3

B.Tech. CSE/IT IV Year II Sem

Prerequisites:

- 1. Acquaintance with JAVA programming
- 2. A Course on DBMS

Course Objectives:

- To demonstrate their understanding of the fundamentals of Android operating systems
- To improves their skills of using Android software development tools
- To demonstrate their ability to develop software with reasonable complexity on mobile platform
- To demonstrate their ability to deploy software to mobile devices
- To demonstrate their ability to debug programs running on mobile devices

Course Outcomes:

- Student understands the working of Android OS Practically.
- Student will be able to develop Android user interfaces
- Student will be able to develop, deploy and maintain the Android Applications.

UNIT - I

Introduction to Android Operating System: Android OS design and Features – Android development framework, SDK features, Installing and running applications on Android Studio, Creating AVDs, Types of Android applications, Best practices in Android programming, Android tools

Android application components – Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes Android Application Lifecycle – Activities, Activity lifecycle, activity states, monitoring state changes

UNIT - II

Android User Interface: Measurements – Device and pixel density independent measuring UNIT - s Layouts – Linear, Relative, Grid and Table Layouts

User Interface (UI) Components – Editable and non editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers

Event Handling – Handling clicks or changes of various UI components

Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

UNIT - III

Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS

Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity

Notifications - Creating and Displaying notifications, Displaying Toasts

UNIT - IV

Persistent Storage: Files – Using application specific folders and files, creating files, reading data from files, listing contents of a directory Shared Preferences – Creating shared preferences, saving and retrieving data using Shared Preference

UNIT - V

Database – Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and etindelg data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

TEXT BOOKS:

- 1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012
- 2. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013

REFERENCE BOOK:

1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013

CS802OE: SCRIPTING LANGUAGES (Open Elective - III)

L T P C 3 0 0 3

B.Tech. CSE/IT IV Year II Sem

Prerequisites:

- 1. A course on "Computer Programming and Data Structures"
- 2. A course on "Object Oriented Programming Concepts"

Course Objectives:

- This course introduces the script programming paradigm
- Introduces scripting languages such as Perl, Ruby and TCL.
- Learning TCL

Course Outcomes:

- Comprehend the differences between typical scripting languages and typical system and application programming languages.
- Gain knowledge of the strengths and weakness of Perl, TCL and Ruby; and select an appropriate language for solving a given problem.
- Acquire programming skills in scripting language

UNIT - I

Introduction: Ruby, Rails, The structure and Excution of Ruby Programs, Package Management with RUBYGEMS, Ruby and web: Writing CGI scripts, cookies, Choice of Webservers, SOAP and webservices.

RubyTk – Simple Tk Application, widgets, Binding events, Canvas, scrolling

UNIT - II

Extending Ruby: Ruby Objects in C, the Jukebox extension, Memory allocation, Ruby Type System, Embedding Ruby to Other Languages, Embedding a Ruby Interperter

UNIT - III

Introduction to PERL and Scripting

Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting Languages. PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes, strings, pattern and regular expressions, subroutines.

UNIT - IV

Advanced PERL

Finer points of looping, pack and unpack, filesystem, eval, data structures, packages, modules, objects, interfacing to the operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security Issues.

UNIT - V

TCL: TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output, procedures, strings, patterns, files, Advance TCL- eval, source, exec and uplevel commands, Name spaces, trapping errors, event driven programs, making applications internet aware, Nuts and Bolts Internet Programming, Security Issues, C Interface.

Tk: Tk-Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and Binding, Perl-Tk.

TEXT BOOKS:

1. The World of Scripting Languages, David Barron, Wiley Publications.

- 2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly
- 3. "Programming Ruby" The Pramatic Programmers guide by Dabve Thomas Second edition

- 1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J.Lee and B. Ware (Addison Wesley) Pearson Education.
- 2. Perl by Example, E. Quigley, Pearson Education.
- 3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
- 4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
- 5. Perl Power, J.P. Flynt, Cengage Learning.

CS803OE: DATABASE MANAGEMENT SYSTEMS (Open Elective - III)

B.Tech. CSE/IT IV Year II Sem

Prerequisites

L	т	Ρ	С
3	0	0	3

• A course on "Data Structures".

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering tables and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: Queries, Constraints, Triggers: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active data bases.

Schema refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, multi-valued dependencies, FOURTH normal form, FIFTH normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log–Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree base Indexing, Comparison of File Organizations, Indexes and Performance Tuning, Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

- 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill 3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, Mc Graw hill, V edition.

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate Pearson Education
- 3. Introduction to Database Systems, C.J.Date Pearson Education
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

EI600OE: BASICS OF SENSORS TECHNOLOGY (Open Elective - I)

		-	-	~
B. I ech. EIE III Year II Semester	L	I	Р	C
	3	0	0	3
Pre-requisites: Physics, Mathematics				

Course Objectives:

- 1. To **provide** basic knowledge in transduction principles, sensors and transducer technology and measurement systems.
- 2. To **provide** better familiarity with the Theoretical and Practical concepts of Transducers.
- 3. To provide familiarity with different sensors and their application in real life.
- 4. To **provide** the knowledge of various measurement methods of physical and electrical parameters

Course Outcomes:

- 1. After completion of the course the student is able to:
- 2. **Identify** suitable sensors and transducers for real time applications.
- 3. Translate theoretical concepts into working models.
- 4. **Design** the experimental applications to engineering modules and practices.
- 5. Design engineering solution to the Industry/Society needs and develop products.

UNIT - I

Introduction to measurement systems

General concepts and terminology, measurement systems, sensor classifications: Analog Input and Output, Digital Input and Output, general input-output configuration, methods of correction.

Passive Sensors

Resistive Sensors: Potentiometers, Strain Gages, Resistive Temperature Detectors (RTDs), Thermistors, Light-dependent Resistors (LDRs), Resistive Hygrometers.

Capacitive Sensors: Variable capacitor and Differential capacitor.

Inductive Sensors: Reluctance variation sensors, Eddy current sensors, Linear variable differential transformers (LVDTs), Magneto elastic sensors, Electromagnetic sensors - Sensors based on Faraday's law of Electromagnetic induction, Touch Sensors: Capacitive, Resistive, Proximity Sensors.

UNIT - II

Self-generating Sensors or active sensors

Thermoelectric Sensors: Thermocouples, Thermo electric effects, Common thermocouples, Practical thermocouple laws, Cold junction compensation in thermocouples circuits.

Piezoelectric Sensors: Piezoelectric effect, piezoelectric materials, applications.

UNIT - III

VELOCITY AND ACCELERATION MEASUREMENT

Relative velocity – Translational and Rotational velocity measurements – Revolution counters and Timers - Magnetic and Photoelectric pulse counting stroboscopic methods. Accelerometers-different types, Gyroscopes-applications.

Density measurements – Strain Gauge load cell method – Buoyancy method - Air pressure balance method – Gamma ray method – Vibrating probe method.

UNIT - IV

DENSITY, VISCOSITY AND OTHER MEASUREMENTS

Units of Viscosity, specific gravity scales used in Petroleum Industries, Different Methods of measuring consistency and Viscosity –Two float viscorator –Industrial consistency meter. Sound-Level Meters, Microphones, Humidity Measurement

UNIT - V

CALIBRATION AND INTERFACING

Calibration using Master Sensors, Interfacing of Force, Pressure, Velocity, Acceleration, Flow, Density and Viscosity Sensors, Variable Frequency Drive

TEXT BOOKS:

- 1. Measurement Systems Applications and Design by Doeblin E.O., 4/e, McGraw Hill International, 1990.
- 2. Principles of Industrial Instrumentation Patranabis D. TMH. End edition 1997

REFERENCES:

- 1. Sensors and Transducers: D. Patranabis, TMH 2003
- 2. Wiley & Sons Ltd. (2006).
- 3. Sensor Technology Hand Book Jon Wilson, Newne 2004.
- 4. Instrument Transducers An Introduction to their Performance and design by Herman K.P. Neubrat, Oxford University Press.
- 5. Measurement system: Applications and Design by E. O. Doeblin, McGraw Hill Publications.
- 6. Electronic Instrumentation by H. S. Kalsi.

EI700OE: FUNDAMENTALS OF BIOMEDICAL APPLICATIONS (Open Elective - II)

B.Tech. EIE IV Year I Semester	L	т	Р	С
	3	0	0	3

Course Objectives:

- Deals with the block diagram of bio medical instrumentation system and their characteristics.
- To study the ECG, EEG, EMG, and Basic biochemical electrode.
- Deals with measuring blood pressure and use of pacemaker and defibrillator and ventilator.

Course Outcomes: At the end of the course, the student should be able to

- Understand the significance of instrumentation in human physiology.
- Acquire confidence in delivering effective therapeutic and diagnostic tools for doctors.
- Develop concepts in cardiac and neuromuscular instrumentation.

UNIT – I

Basic of Biomedical Instrumentation: Components of Medical Instrumentation System, Static and dynamic characteristics of medical instruments, Problems encountered with measurements from human beings. Organization of Cell: Derivation of Nernst equation for membrane Resting potential, Generation of action potential and refractory periods, propagation methods of action potentials.

UNIT – II

ECG Measurements and Interpretation: Medical Recorders: Classification of recorders, general features of ink-jet, and PMMC writing systems. Basics of Bio chemical electrodes. Electrocardiography: Electrical conduction system of the heart, electrodes and their placement, Standard 12 – lead configurations, Interpretation of ECG waveform with respect of electro mechanical activity of the heart.

UNIT –III

Blood Pressure Measurements: Blood pressure measurement: Introduction to blood pressure, and measurements methods, Blood flow measurement methods, Phonocardiography.

UNIT – IV

Therapeutic Equipment: Basics of Pacemakers, Defibrillator, electrotherapy and its applications, Dialysis and its significance-.

UNIT – V

EEG, EMG and Respiratory Measurements: EEG block diagram, electrodes and their placement, EMG block diagram, electrode and their placement, study of neuromuscular junction, nerve conduction velocity using EMG. Respiratory Instrumentation: Mechanism of respiration, Spirometrey, Pnemuotachograph and its types, ventilators and its mode of operation.

TEXT BOOKS:

- 1. Medical Instrumentation Application and Design, John G. Webster, John Wiley and sons Inc., 3rd Ed., 2003
- 2. Hand Book of Biomedical Instrumentation, Khandpur R.S. Tata McGraw Hill, 1994

- 1. Joseph J. Carr ad John M. Brown, Introduction to Biomedical Equipment Technology, Pearson Education, 2001.
- 2. Bronzino Joseph D, Hand Book of Biomedical Engineering, CRC Press, 1995.

EI800OE: BASICS OF VIRTUAL INSTRUMENTATION (Open Elective - III)

LTPC

0 0 3

3

B.Tech. EIE IV Year II Semester

Course Objectives: Student will be able to

- Develop virtual instruments for specific application using LabVIEW software.
- Ease the programming required to make computer interact with real world.
- To acquire, analyze and display the throughput of any compactible system.
- Knowledge to connect with third party software and hardware.

Course Outcomes: After completion of the course the student is able to:

- Create Virtual Instrument using LabVIEW software for Control system, Signal Processing and Image processing applications.
- Create effective Virtual Instrument that shall use minimum memory space and work effectively with any processor.
- Interface the computer with DAQ to monitor, process and control real world applications
- Analyze the throughput using the tools in LabVIEW software

UNIT - I

An introduction

Historical perspective, advantages, blocks diagram and architecture of a virtual instrument, data-flow techniques, graphical programming in data flow, comparison with conventional programming.

UNIT - II

VI programming techniques

VIs and sub-VIs, loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Instrument Drivers, mathscript.

UNIT - III

VI Interface requirements

Common Instrument Interfaces: Current loop, RS 232C/ RS485, GPIB. Bus Interfaces: USB, PCMCIA, VXI, SCSI, PCI, PXI, Firewire. PXI system controllers, Ethernet control of PXI, VISA and IVI, Data Acquisition Hardware

UNIT - IV

Application of Virtual Instrumentation

Application of Virtual Instrumentation: Instrument Control using RS-232C and IEEE488, Development of Virtual Instrument using GUI, Real-time systems, Embedded Controller, OPC, Active X programming, Publishing measurement data in the web.

UNIT - V

VI toolsets

Distributed I/O modules, Control Design and Simulation, Digital Signal processing tool kit, Image acquisition and processing, Motion control

TEXT BOOKS:

- 1. LabVIEW Graphical Programming, Gary Johnson, Second edition, McGraw Hill, New York, 1997.
- 2. LabVIEW for everyone, Lisa K. wells & Jeffrey Travis Prentice Hall, New Jersey, 1997.

- 1. Kevin James, PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control, Newnes, 2000.
- 2. Rick Bitter, LabVIEW advanced programming technique, 2nd Edition, CRC Press, 2005
- 3. Jovitha Jerome, Virtual Instrumentation using LabVIEW, 1st Edition, PHI, 2001.

