I YEAR I Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core-I</td>
<td>Advanced Organic Chemistry-I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core-II</td>
<td>Advanced Medicinal Chemistry-I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-I</td>
<td>Chemistry of Natural Products</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-I</td>
<td>Modern Pharmaceutical Analytical Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-I</td>
<td>Drug Regulatory Affairs</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-II</td>
<td>Drug Discovery & Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-II</td>
<td>Pharmaceuticals and Food Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-II</td>
<td>Spectral Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Laboratory-I</td>
<td>Advanced Organic Chemistry – I Lab</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory-II</td>
<td>Advanced Medicinal Chemistry – I Lab</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Audit</td>
<td>Audit Course – I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td>0</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

I YEAR II Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core-III</td>
<td>Advanced Organic Chemistry –II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core-IV</td>
<td>Advanced Medicinal Chemistry II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-III</td>
<td>Pharmaceutical Process Chemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-III</td>
<td>Quality Control and Quality Assurance</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-III</td>
<td>Clinical Research and Pharmacovigilance</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-IV</td>
<td>Screening Methods in Pharmacology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-IV</td>
<td>Advanced Instrumental Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective-IV</td>
<td>Herbal Drug Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Laboratory-III</td>
<td>Advanced Organic Chemistry - II Lab</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory-IV</td>
<td>Advanced Medicinal Chemistry - II Lab</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>--</td>
<td>Mini project with seminar</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Audit</td>
<td>Audit Course - II</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td>0</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>
Audit Courses 1 & 2
1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technological Learning
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by Yoga
8. Personality Development through Life Enlightenment Skills
Course Objectives: The course structure is designed to give the knowledge of organic chemistry at an advanced level and mainly aimed at the stereochemistry and different organic named reactions including preparations of reactive intermediates.

Course Outcome: The student would be in position to design a stereoselective synthesis of new chemical entities (NCE) for the treatment of different diseases in new drug discovery Program.

UNIT I
b. Chirality due to helical shape. cis / trans, E – Z isomerism resulting from double bonds, monocyclic compounds, fused ring system. Racemic modifications and methods for resolution of racemic mixtures. Asymmetric synthesis and stereo-selective synthesis.

UNIT II
b. Concepts of aromaticity and antiaromaticity, nonbenzenoid aromatic compounds.

UNIT III
Mechanisms of organic reactions: Free radical, Electrophilic, Nucleophilic reactions of aliphatic and aromatic compounds

UNIT IV

UNIT V
Electrocyclic, pericyclic and sigmatropic reactions: Introduction, terminology and mechanism, with suitable examples.

RECOMMENDED BOOKS:
5. I. L. Finar, Organic Chemistry, ELBS
Course Objectives: The course contents are mainly aimed to have advanced knowledge of rational drug design including QSAR and molecular modeling and also aimed at the identification of lead molecule from natural sources for the development of new drugs.

Course Outcome: The student would be in a position to have detailed knowledge of computer aided drug design which is useful to involve in new drug discovery Program by the utilization of natural leads and also with the help of structure-based drug design.

UNIT I

UNIT II

UNIT III
a. Computer aided drug design (CADD):
 Virtual screening: concept, drug likeness screening, focused screening libraries for lead identification, pharmacophore screening, structure based virtual screening and applications.
 Molecular modeling: Molecular mechanics, quantum mechanics, modeling ligands for known receptors and unknown receptors.

UNIT IV
Natural Products as Leads for New Drugs: Introduction/History, approaches to discovery and development of natural products as potential new drugs, selection and optimization of lead compounds for further developments from CNS, anticancer antibiotics and cardiovascular drugs.

