JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M.PHARMACY (PHARMACEUTICAL ANALYSIS)

R19 COURSE STRUCTURE AND SYLLABUS

Effective from Academic Year 2019-20 Admitted Batch

I YEAR I Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core-I</td>
<td>Modern Pharmaceutical Analytical Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core-II</td>
<td>Pharmaceutical and Food Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-I</td>
<td>1. Advanced Pharmaceutical Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Drug Regulatory Affairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Phytochemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Elective-II</td>
<td>1. Quality control and Quality Assurance</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Cosmetics and Cosmeceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Stability of Drugs and Dosage forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Methodology & IPR</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory-I</td>
<td>Modern Pharmaceutical Analytical Techniques Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory-II</td>
<td>Pharmaceutical and Food Analysis Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Audit - II</td>
<td>Audit course - I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td>0</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

I YEAR II Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core-III</td>
<td>Advanced Instrumental Analysis I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core-IV</td>
<td>Modern Bio-analytical Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-III</td>
<td>1. Pharmaceutical Validation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Herbal Cosmetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Pharmacoepidemiology and Pharmacoeconomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Elective-IV</td>
<td>1. Advanced Instrumental Analysis - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Nutraceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Clinical Research and Pharmacovigilance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory-III</td>
<td>Advanced Instrumental Analysis I Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory-IV</td>
<td>Modern Bio-analytical Techniques Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Mini Project with Seminar</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Audit - II</td>
<td>Audit Course - II</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td>0</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>
II YEAR I Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional</td>
<td>1. Biostatistics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Elective-V</td>
<td>2. Scale up and Technology Transfer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Production Area Design and Packaging Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective</td>
<td>Open Elective</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Dissertation Work Review - II</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6</td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation</td>
<td>Dissertation Work Review - III</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Dissertation Viva-Voce</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

For Dissertation Work Review - I, Please refer 7.8 in R19 Academic Regulations.

Audit Courses I & II:

1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technological Learning
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by Yoga
8. Personality Development through Life Enlightenment Skills
MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (Professional Core - I)

Course Objective: The course is designed to impart the knowledge in the field of Pharmaceutical Analysis. The various modern analytical techniques like UV-Visible, IR, NMR, Mass, GC, HPLC, different chromatographic methods and other important topics are taught to enable the students to understand and apply the principles involved in the determination of different bulk drugs and their formulation. In addition to the theoretical aspects, the basic practical knowledge relevant to the analysis is also imparted.

Course Outcome: The appreciable knowledge will be gained by the students in the Modern Analytical Techniques and can apply the theories in the Analysis of various bulk drugs and their formulations. The students will also be in a position to apply their knowledge in developing the new methods for the determination and validate the procedures.

UNIT I
Introduction to chromatography and classification of chromatographic methods based on the mechanism of separation
a. Column Chromatography: Adsorption and partition, theory, preparation, procedure and methods of detection
b. Thin Layer Chromatography: Theory, preparation, procedures, detection of compounds
c. Paper Chromatography: Theory, different techniques employed, filter papers used, qualitative and quantitative detection
d. Counter – current extraction, solid phase extraction techniques, gel filtration

UNIT II
b. HPLC: Basic parameters, Principles and instrumentation, solvents and columns used, Operational modes, detection and applications of HPLC
c. HPTLC: Theory and principle, instrumentation, elution techniques and pharmaceutical applications

UNIT III
a. UV-Visible spectroscopy: Introduction, electromagnetic spectrum, absorbance laws and limitations, instrumentation-design and working principle, chromophore concept, auxochromes, Wood-Fisher rules for calculating absorption maximum, applications of UV-Visible spectroscopy
b. IR spectroscopy: Basic principles - Molecular vibrations, vibrational frequency, factors influencing vibrational frequencies, sampling techniques, instrumentation, interpretation of spectra, FT-IR, theory and applications

UNIT IV
Mass spectroscopy: Theory, ionization techniques: electron impact ionization, chemical ionization, field ionization, fast atom bombardment, plasma desorption, fragmentation process: types of fission, resolution, GC/MS, interpretation of spectra and applications for identification and structure determination.

UNIT V
NMR: Theory, instrumentation, chemical shift, shielding and deshielding effects, splitting of signals, spin-spin coupling, proton exchange reactions, coupling constant(J), nuclear overhauser effect (NOE), 13C NMR spectra and its applications, 2D-NMR, COSY and applications in pharmacy.

REFERENCES:
1. Instrumental Methods of Chemical Analysis by B.K Sharma
5. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel
6. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
7. Organic Chemistry by I. L. Finar
8. Organic spectroscopy by William Kemp
9. Quantitative Analysis of Drugs by D. C. Garrett
10. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
12. HPTLC by P.D. Seth
13. Indian Pharmacopoeia 2007
14. High Performance thin layer chromatography for the analysis of medicinal plants by Eike Reich, Anne Schibli
15. Introduction to instrumental analysis by Robert. D. Braun
Course Objective: This course is designed to impart knowledge on analysis of food constituents and finished food products. The course includes application of instrumental analysis in the determination of pesticides in variety of food products.

Course Outcome: At completion of this course student shall be able to understand various analytical techniques in the determination of
- Food constituents
- Food additives
- Finished food products
- Pesticides in food
- Pharmaceuticals (API & Dosage forms)
- And also student shall have the knowledge on food regulations and legislations

UNIT - I
a. Carbohydrates: Classification and properties of food carbohydrates, General methods of analysis of food carbohydrates,
b. Proteins: Chemistry and classification of amino acids and proteins, Physico-Chemical properties of protein and their structure, general methods of analysis of proteins and amino acids

UNIT - II
a. Lipids: Classification, general methods of analysis, refining of fats and oils; hydrogenation of vegetable oils, Determination of adulteration in fats and oils.
b. Vitamins: Classification of vitamins, methods of analysis of vitamins, Principles of microbial assay of vitamins of B-series

UNIT - III
Probiotics: Definition, history, importance, mode of action, identification advantages and disadvantages of probiotics. Applications of Probiotics

UNIT - IV
Definition, classification and principles and procedures involved in the quantitative determination of drugs from each category of both API and dosage forms (IP) of the following
a. Analgesics & Antipyretics
b. Antihypertensives
c. Antihistamines
d. Alkaloids
e. Antibiotics
f. Diuretics

UNIT - V
a. General Analytical methods for milk, milk constituents and milk products like ice cream, milk powder, butter, margarine, cheese including adulterants and contaminants of milk.
b. Analysis of fermentation products like wine, spirits, beer and vinegar.
 - Pesticides in food
 - And also student shall have knowledge in food regulations and legislations

TEXT BOOKS:
4. Analysis of Food constituents – Multon, Wiley VCH.
5. Dr. William Horwitz, Official methods of analysis of AOAC International

REFERENCE BOOKS:
1. Remington's Pharmaceutical Sciences by Alfonso and Gennaro
4. Indian Pharmacopoeia 2012
Course Objective: The principles and procedures for the determination of various pharmaceutical bulk drugs and their formulations belonging to different categories are discussed in detail. The applications of the important reagents like MBTH, FC, PDAB etc. in the determination of the pharmaceuticals are also discussed.