EC600OE: FUNDAMENTALS OF INTERNET OF THINGS (Open Elective - I)

L T P C 3 0 0 3

B.Tech. ECE III Year II Semester

Course Objectives: The objectives of the course are to:

- understand the concepts of Internet of Things and able to build IoT applications
- Learn the programming and use of Arduino and Raspberry Pi boards.
- Known about data handling and analytics in SDN.

Course Outcomes: Upon completing this course, the student will be able to

- Known basic protocols in sensor networks.
- Program and configure Arduino boards for various designs.
- Python programming and interfacing for Raspberry Pi.
- Design IoT applications in different domains.

UNIT – I

Introduction to Internet of Things, Characteristics of IoT, Physical design of IoT, Functional blocks of IoT, Sensing, Actuation, Basics of Networking, Communication Protocols, Sensor Networks.

UNIT - II

Machine-to-Machine Communications, Difference between IoT and M2M, Interoperability in IoT, Introduction to Arduino Programming, Integration of Sensors and Actuators with Arduino.

UNIT – III

Introduction to Python programming, Introduction to Raspberry Pi, Interfacing Raspberry Pi with basic peripherals, Implementation of IoT with Raspberry Pi

UNIT - IV

Implementation of IoT with Raspberry Pi, Introduction to Software defined Network (SDN), SDN for IoT, Data Handling and Analytics.

UNIT - V

Cloud Computing, Sensor-Cloud, Smart Cities and Smart Homes, Connected Vehicles, Smart Grid, Industrial IoT.

Case Study: Agriculture, Healthcare, Activity Monitoring

TEXT BOOKS:

- 1. "The Internet 'of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman (CRC Press)
- 2. "Make sensors": Terokarvinen, kemo, karvinen and villey valtokari, 1st edition, maker media, 2014.
- 3. "Internet of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti

- 1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice"
- 3. Beginning Sensor networks with Arduino and Raspberry Pi Charles Bell, Apress, 2013

EC700OE: ELECTRONIC SENSORS (Open Elective - II)

B.Tech. ECE IV Year I Semester

Course Objectives:

- Learn the characterization of sensors.
- Known the working of Electromechanical, Thermal, Magnetic and radiation sensors
- Understand the concepts of Electro analytic and smart sensors
- Able to use sensors in different applications

Course Outcomes: Upon completing this course, the student will be able to

- Learn about sensor Principle, Classification and Characterization.
- Explore the working of Electromechanical, Thermal, Magnetic, radiation and Electro analytic sensors
- Understand the basic concepts of Smart Sensors
- Design a system with sensors

UNIT - I

Sensors / Transducers: Principles, Classification, Parameters, Characteristics, Environmental Parameters (EP), Characterization

Electromechanical Sensors: Introduction, Resistive Potentiometer, Strain Gauge, Resistance Strain Gauge, Semiconductor Strain Gauges -Inductive Sensors: Sensitivity and Linearity of the Sensor – Types-Capacitive Sensors: Electrostatic Transducer, Force/Stress Sensors Using Quartz Resonators, Ultrasonic Sensors

UNIT - II

Thermal Sensors: Introduction ,Gas thermometric Sensors ,Thermal Expansion Type Thermometric Sensors ,Acoustic Temperature Sensor ,Dielectric Constant and Refractive Index thermo sensors ,Helium Low Temperature Thermometer ,Nuclear Thermometer ,Magnetic Thermometer ,Resistance Change Type Thermometric Sensors, Thermo emf Sensors, Junction Semiconductor Types, Thermal Radiation Sensors, Quartz Crystal Thermoelectric Sensors, NQR Thermometry, Spectroscopic Thermometry, Noise Thermometry, Heat Flux Sensors

UNIT- III

Magnetic sensors: Introduction, Sensors and the Principles Behind, Magneto-resistive Sensors, Anisotropic Magneto resistive Sensing, Semiconductor Magneto resistors, Hall Effect and Sensors, Inductance and Eddy Current Sensors, Angular/Rotary Movement Transducers, Synchros.

UNIT - IV

Radiation Sensors: Introduction, Basic Characteristics, Types of Photo resistors/ Photo detectors, X-ray and Nuclear Radiation Sensors, Fibre Optic Sensors

Electro analytical Sensors: The Electrochemical Cell, The Cell Potential - Standard Hydrogen Electrode (SHE), Liquid Junction and Other Potentials, Polarization, Concentration Polarization, Reference Electrodes, Sensor Electrodes, Electro ceramics in Gas Media.

UNIT - V

Smart Sensors: Introduction, Primary Sensors, Excitation, Amplification, Filters, Converters, Compensation, Information Coding/Processing - Data Communication, Standards for Smart Sensor Interface, the Automation

Sensors –**Applications:** Introduction, On-board Automobile Sensors (Automotive Sensors), Home Appliance Sensors, Aerospace Sensors, Sensors for Manufacturing –Sensors for environmental Monitoring

L	Т	Ρ	С
3	0	0	3

TEXT BOOKS:

- 1. "Sensors and Transducers D. Patranabis" -- PHI Learning Private Limited., 2003.
- 2. Introduction to sensors- John veteline, aravind raghu, CRC press, 2011

- 1. Sensors and Actuators, D. Patranabis, 2nd Ed., PHI, 2013.
- 2. Make sensors: Terokarvinen, kemo, karvinen and villey valtokari, 1st edition, maker media, 2014.
- 3. Sensors handbook- Sabrie soloman, 2nd Ed. TMH, 2009

EC800OE: MEASURING INSTRUMENTS (Open Elective - III)

B.Tech. ECE IV Year II Semester	L	Т	Ρ	С
	3	0	0	3

Course Objectives:

- To provide basic knowledge in transduction principles, sensors and transducer technology and measurement systems.
- To provide better familiarity with the concepts of Sensors and Measurements.
- To provide the knowledge of various measurement methods of physical parameters like velocity, acceleration, force, pressure and viscosity.

Course Outcomes: After Completion of the course the student is able to

- Able to identify suitable sensors and transducers for real time applications.
- Able to translate theoretical concepts into working models.
- Able to understand the basic of measuring device and use them in relevant situation.

UNIT - I

Introduction to measurements. Physical measurement. Forms and methods of measurements. Measurement errors. Statistical analysis of measurement data. Probability of errors. Limiting errors. Standards. Definition of standard units. International standards. Primary standards. Secondary standards. Working standards. Voltage standard. Resistance standard. Current standard. Capacitance standard. Time and frequency standards.

UNIT - II

Passive Sensors

Resistive Sensors: Potentiometers, Strain Gages, Resistive Temperature Detectors (RTDs), Thermistors, Light-dependent Resistors (LDRs), Resistive Hygrometers, **Capacitive Sensors:** Variable capacitor, Differential capacitor, **Inductive Sensors:** Reluctance variation sensors, Eddy current sensors

UNIT - III

Metrology: Measurement of length – Plainness – Area – Diameter – Roughness – Angle – Comparators – Gauge Blocks. Optical Methods for length and distance measurements.

Velocity and Acceleration Measurement: Relative velocity – Translational and Rotational velocity measurements – Revolution counters and Timers - Magnetic and Photoelectric pulse counting stroboscopic methods. Accelerometers- different types, Gyroscopes-applications.

UNIT - IV

Force and Pressure Measurement: Gyroscopic Force Measurement – Vibrating wire Force transducer. Basics of Pressure measurement –Manometer types – Force-Balance and Vibrating Cylinder Transducers – High- and Low-Pressure measurement

UNIT - V

Flow, Density and Viscosity Measurements: Flow Meters- Head type, Area type (Rota meter), electromagnetic type, Positive displacement type, Density measurements – Strain Gauge load cell method – Buoyancy method.

Units of Viscosity, Two float viscorator -Industrial consistency meter

TEXT BOOKS:

- 1. Measurement Systems Applications and Design by Doeblin E.O., 4/e, McGraw Hill International, 1990.
- 2. Principles of Industrial Instrumentation Patranabis D. TMH. End edition 1997

- 1. Sensor Technology Hand Book Jon Wilson, Newne 2004.
- 2. Instrument Transducers An Introduction to their Performance and design by Herman K.P. Neubrat, Oxford University Press.
- 3. Measurement system: Applications and Design by E.O. Doeblin, McGraw Hill Publications.
- 4. Electronic Instrumentation by H.S. Kalsi.

EE600OE: RELIABILITY ENGINEERING (Open Elective - I)

B.Tech. EEE III Year II Sem

LTPC

3003

Prerequisite: Mathematics-III (Laplace Transforms, Numerical Methods and Complex variables) **Course Objectives:**

- To introduce the basic concepts of reliability, various models of reliability
- To analyze reliability of various systems
- To introduce techniques of frequency and duration for reliability evaluation of repairable systems

Course Outcomes: After completion of this course, the student will be able to

- model various systems applying reliability networks
- evaluate the reliability of simple and complex systems
- estimate the limiting state probabilities of repairable systems
- apply various mathematical models for evaluating reliability of irreparable systems

UNIT - I

Basic Probability Theory: Elements of probability, probability distributions, Random variables, Density and Distribution functions- Mathematical expected – variance and standard deviation **Binomial Distribution:** Concepts, properties, engineering applications.

UNIT- II

Network Modeling and Evaluation of Simple Systems: Basic concepts- Evaluation of network Reliability / Unreliability - Series systems, Parallel systems - Series-Parallel systems- Partially redundant systems- Examples.

Network Modeling and Evaluation of Complex Systems

Conditional probability method- tie set, Cut-set approach- Event tree and reduced event tree methods-Relationships between tie and cut-sets- Examples.

UNIT - III

Probability Distributions In Reliability Evaluation: Distribution concepts, Terminology of distributions, General reliability functions, Evaluation of the reliability functions, shape of reliability functions –Poisson distribution – normal distribution, exponential distribution, Weibull distribution.

Network Reliability Evaluation Using Probability Distributions: Reliability Evaluation of Series systems, Parallel systems – Partially redundant systems- determination of reliability measure- MTTF for series and parallel systems – Examples.

UNIT - IV

Discrete Markov Chains: Basic concepts- Stochastic transitional probability matrix- time dependent probability evaluation- Limiting State Probability evaluation- Absorbing states – Application.

Continuous Markov Processes: Modeling concepts- State space diagrams- Unreliability evaluation of single and two component repairable systems

UNIT - V

Frequency and Duration Techniques: Frequency and duration concepts, application to multi state problems, Frequency balance approach.

Approximate System Reliability Evaluation: Series systems – Parallel systems- Network reduction techniques- Cut set approach- Common mode failures modeling and evaluation techniques- Examples.

TEXT BOOKS:

1. Roy Billinton and Ronald N Allan, Reliability Evaluation of Engineering Systems, Plenum Press.
2. E. Balagurusamy, Reliability Engineering by Tata McGraw-Hill Publishing Company Limited

- 1. Reliability Engineering: Theory and Practice by Alessandro Birolini, Springer Publications.
- 2. An Introduction to Reliability and Maintainability Engineering by Charles Ebeling, TMH Publications.
- 3. Reliability Engineering by Elsayed A. Elsayed, Prentice Hall Publications.

EE601OE: RENEWABLE ENERGY SOURCES (Open Elective - I)

B.Tech. EEE III Year II Sem

Pre-requisites: None

Course Objectives:

- To recognize the awareness of energy conservation in students
- To identify the use of renewable energy sources for electrical power generation
- To collect different energy storage methods
- To detect about environmental effects of energy conversion

Course Outcomes: At the end of the course the student will be able to:

- Understand the principles of wind power and solar photovoltaic power generation, fuel cells.
- Assess the cost of generation for conventional and renewable energy plants
- Design suitable power controller for wind and solar applications
- Analyze the issues involved in the integration of renewable energy sources to the grid

UNIT - I

Introduction

Renewable Sources of Energy-Grid-Supplied Electricity-Distributed Generation-Renewable Energy Economics-Calculation of Electricity Generation Costs –Demand side Management Options –Supply side Management Options-Modern Electronic Controls of Power Systems.

Wind Power Plants

Appropriate Location -Evaluation of Wind Intensity -Topography -Purpose of the Energy Generated -General Classification of Wind Turbines-Rotor Turbines-Multiple-Blade Turbines Drag Turbines -Lifting Turbines-Generators and Speed Control used in Wind Power Energy Analysis of Small Generating Systems.

UNIT - II

Photovoltaic Power Plants

Solar Energy-Generation of Electricity by Photovoltaic Effect -Dependence of a PV Cell Characteristic on Temperature-Solar cell Output Characteristics-Equivalent Models and Parameters for Photovoltaic Panels-Photovoltaic Systems-Applications of Photovoltaic Solar Energy-Economical Analysis of Solar Energy.