UNIT V

RECOMMENDED BOOKS:
2. Korolkovas Essentials of Medicinal Chemistry
3. Purcell Strategies of Drug Design
4. Corwin, Hansen Comprehensive Medicinal Chemistry
5. William O Foye Medicinal Chemistry
7. Stenlake, Foundation of Molecular Pharmacology- Pharma Med Press, volume I &II
CHEMISTRY OF NATURAL PRODUCTS (Professional Elective – I)

Course Objective: The contents of Unit I mainly aimed to identify lead molecules from the natural sources. The contents of Unit II & III are mainly designed to have the knowledge of alkaloids and steroids especially structural elucidation of few important compounds. The contents of Unit IV and V are to offer an understanding of utilization of natural products for the preparation of new molecules for the treatment of different diseases like cancer, malaria etc.

Course Outcome: The student would be in a position to explore the natural lead compounds for the treatment of different diseases like cancer, malaria, diabetes etc.

UNIT I

Natural products as leads for new drugs: Introduction/history, approaches to discovery and development of natural products as potential new drugs selection and optimization of lead compounds for further development with suitable examples from antibiotics, CNS, and cardiovascular agents.

UNIT II

Alkaloids: Introduction and general methods of structure elucidation.
From opium: morphine-structure elucidation, development of morphine analogues and morphine antagonists.
From Rauwolfia: Reserpine-structure elucidation, structural modifications and uses.
From vinca rosea: vincristine and vinblastine - structural modification, semisynthetic derivatives and uses.

UNIT III

Steroids: Introduction, nomenclature, stereochemistry of steroids. Source and structure elucidation of cholesterol and diosgenin.
Structures, structure modifications and therapeutic uses of steroidal anti-inflammatory agents and antifertility agents.

UNIT IV

Polypeptides and proteins: Introduction and general methods of separation, general methods of degradation and end group analysis, general methods of synthesis of peptides. Primary, secondary, tertiary and quaternary structure of proteins; chemistry of insulin.

UNIT V

Compounds of medicinal Interest: Structure, structural modifications, mechanism of action and therapeutic uses of a) taxanes b) camptothecin c) artemisinin e) ginkgolides and f) gymnemic acids.

RECOMMENDED BOOKS:

6. Ataur Rahman. Chemistry of natural products
Course Objective: The course is designed to impart the knowledge in the field of Pharmaceutical Analysis. The various modern analytical techniques like UV-Visible, IR, NMR, Mass, GC, HPLC, different chromatographic methods and other important topics are taught to enable the students to understand and apply the principles involved in the determination of different bulk drugs and their formulation. In addition to the theoretical aspects, the basic practical knowledge relevant to the analysis is also imparted.

Course Outcome: The appreciable knowledge will be gained by the students in the Modern Analytical Techniques and can apply the theories in the Analysis of various bulk drugs and their formulations. The students will also be in a position to apply their knowledge in developing the new methods for the determination and validate the procedures.

UNIT I
Introduction to chromatography and classification of chromatographic methods based on the mechanism of separation
 a. Column Chromatography: Adsorption and partition, theory, preparation, procedure and methods of detection
 b. Thin Layer Chromatography: Theory, preparation, procedures, detection of compounds
 c. Paper Chromatography: Theory, different techniques employed, filter papers used, qualitative and quantitative detection
 d. Counter – current extraction, solid phase extraction techniques, gel filtration

UNIT II
 b. HPLC: Principles and instrumentation, solvents and columns used, detection and applications
 c. HPTLC: Theory and principle, instrumentation, elution techniques and pharmaceutical applications

UNIT III
 a. UV-Visible spectroscopy: Introduction, electromagnetic spectrum, absorbance laws and limitations, instrumentaion-design and working principle, chromophore concept, auxochromes, Wood-Fisher rules for calculating absorption maximum, applications of UV-Visible spectroscopy
 b. IR spectroscopy: Basic principles - Molecular vibrations, vibrational frequency, factors influencing vibrational frequencies, sampling techniques, instrumentation, interpretation of spectra, FT-IR, theory and applications

UNIT IV
Mass spectroscopy: Theory, ionization techniques: electron impact ionization, chemical ionization, field ionization, fast atom bombardment, plasma desorption, fragmentation process: types of fission, resolution, GC/MS, interpretation of spectra and applications for identification and structure determination.