Course Outcome: The quantitative determination of various organic compounds is clearly understood. The spectral analysis, dissolution parameters and microbial assays are also learned.

UNIT I
Principles and procedures involved in the determination of the official compounds in IP with the following analytical techniques
A. Non-aqueous
B. Oxidation-reduction
C. Complexometric
D. Diazotization methods
E. Neutralization
F. Acid – Base

UNIT II
A detailed study of the principles and procedures involved in the quantitative determination of the following organic functional groups
A. Amines
B. Esters
C. Carbonyl compounds
D. Hydroxy and carboxyl
E. Amino Acids

UNIT III

b. Principles and procedures involved in using the following reagents in the determination of pharmaceutical dosage forms official in IP
a. MBTH (3-methyl-2-benzothiazolone hydrazone)
b. F.C. Reagent (Folin-Ciocalteu)
c. PDAB (para-Dimethyl Amino Benzaldehyde)
d. 2, 3, 5 - triPhenyltetrazolium salt
e. 2,6 di-ChloroquinoneChlorimide
f. N - (1-naphthyl) ethylenediaminedihydrochloride (B.M. Reagent)
g. Carr – Price Reagent
h. 2,4 - DNP

UNIT - IV
a. Analysis of Excipients: Tests related to excipients such as bulk density, tapped density, particle size distribution, pH, moisture content, viscosity (dynamic), loss on drying, ash content, conductivity.
b. Excipients of interest: Disintegrating agents, binders, emulsifiers, viscosity modifiers and preservatives including preservative challenge test.

UNIT-V
a. Dissolution Tests: Types of Dissolution apparatus, dissolution test requirements for immediate release, delayed release, extended release dosage forms, coated, uncoated, enteric coated, gelatin capsules etc.
b. **Microbiological assays and Biological tests:** Antimicrobial effectiveness testing, microbial limit tests, sterility test. Antibiotics-microbial assays, bacterial endotoxins test.

TEXT BOOKS:
1. Pharmaceutical Chemistry by Becket and Stanlake
2. Pharmaceutical Analysis by Higuchi, Bechmman and Hassan
3. Instrumental Methods of Chemical Analysis By B.K. Sharma
4. A Text Book of Pharmaceutical Analysis by Kenneth A. Conners

REFERENCES:
1. Remington's Pharmaceutical Sciences by Alfonso and Gennaro
2. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P.D. Sethi
3. Indian Pharmacopoeia 2010
4. Journals (Indian Drugs, IJPS etc.)
Course Objective: The topics which are present in the Drug regulatory affairs are very much useful which increases the knowledge regarding the regulatory aspects in the pharmaceutical industries.

Course Outcome:
- Students will come to know the different competent regulatory authorities globally.
- Students be aware of technical aspects pertaining to the marketing authorization application (MAA)
- The regulatory guidelines and directions framed by the regulatory authorities will be helpful to place the drug products in market for marketing approvals.

UNIT I
Drug Regulatory Aspects (India)
1. Indian drug regulatory authorities, Central and State regulatory bodies (FDA)
2. Drugs and Cosmmetics Act and Rules with latest Amendments (Selective)
3. Special emphasis – Schedule M and Y
4. New drugs – Importation, Registration, development, Clinical Trials, BE NOC & BE studies
5. Various Licences – Test Lic., Import lic., for testing of drugs and API’s, Manufacturing Contract and Loan licence manufacturing.

UNIT II
Good Manufacturing Practices (GMP)
1. Indian GMP certification, WHO GMP certification.
2. ICH guidelines for stability testing and other relevant ones (Q1-Q10)
3. Export permissions and manufacturing for semi-regulated countries
4. Understanding of the plant layouts with special emphasis on the environment & safety (HVAC, Water Systems, Stores Management, Effluent etc.)
5. Quality Assurance and Qulaity Control – Basic understanding for in-built quality.

UNIT III
A detailed study of regulatory aspects that affect drug product design, manufacture and distribution in a developed country such as USA and in a developing country such as Brazil, Hatch Waxmann Act; Bolar Provisions and other FDA Regulations. Regulatory aspects of pharmaceutical and bulk drug manufacture, regulatory drug analysis.

UNIT IV
Documentation related to manufacturing, cleaning methods, retention samples and records, quality control, batch release documents, distribution records, complaints and recalls. Quality, safety and legislation for cosmetic products and herbal products.

UNIT V
Governing Regulatory Bodies across the globe.
Country Authority Submission
a. U.S Food & Drug Administration USDMF
b. Canada Therapeutic Product Directorate DMF
c. Europe
 1) European Medicines Agency (EMEA/ National Authorities) EDMF
 2) European Directorate for Quality of Medicines CEP/COS & Health Care Products.
3) MHRA – Medicines and Health Care Products Regulatory Agency
 d. Product Filing
 e. Responding Regulatory Deficiencies
 f. Final Approval Procedure
Preparation, review and submission of Drug Master Files to Regulatory Authorities as per their specific requirements.

TEXT AND REFERENCE BOOKS:
1. Original laws published by Govt. of India.
3. Laws of Drugs in India by Hussain.
5. Pharmaceutical Regulatory Affairs - Selected Topics, CVS Subramanyam and J Thimmasetty, Vallabh Prakashan Delhi - 2013
Course Objective: Helps the students to get exposed to natural product drug discovery and to perform quantitative and qualitative evaluation of herbal extracts. To understand the chemistry of important phyto constituents of different categories.

Course Outcome: On the basis of chemistry data of phytoconstituents students will acquire knowledge on various types of phytoconstituents present in the plants.