Fuel Cells: The Fuel Cell-Low and High Temperature Fuel Cells-Commercial and Manufacturing Issues Constructional Features of Proton Exchange-Membrane Fuel Cells –Reformers-Electro-lyzer Systems and Related Precautions-Advantages and Disadvantages of Fuel Cells-Fuel Cell Equivalent Circuit-Practical Determination of the Equivalent Model Parameters -Aspects of Hydrogen as Fuel.

UNIT - III

Induction Generators

Principles of Operation-Representation of Steady-State Operation-Power and Losses Generated-Self-Excited Induction Generator-Magnetizing Curves and Self-Excitation Mathematical Description of the Self-Excitation Process-Interconnected and Stand-alone operation -Speed and Voltage Control - Economical Aspects.

UNIT - IV

Storage Systems

Energy Storage Parameters-Lead–Acid Batteries-Ultra Capacitors-Flywheels –Superconducting Magnetic Storage System-Pumped Hydroelectric Energy Storage - Compressed Air Energy Storage - Storage Heat -Energy Storage as an Economic Resource.

L	Т	Ρ	С
3	0	0	3

UNIT - V

Integration of Alternative Sources of Energy

Principles of Power Injection-Instantaneous Active and Reactive Power Control Approach Integration of Multiple Renewable Energy Sources-Islanding and Interconnection Control-DG Control and Power Injection.

Interconnection of Alternative Energy Sources with the Grid:

Interconnection Technologies - Standards and Codes for Interconnection - Interconnection Considerations - Interconnection Examples for Alternative Energy Sources.

TEXT BOOKS:

- 1. Felix A. Farret, M. Godoy Simoes, "Integration of Alternative Sources of Energy", John Wiley& Sons, 2006.
- 2. Solanki: Renewable Energy Technologies: Practical Guide for Beginners, PHI Learning Pvt. Ltd., 2008.

- 1. D. Mukherjee: Fundamentals of Renewable Energy Systems, New Age International publishers, 2007.
- 2. Remus Teodorescu, Marco Liserre, Pedro Rodríguez: Grid Converters for Photovoltaic and Wind Power Systems, John Wiley & Sons, 2011.
- 3. Gilbert M. Masters: Renewable and Efficient Electric Power Systems, John Wiley & Sons, 2004.

EE700OE: UTILIZATION OF ELECTRICAL ENERGY (Open Elective - II)

B.Tech. EEE IV Year I Sem	L	т	Р	С
	3	0	0	3

Pre-requisites: Electrical Machines-I and Electrical Machines-II

Course Objectives: Objectives of this course are

- To understand the fundamentals of illumination and good lighting practices
- To understand the methods of electric heating and welding.
- To understand the concepts of electric drives and their application to electrical traction systems.

Course Outcomes: At the end of the course the student will be able to:

- Understand basic principles of electric heating and welding.
- Determine the lighting requirements for flood lighting, household and industrial needs.
- Calculate heat developed in induction furnace.
- Evaluate speed time curves for traction

UNIT - I

Electrical Heating: Advantages and methods of electric heating, resistance heating, induction heating and dielectric heating.

UNIT - II

Electric Welding: Electric welding equipment, resistance welding and arc welding, comparison between AC and DC welding. Electrolysis process: principle of electrolysis, electroplating, metal extraction and metal processing, electromagnetic stirs.

UNIT - III

Illumination: Terminology, Laws of illumination, coefficient of Utilization and depreciation, Polar curves, Photometry, integrating sphere, sources of light, fluorescent lamps, compact fluorescent lamps, LED lamps discharge lamps, mercury vapor lamps, sodium vapor lamps and neon lamps, comparison between tungsten filament lamps and fluorescent tubes. Basic principles of light control, Types and design of lighting scheme, lighting calculations, factory lighting, street lighting and flood lighting.

UNIT - IV

Electric Traction: Systems of electric traction and track electrification- DC system, single phase and 3-phase low frequency and high frequency system, composite system, kando system, comparison between AC and DC systems, problems of single-phase traction with current unbalance and voltage unbalance. Mechanics of traction movement, speed – time curves for different services, trapezoidal and quadrilateral speed – time curves, tractive effort, power, specific energy consumption, effect of varying acceleration and braking, retardation, adhesive weight and braking retardation, coefficient of adhesion.

UNIT - V

Systems of Train Lighting: special requirements of train lighting, methods of obtaining unidirectional polarity constant output- single battery system, Double battery parallel block system, coach wiring, lighting by making use of 25KV AC supply.

TEXT BOOKS:

- 1. H. Partab: Modern Electric Traction, Dhanpat Rai & Co, 2007.
- 2. E. Openshaw Taylor: Utilization of Electric Energy, Orient Longman, 2010.

- 1. H. Partab: Art & Science of Utilization of Electric Energy, Dhanpat Rai & Sons, 1998.
- 2. N.V. Suryanarayana: Utilisation of Electrical power including Electric drives and Electric Traction, New Age Publishers, 1997.

EE701OE: ELECTRIC DRIVES AND CONTROL (Open Elective - II)

LT

3 0 0 3

P C

B.Tech. EEE IV Year I Sem

Pre-requisites: Electrical Machines-I, Electrical Machines-II, Power Electronics Course Objectives:

- To understand basics of electric drives
- To know the dynamics and control of various drive mechanisms
- To know the principle of operations of DC and AC motor drives
- To understand the energy conversion in electric drives

Course Outcomes: At the end of the course the student will be able to:

- Understand the various drive mechanisms and methods for energy conservation.
- Apply power electronic converters to control the speed of DC motors and induction motors.
- Evaluate the motor and power converter for a specific application.
- Develop closed loop control strategies of drives

UNIT-I:

Introduction To Electric Drives: Electrical Drives, Advantages of Electric drives, Parts of Electrical Drives, Electric Motors, Power Modulators, Sources, Control unit, Choice of Electric Drives and Losses.

UNIT-II:

Dynamics Of Electrical Drives: Fundamental torque equation, components of load torque, load characteristics, modified torque equation, speed-torque convention & multi-quadrant operation. Equivalent values of drive parameters, load with rotational motion, loads with translational motion, measurement of moment of inertia, components of load torques, Nature and classification of load torque. Calculation of time and energy loss in transient operation, steady state stability, loads equalization.

Control Of Electrical Drives: Modes of operation, speed control and drive classifications, closed loop control of drives.

UNIT-III:

DC Motor Drives: Starting, Braking, Speed control of DC motors using single phase fully controlled and half controlled rectifiers. Three phases fully controlled and half controlled converter fed DC motor drives. Chopper controlled DC drives.

UNIT-IV:

Induction Motor Drives: Speed control using pole changing, stator voltage control, AC voltage controllers. Variable frequency and variable voltage control from inverter. Different types of braking, dynamic, regenerative and plugging.

UNIT- V:

Energy Conservation in Electric Drives: Losses in Electric drive systems, measurement of Energy conservation in Electric drives. Use of efficient converters, energy efficient operation of drives, Improvement of p.f., improvement of quality of supply, maintenance of motors

TEXT BOOKS:

- 1. G.K. Dubey: Fundamentals of Electric Drives –Narosa Publishers, Second edition, 2007.
- 2. Vedam Subramanyam: Electric Drives Concepts & Applications –Tata McGraw Hill Edn. Pvt. Ltd, Second edition 2011.

- 1. NisitK. De and Prashanta K. Sen: Electric Drives, PHI., 2001
- 2. V. Subrahmanyam: Thyristor Control of Electric Drives, Tata McGraw Hill Edn. Pvt. Ltd, 2010.
- 3. Werner Leonhard: Control of Electric Drives, Springer international edition 2001.
- 4. NisitK. De and Swapan K. Dutta: Electric Machines and Electric Drives, PHI learning Pvt. Ltd 2011

EE800OE: BASICS OF POWER PLANT ENGINEERING (Open Elective - III)

B.Tech. EEE IV Year II-Sem

L	Т	Ρ	С
3	0	0	3

Prerequisite: Power System-I

Course Objectives: To provide an overview of power plants and the associated energy conversion issues

Course Outcomes: Upon completion of the course, the students can understand the principles of operation for different power plants and their economics

UNIT - I

Coal Based Thermal Power Plants: Basic Rankine cycle and its modifications, layout of modern coal power plant, super critical boilers, FBC boilers, turbines, condensers, steam and heating rates, subsystems of thermal power plants, fuel and ash handling, draught system, feed water treatment, binary cycles and cogeneration systems.

UNIT - II

Gas Turbine and Combined Cycle Power Plants: Brayton cycle analysis and optimization, components of gas turbine power plants, combined cycle power plants, Integrated Gasifier based Combined Cycle (IGCC) systems.

UNIT - III

Basics of Nuclear Energy Conversion: Layout and subsystems of nuclear power plants, Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANDU Reactor, Pressurized Heavy Water Reactor (PHWR), Fast Breeder Reactors (FBR), gas cooled and liquid metal cooled reactors, safety measures for nuclear power plants.

UNIT - IV

Hydroelectric Power Plants: Classification, typical layout and components, principles of wind, tidal, solar PV and solar thermal, geothermal, biogas and fuel cell power systems

UNIT - V

Energy, Economic and Environmental Issues: Power tariffs, load distribution parameters, load curve, capital and operating cost of different power plants, pollution control technologies including waste disposal options for coal and nuclear plants.

TEXT BOOKS:

- 1. Nag P.K., Power Plant Engineering, 3rd ed., Tata McGraw Hill, 2008.
- 2. El Wakil M.M., Power Plant Technology, Tata McGraw Hill, 2010.

REFERENCE BOOK:

1. Elliot T.C., Chen K and Swanekamp R.C., Power Plant Engineering, 2nd ed., McGraw Hill, 1998.

EE8010E: ENERGY SOURCES AND APPLICATIONS (Open Elective - III)

LTPC

3 0 0 3

B.Tech. EEE IV Year II-Sem

Pre-requisites: None

Course Objectives:

- To introduce various types of energy sources available.
- The technologies of energy conversion from these resources and their quantitative analysis.
- To know the applications of various energy sources

Course Outcomes: At the end of the course, the student will be able to

- List and generally explain the main sources of energy and their primary applications nationally and internationally
- Understand the energy sources and scientific concepts/principles behind them
- Understand effect of using these sources on the environment and climate
- Describe the challenges and problems associated with the use of various energy sources, including fossil fuels, with regard to future supply and the impact on the environment.
- List and describe the primary renewable energy resources and technologies.
- To quantify energy demands and make comparisons among energy uses, resources, and technologies.
- Collect and organize information on renewable energy technologies as a basis for further analysis and evaluation.
- Understand the Engineering involved in projects utilizing these sources

UNIT - I

Introduction to Energy Science: Scientific principles and historical interpretation to place energy use in the context of pressing societal, environmental and climate issues Introduction to energy systems and resources; Introduction to Energy, sustainability & the environment

UNIT - II

Energy Sources: Overview of energy systems, sources, transformations efficiency, and storage. Fossil fuels (coal, oil, oil-bearing shale and sands, coal gasification) -past, present & future, Remedies & alternatives for fossil fuels - biomass, wind, solar nuclear, wave, tidal and hydrogen;

UNIT - III

Sustainability and Environmental Trade-Offs Of Difference Energy Systems: Possibilities for energy storage or regeneration (Ex. Pumped storage hydro Power projects, superconductor-based energy storages, high efficiency batteries)

UNIT - IV

Energy & Environment: Energy efficiency and conservation; introduction to clean energy technologies and its importance in sustainable development; Carbon footprint, energy consumption and sustainability; introduction to the economics of energy; How the economic system determines production and consumption; linkages between economic and environmental outcomes; How future energy use can be influenced by economic environmental, trade, and research policy.

UNIT - V:

Engineering for Energy Conservation: Concept of Green Building and Green Architecture; Green building concepts (Green building encompasses everything from the choice of building materials to where a building is located, how it is designed and operated) *LEED ratings;* Identification of energy related enterprises that represent the breath of the industry and prioritizing these as candidates; Embodied energy analysis and use as a tool for measuring sustainability. Energy Audit of Facilities and optimization of energy consumption

TEXT BOOKS:

- 1. Boyle, Godfrey (2004), Renewable Energy (2nd edition). Oxford University Press
- 2. Boyle, Godfrey, Bob Everett, and Janet Ramage (Eds.) (2004), Energy Systems and Sustainability: Power for a Sustainable Future. Oxford University Press.