UNIT V
NMR: Theory, instrumentation, chemical shift, shielding and deshielding effects, splitting of signals, spin-spin coupling, proton exchange reactions, coupling constant(J), nuclear overhauser effect (NOE), 13C NMR spectra and its applications, 2D-NMR, COSY and applications in pharmacy.
REFERENCES:
1. Instrumental Methods of Chemical Analysis by B.K Sharma
2. Organic spectroscopy by Y.R Sharma
3. A Text book of Pharmaceutical Analysis by Kerrenth A. Connors
4. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel
5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
6. Organic Chemistry by I. L. Finar
7. Organic spectroscopy by William Kemp
8. Quantitative Analysis of Drugs by D. C. Garrett
9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
10. Spectrophotometric identification of Organic Compounds by Silverstein
11. HPTLC by P.D. Seth
12. Indian Pharmacopoeia 2007
13. High Performance thin layer chromatography for the analysis of medicinal plants by Eike Reich, Anne Schibli
Course Objective: The topics which are present in the Drug regulatory affairs are very much useful which increases the knowledge regarding the regulatory aspects in the pharmaceutical industries.

Course Outcome:
- Students will come to know the different competent regulatory authorities globally.
- Students be aware of technical aspects pertaining to the marketing authorization application (MAA)
- The regulatory guidelines and directions framed by the regulatory authorities will be helpful to place the drug products in market for marketing approvals.

UNIT I
Drug Regulatory Aspects (India)
1. Indian drug regulatory authorities, Central and State regulatory bodies (FDA)
2. Drugs and Cosmetics Act and Rules with latest Amendments (Selective)
3. Special emphasis – Schedule M and Y
4. New drugs – Importation, Registration, development, Clinical Trials, BE NOC & BE studies
5. Various Licences – Test Lic., Import lic., for testing of drugs and API’s, Manufacturing Contract and Loan licence manufacturing.

UNIT II
Good Manufacturing Practices (GMP)
1. Indian GMP certification, WHO GMP certification.
2. ICH guidelines for stability testing and other relevant ones (Q1-Q10)
3. Export permissions and manufacturing for semi-regulated countries
4. Understanding of the plant layouts with special emphasis on the environment & safety (HVAC, Water Systems, Stores Management, Effluent etc.)
5. Quality Assurance and Quality Control – Basic understanding for in-built quality.

UNIT III
A detailed study of regulatory aspects that affect drug product design, manufacture and distribution in a developed country such as USA and in a developing country such as Brazil, Hatch Waxmann Act; Bolar Provisions and other FDA Regulations. Regulatory aspects of pharmaceutical and bulk drug manufacture, regulatory drug analysis.

UNIT IV
Documentation related to manufacturing, cleaning methods, retention samples and records, quality control, batch release documents, distribution records, complaints and recalls. Quality, safety and legislation for cosmetic products and herbal products.

UNIT V
Governing Regulatory Bodies across the globe.
Country Authority Submission
a. U.S Food & Drug Administration USDMF
b. Canada Therapeutic Product Directorate DMF
c. Europe
 1) European Medicines Agency (EMEA/ National Authorities) EDMF
 2) European Directorate for Quality of Medicines CEP/COS & Health Care Products.
3) MHRA – Medicines and Health Care Products Regulatory Agency

d. Product Filing
e. Responding Regulatory Deficiencies
f. Final Approval Procedure

Preparation, review and submission of Drug Master Files to Regulatory Authorities as per their specific requirements.

TEXT AND REFERENCE BOOKS:

1. Original laws published by Govt. of India.
3. Laws of Drugs in India by Hussain.
5. Pharmaceutical Regulatory Affairs - Selected Topics, CVS Subramanyam and J Thimmasetty, Vallabh Prakashan Delhi - 2013
DRUG DISCOVERY AND DESIGN (Professional Elective – II)

Course Objective: The topics are framed to enhance the student’s knowledge in the various areas of molecular modeling, molecular docking, pharmacophore concepts, drug design techniques with detail concepts of all the mentioned areas.