UNIT I
Biosynthetic pathways and Radio tracing techniques: containing drugs:
 a) Methods of Biogenetic Investigations, detailed study of isotropic tracer techniques.
 b) Study of Biosynthetic pathways of of following phyto-pharmaceuticals: Atropine, Morphine, Cardiac glycosides and Flavonoids.

UNIT II
Drug discovery and development: Approaches to discovery and development of natural products as potential new drugs. Sourcing and archiving Natural products for discovery, evaluating natural products for therapeutic properties, Identifying the biologically active Natural products, the lead structure selection process and Optimization with suitable examples from the following source: artesmin, andrographolides.

UNIT III
a) Extraction/Isolation methods for specific Phytochemical groups, Choice of solvents and Interfering compounds for general Isolation and purification of desired phytoconstituents.
b) Recent sophisticated extraction techniques like: Super critical fluid extraction and Ultra-sonic extraction. Separation of phytoconstituents by Vacuum and Flash column chromatography.

UNIT IV
Sources, Chemical structure, Identification tests, mechanism of action SAR, uses of the following phyto-pharmaceuticals:
 a) Atropine, caffeine, Morphine and brief account on its derivatives and analogues
 b) Camptothecin, Digoxin
 c) Taxol, Podophyllotoxin

UNIT V
a. Natural colorants: Biological Source, colouring principles, chemical nature and usage of the following Annatto, Cochineal, Caramel, Henna, Indigo, Madder, Saffron, Turmeric
b. Flavours and Perfumes: Sandal wood oil, Orange oil, Lemon oil, Palmarosa oil, Geranium oil.

Reference books
1. Phytochemical methods of chemical analysis by Harbone
2. Modern methods of plant analysis- peach & M.V. Tracey Vol. 1 to VII
3. Pharmacognosy & Phytochemistry of medical plants by Jean Brunton
4. Thin layer chromatography by Stahl
5. Chemistry of natural products by Atur Rahman
6. Comprehensive Medicinal Chemistry, Vol 1-6, Elsevier Publication
7. Medicinal Chemistry Drug Discovery by Donald J, Abraham,
8. Plant drug analysis by Wagner
9. Clarke’s isolation & identification of drugs by AC Mottal
10. Chromatography of Alkaloids by Varpoorte Swendson
11. Jenkins Quantitative pharmaceutical chemistry by AN Kenwell
12. Standardization of botanicals by V. Rajpal Vol 1 & 2
13. Medicinal chemistry and drug discovery by Burger’s
15. Pharmacognosy and phytochemistry by Biren Seth
16. Herbal Perfumes and cosmetics by Panda
17. Herbal Drug Technology by SS Agarwal
18. Pharmacognosy and Phytochemistry by VD Rangari.
QUALITY CONTROL AND QUALITY ASSURANCE (Professional Elective - II)

Course Objective: This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It covers the important aspects like cGMP, QC tests, documentation, quality certifications, GLP and regulatory affairs.

Course Outcome: Upon completion of this course the student should be able to
- Understand the cGMP aspects in a pharmaceutical industry
- To appreciate the importance of documentation
- To understand the scope of quality certifications applicable to
- Pharmaceutical industries
- To understand the responsibilities of QA & QC departments.

UNIT – I
Introduction: Concept and evolution and scopes of Quality Control and Quality Assurance, Good Laboratory Practice, GMP, Overview of ICH Guidelines - QSEM, with special emphasis on Qseries guidelines. Good Laboratory Practices: Scope of GLP, Definitions, Quality assurance unit, protocol for conduct of non-clinical testing, control on animal house, report preparation and documentation. CPCSEA guidelines.

UNIT - II
cGMP guidelines according to schedule M, USFDA (inclusive of CDER and CBER) Pharmaceutical Inspection Convention (PIC), WHO and EMEA covering: Organization and personnel responsibilities, training, hygiene and personal records, drug industry location, design, construction and plant lay out, maintenance, sanitation, environmental control, utilities and maintenance of sterile areas, control of contamination and Good Warehousing Practice.

UNIT - III
Analysis of raw materials, finished products, packaging materials, in process quality control (IPQC), Developing specification (ICH Q6 and Q3), purchase specifications and maintenance of stores for raw materials. In process quality control and finished products quality control for following dosage forms in Pharma industry according to Indian, US and British pharmacopoeias: tablets, capsules, ointments, suppositories, creams, parenterals, ophthalmic and surgical products (How to refer pharmacopoeias).

UNIT - IV

UNIT - V
Manufacturing operations and controls: Sanitation of manufacturing premises, mix-ups and cross contamination, processing of intermediates and bulk products, packaging operations, IPQC, release of finished product, process deviations, charge-in of components, time limitations on production, drug product inspection, expiry date calculation, calculation of yields, production record review, change control, sterile products, aseptic process control, packaging, reprocessing, salvaging, handling of
waste and scrap disposal. Introduction, scope and importance of intellectual property rights. Concept of trade mark, copyright and patents.

REFERENCE BOOKS:

7. ICH guidelines
8. ISO 9000 and total quality management
14. Packaging of Pharmaceuticals.
15. Schedule M and Schedule N.
COSMETICS AND COSMECEUTICALS (Professional Elective - II)

Course Objectives: Upon completion of the course, the students shall be able to understand
- Key ingredients used in cosmetics and cosmeceuticals.
- Key building blocks for various formulations.
- Current technologies in the market
- Various key ingredients and basic science to develop cosmetics and cosmeceuticals
- Scientific knowledge to develop cosmetics and cosmeceuticals with desired safety, stability, and efficacy.

Course Outcomes: Upon completion of the subject student shall able to know Regulatory biological aspects of cosmetics, excipients used for various formulations, designing of cosmeceuticals and herbal products

UNIT I
Cosmetics – Regulatory: Definition of cosmetic products as per Indian regulation. Indian regulatory requirements for labeling of cosmetics Regulatory provisions relating to import of cosmetics. Misbranded and spurious cosmetics. Regulatory provisions relating to manufacture of cosmetics – Conditions for obtaining license, prohibition of manufacture and sale of certain cosmetics, loan license, offences and penalties.

UNIT II
Cosmetics - Biological aspects: Structure of skin relating to problems like dry skin, acne, pigmentation, prickly heat, wrinkles and body odor. Structure of hair and hair growth cycle. Common problems associated with oral cavity. Cleansing and care needs for face, eye lids, lips, hands, feet, nail, scalp, neck, body and under-arm.