- 1. Schaeffer, John (2007), Real Goods Solar Living Sourcebook: The Complete Guide to Renewable Energy Technologies and Sustainable Living, Gaiam.
- 2. Jean-Philippe; Zaccour, Georges (Eds.), (2005), Energy and Environment Set: Mathematics of Decision Making, Loulou, Richard; Waaub, XVIII.
- 3. Ristinen, Robert A. Kraushaar, Jack J. A Kraushaar, Jack P. Ristinen, Robert A. (2006) Energy and the Environment, 2nd Edition, John Wiley UNDP (2000), Energy and the Challenge of Sustainability, World Energy assessment.
- 4. E H Thorndike (1976), Energy & Environment: A Primer for Scientists and Engineers, Addison-Wesley Publishing Company.
- 5. Related papers published in international journals.

ME600OE: QUANTITATIVE ANALYSIS FOR BUSINESS DECISIONS (Open Elective - I)

B.Tech. Mech. Engg. III Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- Understand the problem, identifying decision variables, objective and constraints
- Formulation of Optimization Problem by constructing Objective Function and Constraints functions
- Learn to select appropriate Optimization Technique for the formulated Optimization Problem
- Understood the procedure involved in the selected Optimization Technique
- Solve the Optimization Model with the selected Optimization Technique

Course Outcomes: At the end of the course, student will be :

- Familiar with issues that would crop up in business
- Able to formulate Mathematical Model to resolve the issue
- Able to select technique for solving the formulated Mathematical Model
- Able to analyze the results obtained through the selected technique for implementation.

UNIT – I:

Introduction and Linear Programming: Nature and Scope of O.R.–Analyzing and Defining the Problem, Developing A Model, Types of models, Typical Applications of Operations Research; Linear Programming: Graphical Method, Simplex Method; Solution methodology of Simplex algorithm, Artificial variables; Duality Principle, Definition of the Dual Problem, Primal - Dual Relationships.

UNIT – II:

Transportation and Assignment Models: Definition and Application of the Transportation Model, Solution of the Transportation Problem, the Assignment Model, & Variants of assignment problems. Traveling Salesman Problem.

UNIT – III:

Replacement Model: Replacement of Capital Cost items when money's worth is **not** considered, Replacement of Capital Cost items when money's worth is considered, Group replacement of low-cost items.

UNIT – IV:

Game Theory and Decision Analysis: Introduction – Two Person Zero-Sum Games, Pure Strategies, Games with Saddle Point, Mixed strategies, Rules of Dominance, Solution Methods of Games without Saddle point – Algebraic, arithmetic methods. Decision Analysis: Introduction to Decision Theory, Steps In the Decision Making, the Different environments In Which Decisions Are Made, Criteria For Decision Making Under Risk and Uncertainty, The Expected Value Criterion With Continuously Distributed Random Variables, Decision Trees, Graphic Displays of the Decision Making Process.

UNIT – V:

Queuing Theory and Simulation: Basic Elements of the Queuing Model, Poisson Arrivals and Exponential Service times; Different Queing models with FCFS Queue disciplne: Single service station and infinite population, Single service station and finite population, Multi service station models with infinite population. **Simulation**: Nature and Scope, Applications, Types of simulation, Role of Random Numbers, Inventory Example, Queuing Examples, Simulation Languages.

TEXTBOOKS:

- 1. Operations Research: Theory and Applications/ J. K. Sharma: / Macmillan, 2008.
- 2. Operations Research/ Er. Prem Kumar Gupta & Dr. D. S. Hira / S. Chana, 2016

- 1. Introduction To Operations Research; Hillier/Lieberman/ TMH, 2008.
- 2. Render: Quantitative Analysis for Management, Pearson, 2009
- 3. Quantitative Analysis for Business Decisions / Sridharabhat/ HPH, 2009.
- 4. Operations Research / R. Panneerselvam/ PHI, 2008.
- 5. Operations Research: An Introduction / Hamdy, A. Taha/ PHI, 2007.
- 6. Quantitative Techniques/ Selvaraj/ Excel, 2009
- 7. Quantitative Techniques for Decision Making / Gupta and Khanna/ PHI, 2009.
- 8. Operations Research/ Ravindran, Phillips, Solberg/ Wiley, 2009.
- 9. Quantitative Methods for Business/ Anderson, Sweeney, Williams/ 10/e, Cengage, 2008

ME700OE: BASIC MECHANICAL ENGINEERING (Open Elective – II) B.Tech. Mech. Engg. IV Year I Sem.

Course Objectives

• To gain an understanding of the basic concepts of various aspects of Mechanical Engineering, fields of application, their merits, demerits, and limitations and applications.

L T P C 3 0 0 3

UNIT - I

Basic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and path functions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open and closed systems – steady and unsteady flow systems - Second law – heat engines and heat pumps – efficiency and Coefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinates – conduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – laws – black body and grey body radiation.

UNIT - II

IC Engines and Air Conditioning: I C engines – classification - construction and working - two and four stroke engines – S I and C.I. engines – powdered coal as an alternative to diesel fuel.

Air conditioning – air cycles, vapour compression cycle – vapour absorption cycle – psychrometric processes. Air cooling – methods and simple cooling load calculations. Systems applicable to mining environment.

UNIT - III

Power Transmission: Gears – nomenclature, laws of gearing, types of gears including rack and pinion, interference, gear trains, calculation of gear ratios, couplings - types, features and applications. Basic concepts in hydraulic & pneumatic power and devices and their utilisation – simple calculations.

UNIT - IV

Kinematics of Machines: Mechanisms – basics – kinematic concepts and definitions – degree of freedom, mechanical advantage – transmission angle – description of common mechanisms – quick return mechanisms, straight line generators, dwell mechanisms, ratchets and escapements – universal joints.

Cams and followers – terminology and definitions, displacement diagrams – uniform velocity, parabolic and simple harmonic motions.

UNIT - V

Rotodynamic and Vibratory Machines: Fans and compressors – types, construction, working principle, characteristics and applications. Single stage and multistage air compressors – intercooling. Simple calculations for output and efficiency.

Vibration – Importance of free and forced vibration. Vibrators and shakers – construction, working principle, applications and limitations.

Note: HMT Data book to be permitted

TEXT BOOKS:

- 1. Elements of Mechanical Engineering/ S.N. Lal/ Cengage Learning
- 2. Theory of Machines and Mechanisms / Shigley J.E., Pennock G.R. and Uicker J. J./ Oxford University Press, 2003.

- 1. Rajput, R.K. Thermal Engineering, 6th Edition, Laxmi Publications, 2007
- 2. Ballaney, P.L. Thermal Engineering, Khanna Publishers, 24th Edition, 2003

ME800OE: NON-CONVENTIONAL SOURCES OF ENERGY (Open Elective - III)

B.Tech. Mech. Engg. IV Year II Sem.

L	Т	Ρ	С
3	0	0	3

Pre-requisites: None

Course Outcomes: At the end of the course, the student will be able to:

- Identify renewable energy sources and their utilization. Understand the basic concepts of solar radiation and analyze the working of solar and thermal systems.
- Understand principles of energy conversion from alternate sources including wind, geothermal, ocean, biomass, biogas and hydrogen.
- Understand the concepts and applications of fuel cells, thermoelectric convertor and MHD generator.
- Identify methods of energy storage for specific applications

UNIT – I

Principles of Solar Radiation: Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power - Physics of the sun, the solar constant, extra-terrestrial and terrestrial solar radiation, Solar radiation on titled surface, Instruments for measuring solar radiation and sun shine, solar radiation data.

Solar Energy Collection: Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

UNIT - II

Solar Energy Storage and Applications: Different methods, sensible, latent heat and stratified storage, solar ponds. Solar applications - solar heating/cooling techniques, solar distillation and drying, photovoltaic energy conversion.

Wind Energy: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria

UNIT - III

Bio-Mass: Principles of Bio-Conversion, Anaerobic /aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of biogas, utilization for cooking, I.C. Engine operation, and economic aspects.

UNIT - IV

Geothermal Energy: Resources, types of wells, methods of harnessing the energy, potential in India. **Ocean Energy** – OTEC, Principles, utilization, setting of OTEC plants, thermodynamic cycles. Tidal and Wave energy: Potential and conversion techniques, mini-hydel power plants, their economics.

UNIT –V

Direct Energy Conversion: Need for DEC, Carnot cycle, limitations, Principles of DEC. Thermoelectric generators, Seebeck, Peltier and Joule Thompson effects, figure of merit, materials, applications, MHD generators, principles, dissociation and ionization, hall effect, magnetic flux, MHD accelerator, MHD engine, power generation systems, electron gas dynamic conversion, economic aspects. Fuel cells, principle, faraday's laws, thermodynamic aspects, selection of fuels and operating conditions.

TEXT BOOKS:

- 1. Renewable Energy Resources / Tiwari and Ghosal / Narosa
- 2. Non- conventional Energy Sources / G.D. Rai/ Khanna Publishers
- 3. Biological Energy Resources/ Malcolm Fleischer & Chris Lawis/ E&FN Spon.

- 1. Renewable Energy Sources / Twidell & Weir
- 2. Solar Power Engineering / B.S. Magal Frank Kreith & J.F. Kreith
- 3. Principles of Solar Energy / Frank Krieth & John F Kreider
- 4. Non-Conventional Energy / Ashok V Desai / Wiley Eastern
- 5. Non-Conventional Energy Systems / K Mittal / Wheeler
- 6. Renewable Energy Technologies / Ramesh & Kumar / Narosa

ME600OE: QUANTITATIVE ANALYSIS FOR BUSINESS DECISIONS (Open Elective – I)

B.Tech. AE III Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- Understand the problem, identifying decision variables, objective and constraints
- Formulation of Optimization Problem by constructing Objective Function and Constraints functions
- Learn to select appropriate Optimization Technique for the formulated Optimization Problem
- Understood the procedure involved in the selected Optimization Technique
- Solve the Optimization Model with the selected Optimization Technique

Course Outcomes: At the end of the course, student will be :

- Familiar with issues that would crop up in business
- Able to formulate Mathematical Model to resolve the issue
- Able to select technique for solving the formulated Mathematical Model
- Able to analyze the results obtained through the selected technique for implementation.

UNIT – I:

Introduction and Linear Programming: Nature and Scope of O.R.–Analyzing and Defining the Problem, Developing A Model, Types of models, Typical Applications of Operations Research; Linear Programming: Graphical Method, Simplex Method; Solution methodology of Simplex algorithm, Artificial variables; Duality Principle, Definition of the Dual Problem, Primal - Dual Relationships.

UNIT – II:

Transportation and Assignment Models: Definition and Application of the Transportation Model, Solution of the Transportation Problem, the Assignment Model, & Variants of assignment problems. Traveling Salesman Problem.

UNIT – III:

Replacement Model: Replacement of Capital Cost items when money's worth is **not** considered, Replacement of Capital Cost items when money's worth is considered, Group replacement of low-cost items.

UNIT – IV:

Game Theory and Decision Analysis: Introduction – Two Person Zero-Sum Games, Pure Strategies, Games with Saddle Point, Mixed strategies, Rules of Dominance, Solution Methods of Games without Saddle point – Algebraic, arithmetic methods. Decision Analysis: Introduction to Decision Theory, Steps In the Decision Making, the Different environments In Which Decisions Are Made, Criteria For Decision Making Under Risk and Uncertainty, The Expected Value Criterion With Continuously Distributed Random Variables, Decision Trees, Graphic Displays of the Decision Making Process.

UNIT – V:

Queuing Theory and Simulation: Basic Elements of the Queuing Model, Poisson Arrivals and Exponential Service times; Different Queing models with FCFS Queue disciplne: Single service station and infinite population, Single service station and finite population, Multi service station models with infinite population. **Simulation**: Nature and Scope, Applications, Types of simulation, Role of Random Numbers, Inventory Example, Queuing Examples, Simulation Languages.

TEXTBOOKS:

- 1. Operations Research: Theory and Applications/ J. K. Sharma: / Macmillan, 2008.
- 2. Operations Research/ Er. Prem Kumar Gupta & Dr. D. S. Hira / S. Chana, 2016

- 1. Introduction To Operations Research; Hillier/Lieberman/ TMH, 2008.
- 2. Render: Quantitative Analysis for Management, Pearson, 2009
- 3. Quantitative Analysis for Business Decisions / Sridharabhat/ HPH, 2009.
- 4. Operations Research / R. Panneerselvam/ PHI, 2008.
- 5. Operations Research: An Introduction / Hamdy, A. Taha/ PHI, 2007.
- 6. Quantitative Techniques/ Selvaraj/ Excel, 2009
- 7. Quantitative Techniques for Decision Making / Gupta and Khanna/ PHI, 2009.
- 8. Operations Research/ Ravindran, Phillips, Solberg/ Wiley, 2009.
- 9. Quantitative Methods for Business/ Anderson, Sweeney, Williams/ 10/e, Cengage, 2008

AE700OE: BASICS OF AERONAUTICAL ENGINEERING (Open Elective – II)

B.Tech. AE IV Year I Sem.