Course Outcome: This enables the students to get a broad idea on the drug discovery mechanisms, its related terms and concepts of designing of drugs.

UNIT - I

UNIT - II
Pharmacophore concept: Pharmacophore mapping, methods of conformational search used in pharmacophore mapping. Comparison between the popular pharmacophore methods like Catalyst/HipHop, DiscoTech, GASP with practical examples, 3D QSAR Techniques.

UNIT - III
Design of drugs for the following biological targets Agent acting on enzymes: DHFR, HIV-protease HMG-CoA Reductase, Phosphodiesterase, ACE, Transpeptidase, β-lactamase. Agents acting on receptors: PPAR, protein kinases. Agents acting on Nucleic acids: Topoisomerase, DNA and RNA polymerase, HIV-Reverse transcriptase

UNIT - IV
Molecular docking: Rigid docking, flexible docking, manual docking. Advantages and disadvantages of Flex-X, Flex-S, Autodock and Dock softwares, with successful examples. Molecular dynamics: Dynamics of drugs, biomolecules, drug-receptor complexes, Monte Carlo simulations and Molecular dynamics in performing conformational search and docking. Estimation of free energy from dynamical methods.

UNIT - V
De Novo drug design techniques: Receptor/enzyme cavity size prediction. Predicting the functional components of cavities, designing drugs fitting into cavity. Active site analysis structure – based drug design. Informatics methods in drug design: Informatics methods in drug design: Brief introduction to bioinformatics, chemoinformatics.

REFERENCES:
5. Molecular Modelling, by A. R. Leach
7. Practical Applications of computer aided drug design, by P.S. Charifson
8. Molecular modeling in Drug Design, by C. Cohen
9. Chemical Applications of Molecular modeling, by J. Goodman
10. Pharmacophore perception, by O.F. Guner
PHARMACEUTICALS AND FOOD ANALYSIS (Professional Elective – II)

Course Objective: This course is designed to impart knowledge on analysis of food constituents and finished food products. The course includes application of instrumental analysis in the determination of pesticides in variety of food products.

Course Outcome: At completion of this course student shall be able to understand various analytical techniques in the determination of
- Food constituents
- Food additives
- Finished food products

UNIT I
a. Carbohydrates: Classification and properties of food carbohydrates, General methods of analysis of food carbohydrates,
b. Proteins: Chemistry and classification of amino acids and proteins, Physico-Chemical properties of protein and their structure, general methods of analysis of proteins and amino acids

UNIT II
Probiotics: Definition, history, importance, mode of action, identification advantages and disadvantages of probiotics. Applications of Probiotics

UNIT III
Lipids: Classification, general methods of analysis, refining of fats and oils; hydrogenation of vegetable oils, Determination of adulteration in fats and oils.

UNIT IV
Vitamins: Classification of vitamins, methods of analysis of vitamins, Principles of microbial assay of vitamins of B-series

UNIT V
b. General Analytical methods for milk, milk constituents and milk products like ice cream, milk powder, butter, margarine, cheese including adulterants and contaminants of milk.

c. Analysis of fermentation products like wine, spirits, beer and vinegar.
- Pesticides in food
- And also student shall have the knowledge on food regulations and legislations

TEXT BOOKS:
4. Analysis of Food constituents – Multon, Wiley VCH.
5. Dr. William Horwitz, Official methods of analysis of AOAC International
REFERENCE BOOKS:
1. Remington’s Pharmaceutical Sciences by Alfonso and Gennaro
4. Indian Pharmacopoeia 2012
Course Objective: The students will acquire the knowledge about the various aspects of X-Ray diffraction methods, all types of IR methods, particle sizing methods, also DSC, DTA, TGA etc.

Course Outcome: By the completion of topics the students will come out with the thorough knowledge of various spectral aspects of X-Ray, IR, SEM, ORD etc which help them in further projects works and also industrial opportunities.

UNIT - I
X-Ray diffraction methods: Origin of X-rays, basic aspects of crystals, X-ray crystallography, miller indices, rotating crystal techniques, single crystal diffraction, power diffraction, structural elucidation and applications.