UNIT III
Perfumes; Classification of perfumes. Perfume ingredients listed as allergens in EU regulation.
Controversial ingredients: Parabens, formaldehyde liberators, dioxane.

UNIT IV
Design of cosmeceutical products: Sun protection, sunscreens classification and regulatory aspects. Addressing dry skin, acne, sun-protection, pigmentation, prickly heat, wrinkles, body odor, dandruff, dental cavities, bleeding gums, mouth odor and sensitive teeth through cosmeceutical formulations.

UNIT V
Herbal Cosmetics: Herbal ingredients used in Hair care, skin care and oral care. Review of guidelines for herbal cosmetics by private bodies like cosmos with respect to preservatives, emollients, foaming agents, emulsifiers and rheology modifiers. Challenges in formulating herbal cosmetics.
REFERENCES
2. Poucher’s perfume cosmetics and Soaps, 10th edition.
3. Cosmetics - Formulation, Manufacture and quality control, P. P. Sharma, 4th edition
4. Handbook of cosmetic science and Technology A.O. Barel, M. Paye and H.I. Maibach. 3rd edition
5. Cosmetic and Toiletries recent suppliers’ catalogue.
6. CTFA directory.
STABILITY OF DRUGS AND DOSAGE FORMS (Professional Elective – II)

Course Objective: These topics are designed to impart specialized knowledge to preserve the properties of drugs and dosage forms during manufacture, storage, and shelf life. The understanding of properties and evaluation of stability during storage, by solution and solid state, against several factors of degradation.

Course Outcome: The students should describe the evaluation of stability of solutions, solids, and formulations against adverse conditions. The students should be able to suggest the measures to retain stability and storage conditions for retaining the efficacy of the products.

UNIT - I
Drug decomposition mechanisms:
1. Hydrolysis and acyl transfers: Nature of reaction, structure and utility, stabilization of Pharmaceutical examples.
2. Oxidation: Nature of oxidation, kinetics of oxidation, oxidation pathways of pharmaceutical, interest inhibition of oxidation

UNIT - II
Solid state chemical decomposition: Kinetic of solids state decomposition, Pharmaceutical examples of solid-state decomposition, Pure drugs, drug excipient and drug-drug interaction in solid state, methods of stabilization.
Physical stability testing of dosage forms:
1. Solids – tablets, capsules, powder and granules
2. Disperse systems
3. Microbial decomposition

UNIT - III
Identification and quantitative determination of preservatives, Antioxidants, colouring materials, emulsifiers and stabilizers in Pharmaceutical formulation.
Analysis of drugs from biological samples including, selection of biological sample, extraction of drugs by various methods as LLE, SPE and Membrane filtration. Factors affecting extraction of drugs.

UNIT - IV
General method of analysis to determine the quality of raw materials used in cosmetic industry. Indian Standard Specifications (ISI) laid down for sampling and testing of various cosmetics in finished form by the Bureau of Indian Standards.

UNIT - V
Methods of analysis to determine the quality of cosmetics in the finished forms such as Hair care products, Skin care products, Baby care products, Dental products, Personal hygiene products, Colour cosmetics, Ethnic products, Colour makeup preparation, Lipsticks, Hair setting lotions and Eye shadows. Toxicity testing in cosmetics and Safety and Legislation of Cosmetic products.
Stability studies: Concept of stability studies.
a) cGMP& ICH guidelines for Accelerated stability Testing.
b) Interaction of containers & closure Compatibility Testing.
REFERENCE BOOKS:

5. P.D. Sethi; Quantitative Analysis of Drugs in Pharmaceutical Formulations, 3rd Edition - 1997,
6. Classification of cosmetics raw materials and adjuncts IS 3958 of Indian Standards Institution (BIS).
7. Cosmetic and toilet goods – methods of sampling IS 3958 of Indian Standards Institution (BIS).
8. Methods of sampling and test for various cosmetics as laid down by Bureau of Indian Standards.
RESEARCH METHODOLOGY AND IPR

Course Objectives:
- To understand the research problem
- To know the literature studies, plagiarism and ethics
- To get the knowledge about technical writing
- To analyze the nature of intellectual property rights and new developments
- To know the patent rights

Course Outcomes: At the end of this course, students will be able to
- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT - I
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT - II
Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT - III
Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT - IV

UNIT - V
TEXT BOOKS:
2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”

REFERENCES:
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M.Pharm I Year I Sem (Pharmaceutical Analysis)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES LAB (Laboratory – I)

LIST OF EXPERIMENTS:
1. Colorimetry / UV / Visible, Spectroscopy, scanning of few compounds for UV-absorption, calculation of Assay / content uniformity / % of drug release (2-3 experiments.)
2. Simultaneous estimation of multi component containing formulations by UV spectrophotometry
3. Experiment base on HPLC (Isocratic and gradient) Techniques – (2 experiments)
4. Incompatibility studies, identification and functional groups – Determination by FTIR (2 experiments)
5. Separation and calculation of Rf values by using paper chromatography, TLC, HPTLC Technique (2-3 experiments)
6. Calibration of glasswares
7. Calibration of pH meter
8. Calibration of UV-Visible spectrophotometer
9. Calibration of FTIR spectrophotometer
10. Calibration of HPLC instrument
LIST OF EXPERIMENTS:
1. Determination of total reducing sugar
2. Determination of proteins
3. Determination of saponification value, Iodine value, Peroxide value, Acid value in food products
4. Determination of fat content and rancidity in food products
5. Analysis of natural and synthetic colors & food additives in food
6. Determination of preservatives in food
7. Determination of pesticide residue in food products
8. Assay of any two Analgesic & Antipyretic drugs (API & dosage forms) official in IP
9. Assay of any two Antihistamines (API & dosage forms) official in IP
10. Assay of any two Diuretics (API & dosage forms) official in IP
11. Microbiological assay of any two Antibiotics official in IP
Course Objectives: This subject deals with various hyphenated analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are LC-MS, GC-MS, and hyphenated techniques.

Course Outcome: By the completion of topics the students will come out with the thorough knowledge of various spectral aspects of X-Ray, IR, SEM, ORD etc which help them in further projects works and also industrial opportunities.