Pre-Requisites: Nil

Course Objectives:

- Fundamental principle of airplane
- Theoretical Aerodynamics
- Aircraft application based on speed

Course Outcomes:

- Basic aerodynamic mechanics
- Effect of flow over wings

UNIT - I

Laws and Definitions: List the SI-units of measurement for mass, acceleration, weight, velocity, density, temperature, pressure, force, wing loading and power. - Define mass, force, acceleration and weight. - State and interpret Newton's Laws. - State and interpret Newton's first law. - State and interpret Newton's second law. - State and interpret Newton's third law.

Explain air density. - List the atmospheric properties that effect air density. - Explain how temperature and pressure changes affect density. - Define static pressure. - Define dynamic pressure. - Define the formula for dynamic pressure. - Apply the formula for a given altitude and speed. - State Bernoulli's equation. - Define total pressure. - Apply the equation to a Venturi. - Describe how the IAS is acquired from the pitot-static system. - Describe the relationship between density, temperature and pressure for air. - Describe the Equation of Continuity. - Define IAS, CAS, EAS, TAS

UNIT - II

Basics About Airflow: Describe steady and unsteady airflow. - Explain the concept of a streamline. - Describe and explain airflow through a stream tube. - Explain the difference between two and three-dimensional airflow.

UNIT - III

Aerodynamic Forces and Moments on Aerofoil: Describe the force resulting from the pressure distribution around an aerofoil. - Resolve the resultant force into the components 'lift' and 'drag'. - Describe the direction of lift and drag. - Define the aerodynamic moment. - List the factors that affect the aerodynamic moment. - Describe the aerodynamic moment for a symmetrical aerofoil. - Describe the aerodynamic moment for a positively and negatively cambered aerofoil. - Forces and equilibrium of forces - Define angle of attack.

UNIT - IV

Shape of an Aerofoil Section: Describe the following parameters of an aerofoil section: - leading edge. - trailing edge. - chord line. - thickness to chord ratio or relative thickness. - location of maximum thickness. - camber line. - camber. - nose radius. - Describe a symmetrical and an asymmetrical aerofoil section.

Wing shape: Describe the following parameters of a wing: - span. - tip and root chord. - taper ratio. - wing area. - wing planform. - mean geometric chord. - mean aerodynamic chord MAC. - aspect ratio. - dihedral angle. - sweep angle. - wing twist: - geometric. - aerodynamic. - angle of incidence.

UNIT - V

Subdivision of Aerodynamic Flow: List the subdivision of aerodynamic flow: - subsonic. - transonic. - supersonic flow. - Describe the characteristics of the flow regimes listed above. - Airplane for different speed and their applications.

L T/P/D C 3 0/0/0 3

TEXT BOOKS:

- 1. Stephen. A. Brandt, "Introduction to Aeronautics: A design perspective" American Institute of Aeronautics & Astronautics, 1997
- 2. Kermode, A.C., "Mechanics of Flight", Himalayan Book, 1997

REFERENCE BOOK:

1. Anderson, J.D., "Introduction to Flight", McGraw-Hill, 1995.

AE800OE: ELEMENTS OF ROCKET PROPULSION (Open Elective – III)

B.Tech. AE IV Year II Sem.

L T/P/D C 3 0/0/0 3

Pre-Requisites: High Speed Aerodynamics

Course Objectives:

- To study the basic principles and applications of rocket propulsion
- To know the choice of propellants and basic performance parameters in chemical propellants and propulsion systems
- To know the electric rocket propulsion and advanced rocket propulsion techniques.

Course Outcomes:

- Working principle of rockets
- Different types of propulsion system

UNIT – I

Fundamentals of Rocket Propulsion: History and evolution of rockets. Rocket equation, Definitions. Performance parameters, Staging and Clustering, Classification of rockets. Rocket nozzle and performance, Nozzle area ratio, conical nozzle and contour nozzle, Under and over expanded nozzles. Flow separation in nozzles, unconventional nozzles. Mass flow rate, Characteristic velocity, Thrust coefficient, Efficiencies, Specific impulse. Numerical problems.

UNIT – II

Chemical Propellants: Molecular mass, specific heat ratio, Energy release during combustion, Stoichiometry & mixture ratio, Criterion for choice of propellant, Solid propellants, requirement, composition and processing. Liquid propellants, energy content, storability, Types and classifications. Numerical problems

UNIT - III

Solid Propulsion Systems: Classifications- Booster stage and upper stage rockets. Hardware components and functions. Propellant grain configuration and applications. Burn rate, burn rate index for stable operation, mechanism of burning, ignition and igniters types. Action time and burn time. Factors influencing burn rates. Thrust vector control. Numerical problems.

UNIT - IV

Liquid Propulsion Systems: Classifications- Booster stage and upper stage rockets. Hardware components and functions. Thrust chamber and its cooling, injectors and types, Propellant feed systems. Turbo pumps. Bi - propellant rockets. Mono propellant thrusters, Cryogenic propulsion system, special features of cryogenic systems. Numerical problems.

UNIT - V

Advance Propulsion Techniques: Hybrid propellants and gelled propellants. Electrical rockets, types and working principle. Nuclear rockets, Solar sail, Concepts of some advance propulsion systems. Numerical problems.

TEXT BOOKS:

- 1. Ramamurthi. K: Rocket propulsion. Macmillan Publishing Co, India. First edition. 2010.
- 2. Hill. P.G. and Peterson. C.R: Mechanics and thermodynamics of propulsion. 2nd edition. Pearson Education. 1999.

REFERENCE BOOK:

 Sutton. G.P. and Biblarz. O.: Rocket propulsion elements. Wiley India Pvt Ltd. 7th edition 2003.

MT600OE: INDUSTRIAL MANAGEMENT (Open Elective - I)

B.Tech. Mechatronics III Year II Sem.

L T P C 3 0 0 3

UNIT-I

Introduction to Management: Entrepreneurship and organization – Nature and Importance of Management, Functions of Management, Taylor's Scientific Management Theory, Fayol's Principles of Management, Maslow's Theory of Human Needs, Douglas McGregor's Theory X and Theory Y, Herzberg's Two-Factor Theory of Motivation, Systems Approach to Management, Leadership Styles, Social responsibilities of Management

UNIT - II

Designing Organizational Structures: Departmentalization and Decentralization, Types of Organization structures – Line organization, Line and staff organization, functional organization, Committee organization, matrix organization, Virtual Organization, Cellular Organization, team structure, boundary less organization, inverted pyramid structure, lean and flat organization structure and their merits, demerits and suitability.

UNIT - III

Operations Management: Objectives- product design process- Process selection-Types of production system(Job, batch and Mass Production),Plant location-factors- Urban-Rural sites comparison- Types of Plant Layouts- Design of product layout- Line balancing(RPW method) Value analysis-Definition-types of values- Objectives- Phases of value analysis- Fast diagram

UNIT - IV:

Work Study: Introduction — definition — objectives — steps in work study — Method study — definition, objectives — steps of method study. Work Measurement — purpose — types of study — stop watch methods — steps — key rating — allowances — standard time calculations — work sampling.

Statistical Quality Control: variables-attributes, Shewart control charts for variables- chart, R chart, – Attributes- Defective-Defect- Charts for attributes-p-chart -c chart (simple Problems), Acceptance Sampling- Single sampling- Double sampling plans-OC curves.

UNIT - V

Job Evaluation: Methods of job evaluation — simple routing objective systems — classification method factor comparison method, point method, benefits of job evaluation and limitations. **Project Management (PERT/CPM):** Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), Identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing. (simple problems)

TEXT BOOKS

- 1. Industrial Engineering and Management/O.P. Khanna/Khanna Publishers.
- 2. Industrial Engineering and Management Science/T.R. Banga and S.C. Sarma /Khanna Publishers.

- 1. Motion and Time Study by Ralph M Barnes! John Willey & Sons Work Study by ILO.
- 2. Human factors in Engineering & Design/Ernest J McCormick /TMH.
- 3. Production & Operation Management /Paneer Selvam/PHI.
- 4. Industrial Engineering Management/NVS Raju/Cengage Learning.
- 5. Industrial Engineering Hand Book/Maynard.
- 6. Industrial Engineering Management I Ravi Shankar/ Galgotia.

MT601OE: NON-CONVENTIONAL ENERGY SOURCES (Open Elective - I)

B.Tech. Mechatronics III Year II Sem.

L T P C 3 0 0 3

UNIT – I

Principles Of Solar Radiation: Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT-II

Solar Energy Collection: Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

Direct Energy Conversion: Need for DEC, Carnot cycle, limitations, principles of DEC. Thermoelectric generators, seebeck, peltier and joul Thomson effects, Figure of merit, materials, applications, MHD generators, principles, dissociation and ionization, hall effect, magnetic flux, MHD accelerator, MHD Engine, power generation systems, electron gas dynamic conversion, economic aspects. Fuel cells, principles, faraday's law's, thermodynamic aspects, selection of fuels and operating conditions.

UNIT-III

Solar Energy Storage And Applications: Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications- solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

Ocean Energy: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics.

UNIT-IV

Wind Energy: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria.

UNIT-V

Bio-Mass: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C. Engine operation and economic aspects.

Geothermal Energy: Resources, types of wells, methods of harnessing the energy, potential in India.

TEXT BOOKS:

- 1. Non-Conventional Energy Sources /G.D. Rai
- 2. Renewable Energy Technologies /Ramesh & Kumar/Narosa

- 1. Renewable energy resources/ Tiwari and Ghosal/Narosa.
- 2. Non-Conventional Energy / Ashok V Desai /Wiley Eastern.
- 3. Non-Conventional Energy Systems / K Mittal/Wheeler
- 4. Solar Energy/Sukhame

MT700OE: INTELLECTUAL PROPERTY RIGHTS (Open Elective - II)

B.Tech. Mechatronics IV Year I Sem.	L	т	Ρ	С
	3	0	0	3

UNIT - I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT - II

Trade Marks: Purpose and function of trade marks, acquisition of trade mark rights, protectable matter, selecting and evaluating trade mark, trade mark registration processes.

UNIT - III

Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT - IV

Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition: Misappropriation right of publicity, False advertising.

UNIT - V

New development of intellectual property: New developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international - trade mark law, copy right law, international patent law, international development in trade secrets law.

TEXT & REFERENCE BOOKS:

- 1. Intellectual property right, Deborah, E. Bouchoux, cengage learning.
- 2. Intellectual property right Unleashing the knowledge economy, prabuddha ganguli, Tata Mc Graw Hill Publishing Company Ltd.

MT701OE: PRINCIPLES OF ENTREPRENEURSHIP (Open Elective - II)

B.Tech. Mechatronics IV Year I Sem.

L T P C 3 0 0 3

UNIT - I

Introduction to Entrepreneurship: Definition of Entrepreneur Entrepreneurial Traits. Entrepreneur vs Manager, creating and starting the venture: sources of new ideas, method of generating ideas, creative problem solving – writing business plan, evaluating business plans. Launching formalities.

UNIT - II

Financing and Managing the new ventures: sources of capital, record keeping, recruitment, motivating and leading teams, financial controls. Marketing and sales controls. E commerce and Entrepreneurship, internet advertising – new venture expansion strategies and issues.

UNIT - III

Industrial Financial Support: schemes and functions of directorate of industries, District industries centre (DICs) Industrial development corporation (IDC), State Financial corporation (SFCs), small scale industries development corporation (SSIDCs) Khadhi and village industries commission (KVIC) Technical Consultancy organisation (TCO), Small industries service institute (SISI), national small industries corporation (NSIC), small industries development bank of india (SIDBI).

UNIT - IV

Production and marketing management: Thrust areas of production management, selection of production techniques, plant utilisation and maintenance, designing the work place, inventory control, material handling and quality control. Marketing functions, market segmentation market research and channels of distribution, sales promotion and product pricing.

UNIT - V

Labour legislation, salient provision of health, safety, and welfare under Indian factories Act, Industrial dispute act, employees state insurance act, workmen's compensation act and payment of bonus act .

TEXT BOOKS:

- 1. Robert Hisrich, & Michael Peters: Entrepreneurship, TMH, 2009.
- 2. Dollinger: Entrepreneurship, Pearson, 2009.

- 1. Vasant Desai, Dynamics of Entrepreneurial Development and Management, Himalaya Publishing House, 2009.
- 2. Harvard Business Review on Entrepreneurship, HBR Paper Back.
- 3. Robert J. Calvin: Entrepreneurial Management, TMH, 2009.
- 4. Gurmeet Naroola: The entrepreneurial Connection, TMH, 2009.
- 5. Bolton & Thompson: Entrepreneurs—Talent, Temperament and Techniques, Butterworth Heinemann, 2009.
- 6. Agarwal: Indian Economy, Wishwa Prakashan 2009.
- 7. Dutt & Sundaram: Indian Economy, S. Chand, 2009.
- 8. B D Singh.: Industrial Relations & Labour Laws, Excel, 2009.
- 9. Aruna Kaulgud: Entrepreneurship Management by, Vikas publishing house, 2009.
- 10. Essential of entrepreneurship and small business management by Thomas W. Zimmerer & Norman M. Searborough, PHI-2009.
- 11. ND Kapoor: Industrial Law, Sultan Chand & Sons, 2009.