UNIT - II
a) FT-NIR: Principle (overtones, combinations, fermi resonance, interferences etc.), instrumentation (dispersion spectrometer and FT-NIR), advantage and disadvantage, qualitative and quantitative applications, including PAT and non-destructive analysis.
b) ATR: Principle (total internal reflection, evanescent wave, etc.), instrumentation (ATR crystal, IR beam), advantages and disadvantages, pharmaceutical applications.

UNIT - III
ELECTROMETRIC TECHNIQUES: Principle, instrumentation and applications of Potentiometer, Amperometer, Conductometer and Polarography.

UNIT - IV
a) Spectrofluorimetry: Theory of Fluorescence, Factors affecting fluorescence (Characteristics of drugs that can be analysed by fluorimetry), Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
b) Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and applications.

UNIT - V
FT-Raman: Principle (absorption, diffraction, scattering and emission of wave, molecular interaction), instrumentation (Dispersive Raman, FT-Raman), advantage and disadvantage, pharmaceutical applications including detection of counterfeit.

REFERENCES:
1. Instrumental Methods of Chemical Analysis by B.K Sharma
2. Organic spectroscopy by Y.R Sharma
3. A Text book of Pharmaceutical Analysis by Kerrenth A. Connors
4. Vogel’s Text book of Quantitative Chemical Analysis by A.I. Vogel
5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
6. Organic Chemistry by I. L. Finar
7. Organic spectroscopy by William Kemp
8. Quantitative Analysis of Drugs by D. C. Garrett
9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
10. Spectrophotometric identification of Organic Compounds by Silverstein
11. HPTLC by P.D. Seth
12. Spectroscopy by Donald L Pavia, Gary M Lampman, George S Kriz, James A Vyvyan
RESEARCH METHODOLOGY AND IPR

Course Objectives:
- To understand the research problem
- To know the literature studies, plagiarism and ethics
- To get the knowledge about technical writing
- To analyze the nature of intellectual property rights and new developments
- To know the patent rights

Course Outcomes: At the end of this course, students will be able to
- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT - I
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT - II
Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT - III
Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT - IV

UNIT-V:
TEXT BOOKS:
 & engineering students”
2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”

REFERENCES:
 Technological Age”, 2016.
List of Experiments: (Minimum of 10 experiments shall be conducted)

1. Synthesis and characterization of the following drugs:
 a. Benzamidine by Beckmann rearrangement
 b. 4-Benzylidene-2-methylloxazol-5-one (or) azalactone
 c. N-(m-Nitrobenzyl) aniline from m-nitrobenzaldehyde
 d. 2, 3-Diphenyl quinoxaline
 e. 1H-Indole-3-carboxaldehyde
 f. 3, 4-Dihydropyrimidin-2(1H)-one from benzaldehyde, ethyl acetoacetate and urea in presence of CaCl₂ (catalyst).
 g. Schiff base by microwave irradiation
 h. Cinnamic acid by Perkin reaction
 i. β-Dimethylaminopropiophenone hydrochloride (Mannich base)
 j. 2-Phenyl indole
 k. Dimedone (5,5-dimethyl cyclohexane-1,3-dione)
 l. 3-Bromo cyclohexene from cyclohexene using NBS.
 m. p-Amino benzyl alcohol from p-amino benzaldehyde using sodium borohydride.
 n. Cyclohexane-2,5-dicarboxylic acid from benzoic acid (hydrogenation).