UNIT - I
X-Ray diffraction methods: Origin of X-rays, basic aspects of crystals, X-ray crystallography, Miller indices, rotating crystal techniques, single crystal diffraction, powder diffraction, structural elucidation and applications.

UNIT - II
a. Biochromatography: Size exclusion chromatography, ion exchange chromatography, ion pair chromatography, affinity chromatography general principles, stationary phases and mobile phases.

UNIT-III
Capillary Electrophoresis: Overview of CE in pharmaceutical analysis, basic configuration, CE characteristics, principles of CE, methods and modes of CE. General considerations and method development in CE.

UNIT - IV
a. DSC: Principle, thermal transitions, instrumentation (Heat flux and power-compensation designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and cooling rates, resolution, Sources of errors) and their influence, advantages and disadvantages, pharmaceutical applications.
b. DTA: Principle, instrumentation, advantage and disadvantage, pharmaceutical application, derivative differential thermal analysis (DDTA).
c. TGA: Principle, instrumentation, factors affecting results, advantages and disadvantages, pharmaceutical application.

UNIT - V
Scanning electron microscope (SEM): Principles, instrumentation and applications.
Optical Rotatory Dispersion (ORD), Circular Dichroism, Cotton effect, Octane rule and applications.

REFERENCES:
1. Instrumental Methods of Chemical Analysis by B.K Sharma
2. Organic spectroscopy by Y.R Sharma
3. A Text book of Pharmaceutical Analysis by Kerrenth A. Connors
4. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel
5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
6. Organic Chemistry by I. L. Finar
7. Organic spectroscopy by William Kemp
8. Quantitative Analysis of Drugs by D. C. Garrett
9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
10. Spectrophotometric identification of Organic Compounds by Silverstein
11. HPTLC by P.D. Seth
Course Objectives: This subject is designed to provide detailed knowledge about the importance of analysis of drugs in biological matrices.

Course Outcomes: Upon completion of the course, the student shall be able to understand
- Extraction of drugs from biological samples
- Separation of drugs from biological samples using different techniques
- Guidelines for BA/BE studies

UNIT I
Extraction of drugs and metabolites from biological matrices: General need, principle and procedure involved in the Bioanalytical methods such as Protein precipitation, Liquid - Liquid extraction and Solid phase extraction and other novel sample preparation approach.

UNIT II

UNIT III
Bioanalysis and bioanalytical method validation:
- Types of body fluids, requirement of analysis, matrix effects, non-biological analytical samples.
- Bioanalytical method validation: USFDA and EMEA guidelines. Acceptance criteria in comparison to non-biological samples.

UNIT IV
Pre-Formulation: A consideration of following characteristics of medicinal agents in their dosage form:
- Physical characteristics - Particle size, polymorphism, crystal form, solubility, Interfacial tension, Salt formation, wetting of solids, flow characteristics, compressibility and Partition coefficient.
- Chemical Characteristics - Degradation: Hydrolytic, oxidative, reductive and photolytic, Drug – Excipient compatibility studies.

UNIT V
a. Automation and computer-aided analysis, LIMS: The concept of auto samplers and high throughput analysis, computer-controlled instrumentation and networked laboratory. Peculiarities of laboratory information management systems (LIMS).

REFERENCES
10. ICH, USFDA & CDSCO Guidelines
11. Palmer
Course Objective: The main purpose of the subject is to understand about validation and how it can be applied to industry and thus to improve the quality of the products. The subject covers the complete information about validation, types, methodology and application.

Course Outcome: Upon completion of the subject student shall be able to
- Explain the aspect of validation
- Carryout validation of manufacturing processes
- Apply the knowledge of validation to instruments and equipments

UNIT I
Introduction: Definition of Qualification and Validation, Advantage of Validation, Streamlining of Qualification & Validation process and Validation Master Plan.

UNIT II
Qualification of analytical instruments: Electronic balance, pH meter, UV-Visible spectrophotometer, FTIR, GC, HPLC, HPTLC
Qualification of Glassware: Volumetric flask, pipette, Measuring cylinder, beakers and burette.

UNIT III
Qualification of laboratory equipments: Hardness tester, Friability test apparatus, tap density tester, Disintegration tester, Dissolution test apparatus.
Validation of Utility systems: Pharmaceutical water system & pure steam, HVAC system, Compressed air and nitrogen.

UNIT IV

UNIT V
Analytical method validation: General principles, Validation of analytical method as per ICH guidelines and USP.
- Validate the manufacturing facilities

REFERENCES:
3. Validation Master plan by Terveeks or Deeks, Davis Harwood International publishing.
9. Analytical Method validation and Instrument Performance Verification by Churg Chan, Heiman Lam
Course Objective: The topics help the students to get exposed to processes involved in the manufacturing of herbal cosmetics including the skin and hair care herbal products preparation and their evaluation.

Course Outcome: Students will learn about the raw materials used in herbal cosmetics and get exposed to various preparations of herbal cosmetics.

UNIT I
Introduction: Herbal/ natural cosmetics, Classification & Economic aspects.
Regulatory Provisions relation to manufacture of cosmetics: -
License, GMP, offences & Penalties, Import & Export of Herbal/natural cosmetics, Industries involved in the production of Herbal/natural cosmetics.

UNIT II
a) Commonly used herbal cosmetics raw materials – water, preservatives, surfactants, oils/waxes, colors, and some functional herbs
b) Processes used in the manufacture of cosmetics- Emulsification, Mixing, compaction, Molding, Packing.
c) General principles of quality control of herbal cosmetics

UNIT III
Skin care Products: Physiology and chemistry of skin, Method of preparation, Pharmaceutical and Pharmacological evaluation procedures for various formulations like Creams, Lotions, Lipsticks, Face packs. Elaborative study of five formulations under each category with regard to their composition and claims for various herbs used in them.

UNIT IV
Hair care Products: Hair structure and its chemistry
Method of preparation, Pharmaceutical and Pharmacological evaluation procedures for various formulations like Hair dyes, Creams, Oils and Shampoos. Elaborative study of five formulations under each category with regard to their composition and claims for various herbs used in them.

UNIT V
Herbs in cosmetics:
A brief account of following herbals or herb extracts or herbal products of cosmetic importance such as Acacia concinna pods, Aloe Vera, Almond oil, Neem, Citrus aurantium peels, Henna, Turmeric, Liquorices, Olive oil, tea tree oil and wheat germ oil with special emphasis on their source, active principles and cosmetic properties.