MT702OE: BASIC MECHANICAL ENGINEERING (Open Elective - II)

B.Tech. Mechatronics IV Year I Sem.

L T P C 3 0 0 3

Course Objectives: To gain an understanding of the basic concepts of various aspects of Mechanical Engineering, fields of application, their merits, demerits, and limitations and applications.

UNIT - I

Basic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and path functions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open and closed systems – steady and unsteady flow systems - Second law – heat engines and heat pumps – efficiency and Coefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinates – conduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – laws – black body and grey body radiation.

UNIT - II

IC Engines and Air Conditioning: I C engines – classification - construction and working - two and four stroke engines – S I and C.I. engines – powdered coal as an alternative to diesel fuel.

Air conditioning – air cycles, vapour compression cycle – vapour absorption cycle – psychrometric processes. Air cooling – methods and simple cooling load calculations. Systems applicable to mining environment.

UNIT - III

Power Transmission: Gears – nomenclature, laws of gearing, types of gears including rack and pinion, interference, gear trains, calculation of gear ratios, couplings - types, features and applications. Basic concepts in hydraulic & pneumatic power and devices and their utilization – simple calculations.

UNIT - IV

Kinematics of Machines: Mechanisms – basics – kinematic concepts and definitions – degree of freedom, mechanical advantage – transmission angle – description of common mechanisms – quick return mechanisms, straight line generators, dwell mechanisms, ratchets and escapements – universal joints. Cams and followers – terminology and definitions, displacement diagrams – uniform velocity, parabolic and simple harmonic motions.

UNIT - V

Rotodynamic and Vibratory Machines: Fans and compressors – types, construction, working principle, characteristics and applications. Single stage and multistage air compressors – intercooling. Simple calculations for output and efficiency. Vibration – Importance of free and forced vibration. Vibrators and shakers – construction, working principle, applications and limitations.

Note: HMT Data book to be permitted

TEXT BOOKS:

- 1. Rajput, R.K. Thermal Engineering, 6th Edition, Laxmi Publications, 2007
- 2. Ballaney, P.L. Thermal Engineering, Khanna Publishers, 24th Edition, 2003
- 3. Shigley J.E., Pennock G.R. and Uicker J.J. Theory of Machines and Mechanisms, Oxford University Press, 2003.

REFERENCE BOOKS:

1. Domkundwar, Kothandaraman, and Domkundwar. A Course in Thermal Engineering, Dhanpat Raj & Sons, Fifth edition, 2002.

- Yunus A. Cengel. Heat Transfer A Practical Approach Tata Mc Graw Hill 2004.
 Nag, P.K. Engineering Thermodynamics, 3rd Edition, Tata Mc Graw Hill, 2005
- 4. Thomas Bevan. Theory of Mechanics, CBS Publishers and Publishers and Distributers, 1984.

MT800OE: FUNDAMENTALS OF ROBOTICS (Open Elective - III)

B.Tech. Mechatronics IV Year II Sem.	L	т	Ρ	С
	3	0	0	3

UNIT – I

Introduction: Brief history, Classification of robot, Elements of robots joints, links, actuators, and sensors

UNIT – II

Components of the Industrial Robotics: Position and orientation of a rigid body, Homogeneous transformations, Introduction to D-H parameters and its physical significance, Orientation of Gripper, Direct and inverse kinematics serial robots, Examples of kinematics of common serial manipulators.

UNIT – III

Principles of Robot Control: Planning of trajectory, Calculation of a link velocity and acceleration, Calculation of reactions forces, Trajectory-following control.

UNIT – IV

Robot programming: Robot programming methods, Robot programming languages, Requirements of a programming robots system, The robot as a multitasking system: Flow Control, Task Control.

UNIT – V

System integration and robotic applications: Robot system integration, Robotic applications.

TEXT BOOKS:

- 1. Industrial Robotics / Groover M P / Pearson Edu.
- 2. Robot technology fundamentals / James G. Keramas / Cengage Publications

- 1. Introduction to Robotics / John J Craig / Pearson Edu.
- 2. Applied Robotics / Edwin Wise / Cengage Publications.
- 2. Robotics / Fu K S / McGraw Hill.
- 3. Robotic Engineering / Richard D. Klafter, Prentice Hall.
- 4. Robot Analysis and Intelligence / Asada and Slow time / Wiley Inter-Science.
- Robot Dynamics & Control Mark W. Spong and M. Vidyasagar / John Wiley & Sons (ASIA) Pte Ltd.

MT801OE: LINEAR AND NON-LINEAR OPTIMIZATION TECHNIQUES (Open Elective - III)

B.Tech. Mechatronics IV Year II Sem.	L	т	Ρ	С
	3	0	0	3

UNIT - I

Linear Programming: Introduction and need for optimization in engineering design, formulating linear programs, graphical solution of linear programs, special cases of linear programming.

UNIT - II

The Simplex Method: Converting a problem to standard form, the theory of the simplex method, the simplex algorithm, special situations in the simplex algorithm, obtaining initial feasible solution.

UNIT - III

Duality and Sensitivity Analysis: Sensitivity analysis, shadow prices, dual of a normal linear program, duality theorems, dual simplex method. Integer Programming: Formulating integer programming problems, the branch-and-bound algorithm for pure integer programs, the branch-and bound algorithm for mixed integer programs.

UNIT - IV

Non-linear Programming: Introduction to non-linear programming (NLP), Convex and concave functions, NLP with one variable, Line search algorithms, Multivariable unconstrained problems, constrained problems, Lagrange Multiplier, The Karush-Kuhn-Tucker (KKT) conditions, the method of steepest ascent, convex combination method, penalty function, Quadratic programming,

UNIT - V

Dynamic programming: Evolutionary algorithms: Genetic Algorithm, concepts of multiobjective optimization, Markov Process, Queuing Models.

TEXT BOOK:

1. S.S. Rao, Engineering Optimization: Theory and Practice, Wiley & Sons, New Jersey, 2009.

- 1. F.H. Hiller and G.J. Liberman, Introduction to Operations Research, Tata-McGraw-Hill, 2010.
- 2. W.L. Winston, Operations Research: Applications and Algorithm, 4th Edition, Cengage Learning, 1994.
- 3. K. Deb, Optimization for Engineering Design, Prentice Hall, 2013.
- 4. M.C. Joshi and K. M. Moudgalay, Optimization: Theory and Practice, Narosa, 2004.

MT802OE: TOTAL QUALITY MANAGEMENT (Open Elective - III)

Mechatronics IV Year II Sem.	L	Т	Ρ	С
	3	0	0	3

UNIT - I

B.Tech.

Introduction, The concept of TQM, Quality and Business performance, attitude, and involvement of top management, communication, culture and management systems.

Management of Process Quality: Definition of quality, Quality Control, a brief history, Product Inspection vs. Process Control, Statistical Quality Control, Control Charts and Acceptance Sampling.

UNIT - II

Customer Focus and Satisfaction: Process vs. Customer, internal customer conflict, quality focus, Customer Satisfaction, role of Marketing and Sales, Buyer – Supplier relationships.

Bench Marking: Evolution of Bench Marking, meaning of bench marking, benefits of bench marketing, the bench marking procedure, pitfalls of bench marketing.

UNIT - III

Organizing for TQM: The systems approach, organizing for quality implementation, making the transition from a traditional to a TQM organization, Quality Circles, seven Tools of TQM: Stratification, check sheet, Scatter diagram, Ishikawa diagram, paneto diagram, Kepner & Tregoe Methodology.

UNIT - IV

The Cost of Quality: Definition of the Cost of Quality, Quality Costs, Measuring Quality Costs, use of Quality Cost information, Accounting Systems and Quality Management.

UNIT - V

ISO 9000: Universal Standards of Quality: ISO around the world, The ISO9000 ANSI/ASQC Q- 90. Series Standards, benefits of ISO 9000 certification, the third party audit, Documentation ISO9000 and services, the cost of certification implementing the system.

TEXT BOOKS:

- 1. Total Quality Management / Joel E. Ross/Taylor and Francis Limited
- 2. Total Quality Management/P. N. Mukherjee/PHI

- 1. Beyond TQM / Robert L. Flood.
- 2. Statistical Quality Control / E. L. Grant.
- 3. Total Quality Management: A Practical Approach/H. Lal.
- 4. Quality Management/Kanishka Bedi/Oxford University Press/2011.
- 5. Total Engineering Quality Management/Sunil Sharma/Macmillan.

PE600OE: GENERAL GEOLOGY

B.Tech. Petroleum Engg. III Year II Sem.

L T/P/D C 3 0/0/0 3

Prerequisites: None

Course Objective: To expose the students to different geological environments, which relate to petroleum industry

Course Outcome: The student would understand the basics of geology, viz: formation of earth, layers of earth, different types of rocks, formation of sedimentary basins and the micro fossils and their relationship to oil and gas.

UNIT - I

Dimensions of earth, structure, composition and origin of earth-envelops of the Earth- crust, mantle, core. Internal dynamic process- Plate tectonics- continental drift, Earthquake and volcanoes. External dynamic process- weathering, erosion and deposition.

UNIT - II

Fundamental concepts in Geomorphology-geomorphic processes distribution of landforms-drainage patterns –development, Landforms in relation to rocks types, paleochannels, buried channels.

UNIT - III

Geological work of rivers, wind, Ocean and glaciers and the landforms created by them.

UNIT - IV

Origin of igneous, sedimentary and metamorphic rocks. Sedimentary structures-petrographic character of conglomerate, sandstone, shale, limestones.

Introduction to sedimentary basins and deltaic systems. Topographic maps, thematic maps, Topographic and thematic profiles.

UNIT - V

Palaeontology: Introduction to Palaeontology, Fossils and Fossilization. Micropaleontology - Palynology: Distribution of microfossils-Foraminifera, Radiolaria, Conodonts, Ostracodes, Diatoms. Importance of micro fossils in oil exploration.

TEXT BOOK:

1. Engineering Geology, F. G. Bell, 2nd Edition, Butterworth Heimann, 2007.

- 1. Text book of Geology, P. K Mukharjee, The World Press Pvt Ltd., Calcutta, 2005.
- 2. Rutleys Elements of Mineralogy, 27 Ed., N. H. Read, Allen & Unwin Australia 1988.

PE700OE: NATURAL GAS ENGINEERING (Open Elective - II)

B.Tech. Petroleum Engg. IV Year I Sem.

L T/P/D C 3 0/0/0 3

Course Objectives

- To learn and be able to apply the basic quantitative tools of reservoir and production engineering techniques to analyze and/or predict the mechanics of natural gas flow through the reservoir–production-transportation system.
- To understand the importance of evaluating and managing the reservoir-production system of gas reservoirs.
- To familiarize with various principles/ involved in natural gas engineering.

Course Outcomes: The students would be able to

- Understand basic fluid phase behavior, and be able to determine the physical properties of natural gas.
- Able to use volumetric method, material balance equation and decline curves to perform reserves and performance prediction/enhancement of dry and wet gas reservoirs.

UNIT- I

Basics of Natural Gas: Natural Gas Origin-Accumulation-Natural Gas Resources- Natural Gas Composition & Phase Behavior- Natural Gas Properties.

Unique Issues in Natural Gas Exploration, Drilling & Well Completion

UNIT- II

NG Production: Darcy and non-Darcy flow in porous media, Gas well inflow under Darcy flow-Gas well inflow under non-Darcy flow- Horizontal Gas well inflow-Hydraulic fracturing- well deliverability-forecast of well performance and material balance

UNIT- III

Natural Gas Transportation- properties and compressed natural gas. **Natural gas pipelines**- marine compressed natural gas transportation.

UNIT- IV

Liquefied Natural Gas (LNG): LNG liquefaction- LNG carrier Gas to liquids (GTL): GTL process – GTL based on direct conversion of natural gas – GTL based indirect conversion natural gas- GTL Economics

UNIT - V

Underground Natural Gas storage: Types of underground storage- storage measures **Natural gas supply, alternative energy sources and the environment:** Advantages of fossil fuels, energy interchangeability-Regional gas supply potential

TEXT BOOK:

1. Advanced natural gas engineering, Xiuli Wang and Michael Economides, Gulf publishing company, Houston, Texas, 2009.

REFERENCE BOOK:

1. Handbook of Natural Gas Engineering, D. L. Katz, McGraw Hill, 1959.

PE800OE: GREEN FUEL TECHNOLOGIES (Open Elective - III)

B.Tech. Petroleum Engg. IV Year II Sem.