2. Any other relevant experiments based on theory.

REFERENCES:
List of Experiments:

1. Synthesis of any two drugs from the following classes of drugs (Minimum two from each class)
 a. Analgesics, NSAIDS and antipyretics
 b. CNS and CVS drugs

2. QSAR Studies by using softwares
 a. CoMFA – 3D QSAR method,
 b. CODESSA,
 c. descriptor software (all are free online softwares) minimum of 3 experiments

3. Docking studies of drugs by using free online softwares like
 a. AutoDock,
 b. BLAST,
 c. GPCR pred,
 d. FASTA,
 e. ATPINT,
 f. Maestro,
 g. ESLPred2 (Minimum of 5 experiments)
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M.Pharm (Pharmaceutical Chemistry)

ENGLISH FOR RESEARCH PAPER WRITING (Audit Course - I & II)

Prerequisite: None

Course objectives: Students will be able to:
- Understand that how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission

UNIT-I:
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

UNIT-III:
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:
key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT-V:
skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

TEXT BOOKS/REFERENCES:
Prerequisite: None

Course Objectives: Students will be able to
- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches,
- planning and programming in different countries, particularly their home country or the countries they work in

UNIT-I:
Introduction:
Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.
Disaster Prone Areas in India:
Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT-II:
Repercussions of Disasters and Hazards:

UNIT-III:
Disaster Preparedness and Management:
Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT-IV:
Risk Assessment Disaster Risk:

UNIT-V:
Disaster Mitigation:
Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.
TEXT BOOKS/ REFERENCES:
2. Sahni, Pardeep Et. Al. (Eds.),” Disaster Mitigation Experiences and Reflections”, Prentice Hall of India, New Delhi.
Prerequisite: None

Course Objectives:
- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Course Outcomes: Students will be able to
- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT-I:
Alphabets in Sanskrit,

UNIT-II:
Past/Present/Future Tense, Simple Sentences

UNIT-III:
Order, Introduction of roots,

UNIT-IV:
Technical information about Sanskrit Literature

UNIT-V:
Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TEXT BOOKS/ REFERENCES:
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
Prerequisite: None

Course Objectives: Students will be able to
- Understand value of education and self-development
- Imbibe good values in students
- Let the students know about the importance of character

Course outcomes: Students will be able to
- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT-I:

UNIT-II:

UNIT-III:
Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline, Punctuality, Love and Kindness.

UNIT-IV:

UNIT-V:

TEXT BOOKS/REFERENCES:
CONSTITUTION OF INDIA (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:

UNIT-II:

UNIT-III:
Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualification, Powers and Functions.

UNIT-IV:

UNIT-V:
Election Commission: Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.
TEXT BOOKS/ REFERENCES:
1. The Constitution of India, 1950 (Bare Act), Government Publication.
PEDAGOGY STUDIES (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:
- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DFID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: Students will be able to understand:
- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT-I:

UNIT-II:
Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT-III:
Evidence on the effectiveness of pedagogical practices, Methodology for the indepth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers’ attitudes and beliefs and Pedagogic strategies.

UNIT-IV:
Professional development: alignment with classroom practices and follow-up support. Peer support, Support from the head teacher and the community. Curriculum and assessment. Barriers to learning: limited resources and large class sizes.

UNIT-V:

TEXT BOOKS/ REFERENCES:
STRESS MANAGEMENT BY YOGA (Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To achieve overall health of body and mind
- To overcome stress

Course Outcomes: Students will be able to:
- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

UNIT-I:
Definitions of Eight parts of yog. (Ashtanga)

UNIT-II:
Yam and Niyam.

UNIT-III:
Do’s and Don’t’s in life.
i) Ahinsa, satya, astheya, bhrmacharya and aparigraha
ii) Shaucha, santosh, tapa, swadhyay, ishwarpriyanadhan

UNIT-IV:
Asan and Pranayam

UNIT-V:
i) Various yog poses and their benefits for mind & body
ii) Regularization of breathing techniques and its effects-Types of pranayam

TEXT BOOKS/ REFERENCES:
1. "Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur
2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama
 (Publication Department), Kolkata
PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS
(Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes: Students will be able to
- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students

UNIT-I:
Neetisatakam-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)

UNIT-II:
Neetisatakam-Holistic development of personality
- Verses- 52,53,59 (dont’s)
- Verses- 71,73,75,78 (do’s)

UNIT-III:
Approach to day to day work and duties.
- Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT-IV:
Statements of basic knowledge.
- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12-Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta:

UNIT-V:
- Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 – Verses 37,38,63

TEXT BOOKS/ REFERENCES:
1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.