REFERENCES:
1. Cosmetics- Formulation, Manufacturing and Quality control – P.P. Sharma
2. Herbal Cosmetics Hand Book - H. Panda
3. Herbal Cosmetics by P.K. Chattopadhyay
4. The Complete Technology Book on Herbal Perfumes and Cosmetics by H. Panda
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M.Pharm. I Year II Sem (Pharmaceutical Analysis)

PHARMAEOEPIDEMIOLOGY & PHARMACOECONOMICS (Professional Elective - III)

Course Objective: This course enables students to understand various pharmacoepidemiological methods and their clinical applications. Also, it aims to impart knowledge on basic concepts, assumptions, terminology, and methods associated with Pharmacoconomics and health related outcomes, and when should be appropriate Pharmacoeconomic model should be applied for a health care regimen.

Course Outcome: Upon completion of this course it is expected that students shall be able to:
- Understand the various epidemiological methods and their applications
- Understand the fundamental principles of Pharmacoconomics.
- Identify and determine relevant cost and consequences associated with pharmacy products and services.
- Perform the key Pharmacoconomics analysis methods
- Understand the Pharmacoeconomic decision analysis methods and its applications.
- Describe current Pharmacoeconomic methods and issues.
- Understand the applications of Pharmacoconomics to various pharmacy settings.

UNIT - I
Introduction to Pharmacoepidemiology: Definition, Scope, Need, Aims & Applications; Outcome measurement: Outcome measures, Drug use measures: Monetary units, Number of prescriptions, units of drug dispensed, defined daily doses, prescribed daily doses, Diagnosis and Therapy surveys, Prevalence, Incidence rate, Monetary units, number of prescriptions, unit of drugs dispensed, defined daily doses and prescribed daily doses, medications adherence measurements. Concept of risk: Measurement of risk, Attributable risk and relative risk, Time-risk relationship and odds ratio

UNIT - II
Pharmacoepidemiological Methods: Qualitative models: Drug Utilization Review; Quantitative models: case reports, case series, Cross sectional studies, Cohort and case control studies, Calculation of Odds’ ratio, Meta-analysis models, Drug effects study in populations: Spontaneous reporting, Prescription event monitoring, Post marketing surveillance, Record linkage systems, Applications of Pharmacoepidemiology

UNIT - III

UNIT - IV
Pharmacoeconomic evaluations: Definition, Steps involved, Applications, Advantages and disadvantages of the following Pharmacoeconomic models: Cost Minimization Analysis (CMA), Cost Benefit Analysis (CBA), Cost Effective Analysis (CEA), Cost Utility Analysis (CUA), Cost of Illness (COI), Cost Consequences Analysis (COA).
UNIT - V
Definition, Steps involved, Applications, Advantages and disadvantages of the following:
Health related quality of life (HRQOL): Definition, Need for measurement of HRQOL, Common HRQOL measures. Definition, Steps involved, Applications of the following: Decision Analysis and Decision tree, Sensitivity analysis, Markov Modeling, Software used in Pharmacoeconomic analysis, Applications of Pharmacoeconomics.

REFERENCES:
1. Rascati K L. Essentials of Pharmacoeconomics, Woulters Kluwe rLippincott Williams & Wilkins, Philadelphia.
7. Graker, Dennis. Pharmacoeconomics and outcomes.
8. Walley, Pharmacoeconomics.
10. Relevant review articles from recent medical and pharmaceutical literature
Course Objectives: This subject deals with various hyphenated analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are LC-MS, GC-MS, and hyphenated techniques.

Course Outcome: By the completion of topics the students will come out with the thorough knowledge of various electrochemical methods, fluorimetry, AAS, RIA, ELISA etc. which help them in further projects works and also industrial opportunities.

UNIT-I
Polarography – Principle, Ilkovic equation, construction and working of dropping mercury electrode and rotating platinum electrode, applications.
Amperometry - Principles, instrumentation and applications including amperometric titrations.

UNIT- II
a. Potentiometry – Electrochemical cell, construction and working of reference (Standard hydrogen, silver chloride electrode and calomel electrode) and indicator electrodes (metal electrodes and glass electrode), methods to determine end point of potentiometric titration and applications.
b. Conductometry– Introduction, Conductivity cell, Conductometric titrations, applications

UNIT- III
Spectrofluorimetry: Theory of Fluorescence, Factors affecting fluorescence (Characteristics of drugs that can be analyzed by flourimetry), Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.

UNIT- IV
Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.

UNIT- V
a. Radio chemical methods including RIA: Radio Active Isotopes, tagging of compounds, Labeled Reagents, Isotope dilution Analysis, Scintillation counter, RIA.
b. ELISA: Principle, types and application of ELISA

REFERENCES:
1. Instrumental Methods of Chemical Analysis by B.K Sharma
2. Organic spectroscopy by Y.R Sharma
3. A Text book of Pharmaceutical Analysis by Kerrenth A. Connors
4. Vogel’s Text book of Quantitative Chemical Analysis by A.I. Vogel
5. Practical Pharmaceutical Chemistry by A.H. Becket and J.B. Stenlake
6. Organic Chemistry by I. L. Finar
7. Organic spectroscopy by William Kemp
8. Quantitative Analysis of Drugs by D. C. Garrett
9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
10. Spectrophotometric identification of Organic Compounds by Silverstein
11. HPTLC by P.D. Seth
Course Objectives: The students will expose to characteristic features of various phytochemicals as nutraceuticals in various diseased conditions and also know the role of antioxidant in free radical induced disease conditions and will expose to various food laws and regulations.

Course Outcome: Helps the student to understand the importance of Nutraceuticals in various common problems with the concept of free radicals.

UNIT - I
a. Definitions of Functional foods, Nutraceuticals and Dietary supplements. Classification of Nutraceuticals, Health problems and diseases that can be prevented or cured by Nutraceuticals i.e. weight control, diabetes, cancer etc.
b. Source, Name of marker compounds and their chemical nature, Medicinal uses and health benefits of following used as nutraceuticals/functional foods: Spirulina, Soya bean, Ginseng, Garlic, Broccoli, Gingko, Flaxseeds.