L T/P/D C 3 0/0/0 3

Course Objective: This course is designed with an objective to develop basic understanding of renewable and clean energy bio-fuels and their engineering aspects.

Course Outcomes: The students would learn about the importance of bio-fuels in achieving energy security and minimizing greenhouse gases emissions, the overview of available renewable and alternative clean energy sources like biomass resources, types of bio-fuels.

UNIT- I

Introduction – Plant based biofuels Scenario – Thermo chemical conversion of Biomass to liquids and Gaseous Fuels.

UNIT- II

Bioethanol from Biomass: Production of Ethanol from Molasses – Bioethanol form Starchy Biomass: Production of Starch Saccharifying Enzymes – Hydrolysis and Fermentation. Bioethanol from Lignocellulosic Biomass

UNIT- III

Bioethanol production Technologies and Substrates- Biodiesel Production using Pongamia Pinnata, Jatropha, Palm oil and used oils.

UNIT- IV

Microbial production of Methane- Different Types of Bio-digesters and Biogas Technology in India

UNIT - V

Hydrogen production by Fermentation- Microbial fuel cells

TEXT BOOKS:

- 1. Hand book of plant Based Biofuels, Ashok Pandey, CRC Press. 2009.
- 2. Biofuels Engineering Process Technology, Caye M, Drapcho, Nghiem, Phu Nhuan, Terry H. Walker, McGraw-Hill, 2008.

MM600OE: TESTING OF MATERIALS (Open Elective - I)

B.Tech. (MME) III Year II Semester

Course Objectives:

• To gain and understanding of the response of various metals under the application of stress and/or temperature.

L T P C 3 0 0 3

- To build necessary theoretical back ground of the role of lattice defects in governing both elastic and plastic properties of metals will be discussed.
- Obtain a working knowledge of various hardness testing machines BHN, VHN, RHN.
- Obtain a working knowledge of creep and fatigue and analysis of data.

Course Outcomes: At the end of the course the student will be able to:

- Classify mechanical testing of ferrous and non-ferrous metals and alloys.
- Recognize the importance of crystal defects including dislocations in plastic deformation.
- Identify the testing methods for obtaining strength and hardness.
- Examine the mechanisms of materials failure through fatigue and creep.

UNIT - I

Introduction, Importance of testing Hardness Test: Methods of hardness testing – Brinell, Vickers, Rockwell hardness tests. The Impact Test: Notched bar impact test and its significance, Charpy and Izod Tests, fracture toughness testing - COD and CTOD tests, significance of transition temperature curve.

UNIT - II

The Tension Test: Engineering stress-strain and True stress-strain curves. Tensile properties, conditions for necking. Stress-Strain diagrams for steel, Aluminum and cast iron.

UNIT - III

Fatigue Test: Introduction, Stress cycles, S-N Curve, Effect of mean stress, Mechanism of fatigue failure, Effect of stress concentration, size, surface condition and environments on fatigue.

UNIT - IV

Creep and Stress Rupture: Introduction, The creep curve, Stress-rupture test, Structural changes during creep, Mechanism of creep deformation, theories of creep. Fracture at elevated temperature.

UNIT - V

NDT: Principle, Operation, Advantages and Limitations of Liquid Penetrant, Magnetic Particle, Radiography and Ultrasonic tests.

TEXT BOOKS:

- 1. Mechanical Metallurgy G. E. Dieter, Third edition, published by New York Mc GrawHill, 1986.
- 2. Mechanical behavior Ed. Wulf.

- 1. Mechanical Metallurgy White & Lemay.
- 2. Testing of Metallic Materials A.V.K. Suryanarayana

MM601OE: ALLOY STEELS (Open Elective - I)

L T P C 3 0 0 3

B.Tech. (MME) III Year II Semester

Course objectives:

- Low carbon, Medium carbon and High carbon steels with respect to structure property correlations and strengthening mechanisms with alloy additions.
- Ultra-high strength steels, Stainless steels and Tool steels with respect to heat treatment, properties and applications.

Course Outcomes:

- Ability to understand different types of alloys used in alloy steels.
- Ability to solve different metallurgical problems in alloy steels.
- It has a lot of scope in R&D and in automobile engineering.

UNIT - I

Low-carbon Mild steels: Introduction; cold forming steels, High strength packing steels; HSLA steels; Low-carbon Ferrite pearlite steels – structure property relation-ships, strengthening mechanisms, Formability of HSLA steels.

UNIT - II

Medium- High carbon ferrite-pearlite steels – structure property relationships, Bainitic steels; Low-Carbon bainitic steels-requirements, development and choice of alloying elements, Mechanical properties, microstructure and impact properties; High-Carbon bainitic steels.

UNIT - III

Ultra-high strength steels: Introduction, steels tempered at low temperatures, secondary hardening, thermo- mechanical treatments, rapid austenitizing treatments, structure-property relationships in tempered martensite, cold-drawn pearlite steels, maraging steels.

UNIT - IV

Stainless steels: Classification, Composition, Microstructures, Heat treatment an application.

UNIT - V

Tool steels and Heat resistant steels: Classification, Composition, Micro structure an Heat treatment and application.

TEXT BOOKS:

- 1. Physical Metallurgy and the Design of steels: F. B. Pickering, Applied Science publisher, London, 1978.
- 2. The physical Metallurgy of steels: W. C. Leslie by Hemisphere Publishers Corporation, 1981.

- 1. Alloys Steels Wilson.
- 2. Heat Treatment of steels Rajan & Sharma

MM700OE: ENGINEERING MATERIALS (Open Elective – II)

B.Tech. (MME) IV Year I Semester	L	т	Ρ	С
	3	0	0	3

Course objectives:

- To gain knowledge in applications properties strengthening mechanisms in structural steels and super alloys and stainless steels
- To develop a fundamental understanding of various electrical and electronic materials
- To highlight the importance of bio materials.

Course Outcomes: At the end of the course, student will be able:

- To select and design components based on their properties and requirements.
- Awareness about the electrical and electronic materials
- Knowledge about bio materials like, titanium and stainless steel based.

UNIT - I

Structural Steels: Introduction, Classification: HSLA steels, Dual phase steels, TRIP steels, Maraging steels, HSS steels.

UNIT - II

Superalloys: Introduction, Classification, Applications and properties of Ni, Fe, Co based superalloys and their thermo-mechanical treatments.

UNIT - III

Electrical and Electronic Materials: Introduction, Classification, Applications and properties of Pyro, Piezo, Ferro-electrics, Extrinsic and Intrinsic semiconductors; super conducting materials.

UNIT - IV

Stainless steels: Ferritic, Martensitic, Austenitic stainless steels.

UNIT - V

Bio materials: Introduction, Property requirements for biomaterials, concept of biocompatibility, important bio metallic alloys.

TEXT BOOK:

1. Superalloys-II edited by C.T. SIMS, N.S. Stoloff and W.C. Hagel A Wiley-Inter science publication John Wiley and sons, New York, 1972.

- 1. An Introduction to Materials Science and Engineering, W. D. Callister, John Wiley & Sons (2007).
- 2. Materials Science and Engineering, V. Raghavan, PHI, 2004.

MM7010E: SURFACE ENGINEERING (Open Elective - II)

B.Tech. (MME) IV Year I Semester

L	Т	Ρ	С
3	0	0	3

Course objectives: To understand the need for Surface Engineering and to become familiar with the techniques associated with Surface Engineering

Course Outcomes: After completing this course, the student will be able to:

- Indicate the need for surface engineering
- Indicate the different methods of surface engineering
- Differentiate between the methods used and indicate their relative merits
- Understand aspects associated with industrial applications of surface engineering

UNIT - I

Introduction to surface modification, need for surface modification, surface properties, surface property modification, history of surface modification

UNIT - II

Plating and coating process: concept of coating, types of coatings, properties of coatings, hard facing, anodizing, PVD, CVD, Electro deposition Electro less deposition, hot deposition, hot dipping.

UNIT - III

Thermo-chemical Processes: carburizing, nitriding, carbonitriding, nitro carburizing, Boronising, Plasma nitriding, thermal spraying, Plasma spraying.

UNIT - IV

Thermal Processes: hardening, tempering, laser hardening, laser surface alloying, laser cladding, electro beam hardening.

UNIT - V

General design principles related to surface engineering, design guidelines for surface preparation, surface engineering solution to specific problems.

TEXT BOOK:

1. Introduction to Surface Engineering, P. A. Dearnley, Cambridge University Press, 2017

- 1. K G Budinski, Surface Engineering for wear resistance, Prentice Hall, New Jersey, 1998.
- 2. Surface Engineering, Process fundamentals and applications, Vol I and II, Lecture Notes of SERC school of Surface Engineering.
- 3. Howard E. Boyer (Editor), Case Hardening of Steel, ASM International, metals Park, OH 44073.

MM800OE: HIGH TEMPERATURE MATERIALS (Open Elective – III)

B.Tech. (MME) IV Year II Semester	L	Т	Ρ	С
	3	0	0	3

Course Objectives:

- To learn and design material's microstructure for high temperature application.
- To learn scientific issues related to high temperature such as creep, oxidation and material degradation.

Course outcomes:

- Comprehensive, exposure and understanding of processing, characterization and properties of high temperature materials.
- Exposure to advanced high temperature materials such as super alloys, inter metallic and ceramics.

UNIT - I

Creep, creep resistant steels,

UNIT- II

Fatigue, thermal fatigue, ageing, structural changes, material damage, crack propagation, damage mechanics, life time analysis

UNIT- III

Oxidation, high temperature corrosion, erosion, Super alloys

UNIT- IV

Ceramics for high temperature applications,

UNIT- V

Intermetallics, usage of, spring steels, evaluation of property data extrapolation.

TEXT BOOKS:

- 1. Evans, R.W and Wilshire, B. Creep of metals and alloys, Institute of metals, 1985, London.
- 2. J.R. Davis, ASM Specialty Handbook: Heat- resistant materials, ASM,

- 1. Materials Science and Engineering, 5th Ed. V. Raghavan, PHI Learning Pvt. Ltd., New Delhi, 2009.
- 2. Elements of Materials Science, L.R. Van Vlack,
- 3. Science of Engineering Materials, vols. 1&2, Manas Chanda, McMillan Company of India Ltd.

MM801OE: LIGHT METALS AND ALLOYS (Open Elective - III)

B.Tech. (MME) IV Year II Semester	L	т	Ρ	С
	3	0	0	3

Course Objectives: The aim of this course is to understand the physical metallurgy, properties and applications of light metals.

Course Outcome: Upon successful completion of this course, the student will be able

- To understand the physical metallurgy of Light Alloys
- To understand the structure and mechanical properties of Light Metals and its alloys.
- To decide and select the alloys required for structural, manufacturing, aerospace and other industrial applications

UNIT - I

Aluminum alloys, Classification, Properties and physical metallurgy of Al-Cu alloys, Al-Mg alloys, Al-Zn alloys, Al-Mn alloys and Al-Si alloys. Ternary phase diagrams, Al-Cu-Mg alloys, Al-Si-Mg alloys and Al-Zn-Mg alloys

UNIT - II

Magnesium Alloys: Precipitation hardening in Magnesium Base alloys, Mg-Al-Zn alloys, Corrosion resistance of Mg-alloys

UNIT - III

Commercially Pure Titanium and its properties, applications, Interstitial solid solutions of Titanium, Strengthening mechanisms of Titanium alloys. Alpha Ti alloys, Beta Ti-alloys, Alpha plus Beta Ti alloys, Ti-6Al-4V, Ti-8Al-1Mo-1V, Ti-13V-11Cr-3Al alloys

UNIT - IV

Zinc and its alloys: Classification, properties and applications

UNIT - V

Beryllium alloys: Classification properties and applications. Zirconium alloys: Classification, properties and applications

TEXT BOOKS:

- 1. Heat treatment, structure and properties of Non-Ferrous Alloys- Charlie Brooks, ASM Metals Park, Ohio, USA
- 2. Light alloys: Metallurgy of the Light Metals-I Polmear, D St. John, JF Nie, M Qian 2017

- 1. Introduction to Physical Metallurgy S.H. Avner
- 2. Engineering Physical Metallurgy Y Lakhtin
- 3. ASM Metals Handbook Vol -1 & 2
MN600OE: INTRODUCTION TO MINING TECHNOLOGY (Open Elective - I)

B.Tech. Mining Engg. III Year II-Semester	L	т	Ρ	С
	3	0	0	3
Pre-Requisites: NIL				

Course Objectives: The student is expected to learn the fundamentals of mining engineering so as to encourage multi-disciplinary research and application of other branches of engineering to mining technology

Course Outcomes: Upon completion of the course, the student shall be able to understand various stages in the life of the mine, drilling, blasting and shaft sinking.