UNIT - II
Phytochemicals as nutraceuticals: Occurrence and characteristic features (chemical nature medicinal benefits) of following:
 a. Carotenoids- α and β-Carotene, Lycopene, Xanthophylls, lutein
 b. Sulfides: Diallylsulfides, Allyltrisulfide.
 c. Polyphenolics: Reservetrol
 d. Flavonoids- Rutin, Naringin, Quercitin, Anthocyanidins, catechins, Flavones
 e. Prebiotates / Probiotics.: Fructo oligosaccharides, Lacto bacillum
 f. Phytoestrogens, Isoflavones, daidzein, Geebustin, lignans
 g. Tocopherols

UNIT - III
a. Introduction to free radicals: Free radicals, reactive oxygen species, production of free radicals in cells, damaging reactions of free radicals on lipids, proteins, Carbohydrates, nucleic acids.

UNIT - IV
b. Antioxidants: Endogenous antioxidants – enzymatic and nonenzymatic antioxidant defence, Superoxide dismutase, catalase, Glutathione peroxidase, Glutathione Vitamin C, Vitamin E, α-Lipoic acid, melatonin
 c. Synthetic antioxidants: Butylatedhydroxy Toluene, Butylatedhydroxy Anisole.

UNIT - V
Food Laws and Regulations: FDA, FPO, MPO, AGMARK. HACCP and GMPs on Food Safety. Adulteration of foods.
Regulations and Claims – Current Products: Label Claims, Nutrient Content Claims, Health Claims, Dietary Supplements Claims
REFERENCES:
1. Dietetics by Sri Lakshmi
2. Role of dietary fibres and nutraceuticals in preventing diseases by K. T Agusti and P. Faizal: BS Publication.
Course Objective: This subject will provide a value addition and current requirement for the students in clinical research and pharmacovigilance. It will teach the students on conceptualizing, designing, conducting, managing and reporting of clinical trials. This subject also focuses on global scenario of pharmacovigilance in different methods that can be used to generate safety data. It will teach the students in developing drug safety data in pre-clinical, clinical phases of drug development and post market surveillance.

Course Outcomes: Upon completion of the course, the student shall be able to,

- Explain the regulatory requirements for conducting clinical trial
- Demonstrate the types of clinical trial designs
- Explain the responsibilities of key players involved in clinical trials
- Execute safety monitoring, reporting and close-out activities
- Explain the principles of Pharmacovigilance
- Detect new adverse drug reactions and their assessment
- Perform the adverse drug reaction reporting systems and communication in pharmacovigilance

UNIT- I

UNIT - II
Clinical Trials: Types and Design: Experimental Study- RCT and Non RCT, Observation Study: Cohort, Case Control, Cross sectional Clinical Trial Study Team Roles and responsibilities of Clinical Trial Personnel: Investigator, Study Coordinator, Sponsor, Contract Research Organization and its management.

UNIT- III

UNIT- IV
Basic aspects, terminologies and establishment of pharmacovigilance: History and progress of pharmacovigilance, Significance of safety monitoring, Pharmacovigilance in India and international aspects, WHO international drug monitoring programme, WHO and Regulatory terminologies of ADR, evaluation of medication safety, establishing pharmacovigilance centres in Hospitals, Industry and National programmes related to pharmacovigilance. Roles and responsibilities in Pharmacovigilance.

UNIT- V
Methods, ADR reporting and tools used in pharmacovigilance: International classification of diseases, International Nonproprietary names for drugs, Passive and Active surveillance,
Comparative observational studies, targeted clinical investigations and Vaccine safety surveillance. Spontaneous reporting system and Reporting to regulatory authorities, Guidelines for ADRs reporting. Argus, Aris G Pharmacovigilance, Vigi Flow, Statistical methods for evaluating medication safety data.

REFERENCES:
List of Experiments
1. Determination of chlorides and sulphates by Nephelo - Tubmidimetry
2. Determination of compounds of sodium, potassium and calcium by Flame photometry.
3. Estimation of riboflavin/quinine sulphate by fluorimetry
4. Assay of official compounds by potentiometric titrations (Any 2)
5. Assay of official compounds by conductimetric titrations (Any 2)
6. Demonstration on ELISA
7. Quenching of fluorescence
8. Perform phosphate interference on absorption of calcium

(Note: Minimum of two experiments covering each of the above-mentioned topics)
List of Experiments:
1. Biomolecules separation utilizing various sample preparation techniques and quantitative analysis of components by gel electrophoresis
2. Biomolecules separation utilizing various sample preparation techniques and quantitative analysis of components by HPLC techniques.
3. Isolation of analgesics from biological fluids (blood serum and urine)
4. Protocol preparation and performance of bioanalytical method validation
5. Identification of anti-histaminics drug in urine by TLC
6. Extraction of drugs and metabolites from biological matrices by SPE/LLE
7. HPLC separation of modern drug from plasma and its formulations (Diclofenac)
8. Stability indicating method development by HPLC of any API
BIOSTATISTICS (Professional Elective - V)

Course Objective: The student shall know the introduction, scope of biostatistics and Research work, calculation and present of the data.

Course Outcome: The student will be known the Biostatistics arrangement, presentation and formation of tables and charts. They also know the correlation and regression & application of different methods, analysis of data.

UNIT - I

UNIT - II
Measures of central tendency: computation of means, median and mode from grouped and ungrouped data.
Measure of dispersion: computation of variance, standard deviation, standard error and their coefficients.

UNIT - III
Measures of Correlation and Regression
Probability rules: Binomial, Poison and Normal distribution.

UNIT - IV
Experimental designing, planning of an experiment, replication and randomization.
Analysis of Variance (ANOVA): 1-way, 2-Way

UNIT - V
Hypothesis testing: Student ‘t’ test, Chi square test,
Non-Parametric Tests: Sign Test, Sign Rank Test, Wilcoxon Sign Rank Test

REFERENCE BOOKS:
1. Statistics for business and economics 3rd edition by Vikas books publications
2. Biostatistics & Computer applications by GN Rao and NK Tiwari
Course Objective: This course is designed to impart knowledge and skills necessary to train the students to be on scale up, technology transfer process and industrial safety issues.

Course Outcome: On completion of this course it is expected that students will be able to;
- Manage the scale up process in pharmaceutical industry.
- Assist in technology transfer.
- To establish safety guidelines, which prevent industrial hazards.

UNIT I
Pilot plant design: Basic requirements for design, facility, equipment selection, for tablets, capsules, liquid orals, parental and semisolid preparations.

Scale up: Importance, Technology transfer from R & D to pilot plant to plant scale, process scale up for tablets, capsules, liquid orals, semisolids, parental, NDDS products – stress on formula, equipments, product uniformity, stability, raw materials, physical layout, input, in-process and finished product specifications, problems encountered during transfer of technology.

UNIT II
Validation: General concepts, types, procedures & protocols, documentation, VMF. Analytical method validation, cleaning validation and vender qualification.

UNIT III

UNIT IV
Process validation: Importance, validation of mixing, granulation, drying, compression, tablet coating, liquid filling and sealing, sterilization, water process systems, environmental control.

UNIT V

REFERENCES:
1. Pharmaceutical process validation, JR Berry, Nash, Vol 57, Marcel Dekker, NY.
3. Pharmaceutical project management, T. Kennedy, Vol 86, Marcel Dekker, NY.
5. Tablet machine instruments in pharmaceuticals, PR Watt, John Wiloy.
6. Pharmaceutical dosage forms, Tablets, Vol 1, 2, 3 by Lachman, Lieberman, Marcel Dekker, NY.
7. Pharmaceutical dosage forms, Parenteral medications, Vol 1, 2 by K.E. Avis, Marcel Dekker, NY.
8. Dispersed system Vol 1, 2, 3 by Lachman, Lieberman, Marcel Dekker, NY.
Course Objectives: The student shall learn about Industrial area design, Current good manufacturing practices. They also learn about packaging components, polymers and metals used in packaging. They also understand about the storage conditions of different formulations and their stability evaluations.

Course Outcome: At the end of the semester student will get an idea about Industrial area design and packaging of different formulations and its stability conditions.

UNIT - I
Production Area Design: Selection of plant location, Design of plant for bulk drugs and formulations (Solids, Semisolids, Injectables, Nutraceuticals etc.), General utilities such as purified water, portable water, water for injection, Air handling units-Relative humidity and Temperature control, Material and personnel movement. Warehouse handling-API, Excipients, packaging materials and solvents.

UNIT - II

UNIT - III
Pharmaceutical packaging and Design: Introduction, Packaging system, Components of packaging, Symbols used on packages and labels. Package development and Design research. Packaging materials- Polymers and Plasters, Glass, Metal and Blister and strip packaging.

UNIT - IV

UNIT - V

REFERENCES:
1. Leon Lachman; Lieberman Herbert A.; Kanig, Joseph L. The theory and Practice of Industrial Pharmacy.
2. Gilbert Banker and Christopher Rhodes. Modern Pharmaceutics.
3. Aulton’s Pharmaceutics: The design and Manufacture of Medicine
Prerequisite: None

Course objectives: Students will be able to:
- Understand how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title. Ensure the good quality of paper at very first-time submission

UNIT-I:
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

UNIT-III:
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:
key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT-V:
skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

TEXT BOOKS/ REFERENCES:
Prerequisite: None

Course Objectives: Students will be able to
- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches,
- planning and programming in different countries, particularly their home country or the countries they work in

UNIT-I:
Introduction:
Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.
Disaster Prone Areas in India:
Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT-II:
Repercussions of Disasters and Hazards:

UNIT-III:
Disaster Preparedness and Management:
Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT-IV:
Risk Assessment Disaster Risk:

UNIT-V:
Disaster Mitigation:
Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.
TEXT BOOKS/ REFERENCES:
2. Sahni, Pardeep Et. Al. (Eds.),” Disaster Mitigation Experiences and Reflections”, Prentice Hall of India, New Delhi.
SANSKRIT FOR TECHNICAL KNOWLEDGE (Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Course Outcomes: Students will be able to
- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT-I:
Alphabets in Sanskrit,

UNIT-II:
Past/Present/Future Tense, Simple Sentences

UNIT-III:
Order, Introduction of roots,

UNIT-IV:
Technical information about Sanskrit Literature

UNIT-V:
Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TEXT BOOKS/ REFERENCES:
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
Prerequisite: None

Course Objectives: Students will be able to
- Understand value of education and self-development
- Imbibe good values in students
- Let the should know about the importance of character

Course outcomes: Students will be able to
- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT-I:

UNIT-II:

UNIT-III:
Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline, Punctuality, Love and Kindness.

UNIT-IV:

UNIT-V:

TEXT BOOKS/REFERENCES:
CONSTITUTION OF INDIA (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:
- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:
- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:

UNIT-II:

UNIT-III:
Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualification, Powers and Functions.

UNIT-IV:

UNIT-V:
TEXT BOOKS/ REFERENCES:
1. The Constitution of India, 1950 (Bare Act), Government Publication.
Prerequisite: None

Course Objectives: Students will be able to:
- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DFID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: Students will be able to understand:
- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT-I:

UNIT-II:
Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT-III:
Evidence on the effectiveness of pedagogical practices, Methodology for the indepth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers’ attitudes and beliefs and Pedagogic strategies.

UNIT-IV:
Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes

UNIT-V:
Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

TEXT BOOKS/ REFERENCES:
STRESS MANAGEMENT BY YOGA (Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To achieve overall health of body and mind
- To overcome stress

Course Outcomes: Students will be able to:
- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

UNIT-I:
Definitions of Eight parts of yog. (Ashtanga)

UNIT-II:
Yam and Niyam.

UNIT-III:
Do’s and Don’t’s in life.
 i) Ahinsa, satya, astheya, bramhacharya and aparigraha
 ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

UNIT-IV:
Asan and Pranayam

UNIT-V:
i) Various yog poses and their benefits for mind & body
 ii) Regularization of breathing techniques and its effects-Types of pranayam

TEXT BOOKS/REFERENCES:
1. “Yogic Asanas for Group Tarining-Part-I”: Janardan Swami Yogabhysa Mandal, Nagpur
2. “Rajayoga or conquering the Internal Nature” by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata
PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS
(Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes: Students will be able to
- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students

UNIT-I:
Neetisatakam-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)

UNIT-II:
Neetisatakam-Holistic development of personality
- Verses- 52,53,59 (don’ts)
- Verses- 71,73,75,78 (do’s)

UNIT-III:
Approach to day to day work and duties.
- Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT-IV:
Statements of basic knowledge.
- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta:

UNIT-V:
- Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 – Verses 37,38,63

TEXT BOOKS/ REFERENCES:
1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.