UNIT-I

Introduction: Distribution of mineral deposits in India and other countries, mining contributions to civilization, mining terminology,

UNIT-II

Stages in the life of the mine - prospecting, exploration, development, exploitation and reclamation. Access to mineral deposit- selection, location, size and shape (incline, shaft and adit), brief overview of underground and surface mining methods.

UNIT-III

Drilling: Types of drills, drilling methods, electric, pneumatic and hydraulic drills, drill steels and bits, drilling rigs, and jumbos.

UNIT-IV

Explosives: Classification, composition, properties and tests, fuses, detonators, blasting devices and accessories, substitutes for explosives, handling and storage, transportation of explosives.; Rock blasting: Mechanism of rock blasting, blasting procedure, and pattern of shot holes.

UNIT-V

Shaft sinking: Ordinary and special methods, problems, and precautions, shaft supports and lining.

TEXT BOOKS:

- 1. R. P. Pal, Rock blasting effect and operation, A. A. Balkema, 1st Ed, 2005.
- 2. D. J. Deshmukh, Elements of mining technology, Vol. 1, Central techno, 7th Ed, 2001

- 1. C. P. Chugh, Drilling technology handbook, Oxford and IBH, 1st Ed, 1977.
- 2. R. D. Singh, Principles and practices of modern coal mining, New age international, 1st Ed, 1997.

MN601OE: COAL GASIFICATION, CBM & SHALE GAS (Open Elective – I)

B.Tech. Mining Engg. III Year II-Semester	LT	Ρ	С
	3 (0 (3
Pre-Requisites: NIL			

Course Objectives: To specialize the students with additional knowledge on geological and technological factors of coal gasification industry mining methods of underground coal gasification, linkage techniques etc.

Course Outcomes: Student can get specialized in the underground coal gasification concepts, application and future scope in various geomining conditions.

UNIT - I

Underground Coal Gasification (UCG) Concept; Chemistry, conditions suitable for UCG, Principles of UCG., Merits and Demerits.

UNIT - II

UCG Process Component factors: Technology of UCG, opening up of coal seam for UCG.

UNIT - III

Mining methods of UCG: Chamber method, Stream method, Borehole procedure method, Blind bore hole method.

UNIT - IV

Non-Mining methods of UCG: Level seams, Inclined seams.

UNIT - V

Linkage Techniques: Pekcolation linkage, Electro linkage, Boring linkage, compressed-air-linkage, Hydraulic fracture linkage. Future Scope and Development: Innovations.

TEXT BOOKS:

- 1. Underground Coal Mining Methods J.G. SINGH
- 2. Winning and Working Coal in India Vol.II- R.T. Deshmukh and D.J. Deshmukh.

REFERENCE BOOK:

1. Principles and Practices of Modern Coal Mining - R.D. SINGH

MN700OE: HEALTH & SAFETY IN MINES (Open Elective - II)

B.Tech. Mining Engg. IV Year I-Semester	L	т	Р	С
	3	0	0	3
Pre-Requisites: NIL				

Course Objectives: To brief mining students in health and safety engineering concepts, causes of accident, training, human behavioural approach in safety etc.

Course Outcomes: student will gain knowledge and able to understand the importance of health and safety including the role of safety risk assessment in mining industry

UNIT- I

Introduction to accidents, prevention, health and safety in industry: Terminology, reason for preventing accidents – moral and legal. Safety scenario in Indian mines, Accidents in Indian mines, Measurement of safety performance. Classification of accidents as per Mining legislation/law and general classification of accidents.

UNIT- II

Causes and preventive measures of accidents in underground and opencast mines i.e., due to fall of roof and sides, transportation of machinery, haulage and winding, drilling and blasting, movement of machinery in opencast mines and electricity etc., ; accident analysis and report, cost of accidents, statistical analysis of accidents and their importance for promotion of safety.

UNIT- III

System engineering approach to safety, techniques used in safety analysis, generic approach to loss control within mining operations. Concept of ZAP and MAP.

UNIT- IV

Risk management, Risk identification, Risk estimation and evaluation, Risk minimization techniques in mines. Risk analysis using FTA, HAZOP, ETA etc; health risk assessment and occupational diseases in mining.

UNIT- V

Development of safety consciousness, publicity and propaganda for safety; training of workmen, Human Behavioral approach in safety, safety polices and audio-visual aids, safety drives campaigns, safety audit. Safety management and organization; Internal safety organization

TEXT BOOKS:

- 1. occupational Safety and Health in Industries and Mines by C.P. Singh.
- 2. S.K. Das, Mine Safety and Legislation. Lovely Prakashan, Dhanbad, 2002.

- 1. N.J. Bahr, System Safety Engineering and Risk Assessment: A Practical Approach, Taylor and Francis, NY, 1997.
- 2. Indian Mining Legislation A Critical Appraisal by Rakesh & Prasad.

MN701OE: MATERIAL HANDLING IN MINES (Open Elective - II)

B.Tech. Mining Engg. IV Year I-Semester

L T P C 3 0 0 3

Pre-Requisites: NIL

Course Objectives:

- To introduce the basic principles in material handling and its equipment
- To study the conveyor system and its advancement

Course Outcomes: The students will get exposure towards the material handling methods and systems and its principle to convey the minerals or materials from mines, plants and workshops.

UNIT - I

Bulk Handling Systems: Basic principles in material handling exclusive to mining industry and its benefits. Classification of material handling equipment. Current state of art of bulk handling materials in mining in the world and Indian scenario; Selection of suitable types of systems for application. Stacking, blending, reclaiming and wagon loading, machinery and systems used at the stack yards; stock piles, silos, bunkers – their design, reclamation from them, various types of weigh bridges. Segregation - size wise and grade wise, Railway sidings.

UNIT - II

Short Conveyors and Haulage Systems: Roller conveyor, overhead conveyor, screw conveyor, auger conveyor, apron feeder, bucket elevators, scraper haulage, conveyors in steep gradient, Armoured face conveyor, Off-highway Trucks, haul roads, In-pit crushers and modular conveyors, electric trolley assisted haulage, shuttle cars, skip hoist, winders, LHD's, pneumatic conveying, hydraulic transport.

UNIT - III

Belt Conveyor System: Design, capacity, calculations with respect to the size, speed, troughing, power requirement, tension requirement, belt selection, factor of safety; developments in the design, of various components of belt conveyor systems such as; structures, rollers, gear boxes and motors, drums and pulleys, belting, ancillary components and safety gadgets.

UNIT - IV

New Types of Belt Conveyor Systems: Curved conveyors, cable belts, pipe conveyors, rock belts – mine-run-rock conveyor, steel belt conveyors, steel slot conveyor, chain belt conveyors, etc., and other new developments, stackers and reclaimers, High Angle Conveyors (HAC); New inventions in HAC , Mobile or fixed installations; Woven wire belts, En Masse conveyor, Vibrating conveyor, gravity bucket conveyor.

UNIT - V

Material Handling in Mines, Plants and Workshops: Mobile cranes, derrick cranes, pillar cranes, tower cranes, radial cranes, bridge cranes, fork lifters, overhead gantry material handling in workshops. Mineral handling in dimensional stone quarries, Mineral handling plants (coal, etc.) Locomotives, rail tracks, rail cars, railways wagons; Aerial ropeways, gravity ropeways; Containers and shipping; Rope haulage - different types.

TEXT BOOKS:

- 1. Allegri (Sr.), T.H., Material Handling Principles and Practices, CBS Publishers and Distributors, Delhi, 1987.
- 2. Hustrulid, W., and Kuchta, M. Open Pit Mine Planning & Design, Vol. 1, Fundamentals, Balkema, Rotterdam, 1998.

- 1. Kennedy, B.A., Surface Mining 2nd Edition, SME, New York, 1990.
- 2. Deshmukh, D.J., Elements of Mining Technology, Vol.I, II and III, EMDEE Publishers, Nagpur, 1979.
- 3. Peng, S.S., and Chiang, H.S., Longwall Mining, John Wiley and Sons, New York, 1984.
- 4. Hartman, H.L., (Ed.), SME Mining Engg. Handbook Vol.I and II, Society for Mining, Metallurgy, and Exploration, Inc., Colorado, 1992.

MN800OE: SOLID FUEL TECHNOLOGY (Open Elective - III)

B.Tech. Mining Engg. IV Year II-Semester	L	Т	Ρ	С
	3	0	0	3
Pre-Requisites: NIL				

Course Objectives: Understand coal formation, properties, and their evaluation along with various issues of coal washing

Course Outcomes: Students can understand the fundamentals of Processes of formation of coal, properties and evaluation and coal preparation and washability characteristics of coal

UNIT- I

Introduction: Processes of formation of coal, Theories of origin of coal, Eras of coal formation, Indian Coalfields and its subsidiaries: Occurrence and distribution, coal bearing formations, coal type and rank variation, Characteristics of major coalfields, Coal production from different sectors.

UNIT- II

Coal petrography: Macro and micro lithotypes, Composition of macerals, application of coal petrography, Mineral matter in coal: Origin and chemical composition, Impact of mineral matter in coal process industry.

UNIT- III

Coal properties and their evaluation: proximate and ultimate analysis, calorific value, crossing and ignition point temperature, plastic properties (free swelling index, Caking index, Gray King Low Temperature Assay, Roga index, plastometry, dilatometry).

UNIT- IV

Physical properties like specific gravity, hard groove grindability index, heat of wetting, crossing point temperature of coal, Behavior of coal at elevated temperatures and products of thermal decomposition, Classification of coal - International and Indian classification, grading of Indian coals.

UNIT- V

Coal Washing: Principles, objectives, coal preparation, Washability characteristics; Selection, testing, storage and utilization of coking and non-coking coal, Use of coal by different industries.

TEXT BOOKS:

- 1. S. Sarkar, Fuels and Combustion, Orient Longman Private Ltd., 2nd edition, 1990.
- 2. O. P. Gupta, Elements of Fuels, Furnaces and Refractories, Khanna Publication, 3rd Edition, 1996.

- 1. M. A. Elliot, Chemistry of Coal Utilization, Wiley, 1981.
- 2. D. Chandra, R. M. Singh, and M. P. Singh, Text Book of Coal, Tara Book Agency, 2000.

MN801OE: REMOTE SENSING AND GIS IN MINING (Open Elective - III) B.Tech. Mining Engg. IV Year II-Semester L T P

Pre-Requisites: NIL

Course Objectives: To introduce with basic concept of with remote sensing process, Geographical Information System and applications in mining, and modern trends of GIS in various natural resources and engineering applications.

С

0 3

3 0

Course Outcomes: In the present scenario, remote sensing and GIS application in mining plays important role. Details of the course enable the student to understand basic concept of remote sensing and its process to acquire data, digital Image processing system, and various application in mining.

UNIT- I

Remote Sensing Process: Introduction to Remote Sensing, data acquisition and processing, sensor systems, applications, Electromagnetic Radiation (EMR) and its characteristics, Radiation principles, Planck's Law, Stefan's law, properties of solar radiant energy, atmospheric windows.

UNIT- II

Physical Basis of Remote Sensing: Interaction in the atmosphere, nature of atmospheric inter action, atmospheric effects of visible, near infrared thermal microwave wavelengths, interaction at ground surface and, interaction with soils and rocks, effects of soil moisture, organic matter, particles, size and texture, interaction with vegetation, spectral characteristics of individual leaf, vegetation canopies, effect of leaf pigments, cell structure, radiation geometry.

UNIT- III

Platform and Sensors: Multi concept in remote sensing, general requirements of a platform, balloon aircraft, satellite platforms sun synchronous orbits, sensors for visible near infrared wavelengths, profilers, images, scanners, radiometers, optical mechanical and pus h button scanners, spectral, spatial, radiometric and temporal resolution, IFOV, FOV, geometri c characteristics of scanners, V/H ratio, comparison of satellite/ aerial platforms and sensors and remote sensing data products, land sat and TM, SPOT, IRS, ERS; applications in mining.

UNIT- IV

Visual & Digital Image Processing: Remote Sensing Data Products, Elements of visual Image Interpretations, Generation of Thematic Maps, Digital Image Processing System, Image Enhancement, Image Transformation, Image Classification.

UNIT- V

Geographical Information System: Difference between image processing system geographical system (GIS), utility of GIS, various GIS packages and their salient features, essential components of a GIS, scanners and digitizers, raster and vector data, storage, hierarchical data, network systems, relational database, data management, conventional database management systems, spatial database management, data manipulation and analysis, reclassification and aggregation, geometric and spatial operation on data management and statistical modeling, Applications and Modern Trends of GIS in various natural resources and mining applications.

TEXT BOOKS:

- 1. B. Bhatta Remote Sensing and GIS.
- 2. T.M. Lillensand and R.W. Keifer Remote Sensing and Image Interpretation.

REFERENCE BOOK:

1. P.J. Curren- Principles of Remote Sensing R. C. Gonzalez, R. E. Woods, Digital Image Processing.