I Year I Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core-I</td>
<td>Automation in Manufacturing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core-II</td>
<td>Theory of Metal Cutting</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - I</td>
<td>Design for Manufacturing & Assembly</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - I</td>
<td>Advanced Manufacturing Processes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - I</td>
<td>Product Data Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - II</td>
<td>Optimization Techniques & Applications</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - II</td>
<td>Precision Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - II</td>
<td>Additive Manufacturing Technologies</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MC</td>
<td>Research Methodology & IPR</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Lab - I</td>
<td>Automation Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Lab - II</td>
<td>Advanced Manufacturing Processes & Metal Cutting Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Audit - I</td>
<td>Audit Course- I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>16</td>
<td>0</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

I Year II Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core - III</td>
<td>Computer Aided Manufacturing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core - IV</td>
<td>Manufacturing Systems: Simulation Modelling & Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - III</td>
<td>Materials Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - III</td>
<td>Quality Engineering in Manufacturing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - IV</td>
<td>Advanced Tool Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - IV</td>
<td>Total Quality Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - IV</td>
<td>Concurrent Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - IV</td>
<td>Industrial Robotics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Mini Project with Seminar</td>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Lab - III</td>
<td>Advanced CAD/ CAM Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Lab - IV</td>
<td>Simulation of Manufacturing Systems Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Audit - II</td>
<td>Audit Course - I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>14</td>
<td>0</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>
Audit Course I & II:
1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by Yoga
8. Personality Development through Life Enlightenment Skills
Prerequisites: Production Technology, Machine Tools, Operations Research

Course Objectives:
- Lower Cost and Improve Time-to-Market
- Automation investment life-cycle analysis
- Empowered teams of talented employees
- Partnering with automation suppliers
- On-line process analysis
- Procedural process control
- Information integration and data warehousing

Course Outcomes: Upon completion of this course the student will be able to:
- Illustrate the basic concepts of automation in machine tools.
- Analyze various automated flow lines, Explain assembly systems and line balancing methods.
- Describe the importance of automated material handling and storage systems.
- Interpret the importance of adaptive control systems, automated inspection systems.

UNIT-I:

UNIT-II:

UNIT-III:

UNIT-IV:
Transfer lines, Fundamentals of Automated Production Lines, Storage Buffers, and Applications of Automated Production Lines. Analysis of Transfer Lines with no Internal Storage, Analysis of Transfer lines with Storage Buffers.

UNIT-V:
Automated Assembly Systems, Fundamentals of Automated Assembly Systems, Design for Automated Assembly, and Quantitative Analysis of Assembly Systems - Parts Delivery System at Work Stations, Multi-Station Assembly Machines, Single Station Assembly Machines, Partial Automation.

TEXT BOOKS:
1. Automation, Production systems and computer integrated manufacturing by Mikel P. Groover, Pearson Education.

REFERENCE BOOKS:
1. CAD CAM: Principles, Practice and Manufacturing Management by Chris Mc Mohan, Jimmie Browne, Pearson edu. (LPE)
THEORY OF METAL CUTTING (Professional Core - II)

Course Objectives:
- To impart the knowledge of basic methodology of metal cutting.
- To educate the student about the structure, working, forces involved in single point and multipoint cutting tools.
- To understand the concepts of tool life, machinability, wear, influence of heat.
- To design the jigs and fixtures required for machine tools.

Course Outcomes: Students can analyze the machining processes in terms of input variables like
- Speed, feed, depth of cut and their influence on surface roughness and performance measures, Metal removal rate, tool wear rate, machining time, energy, work done, heat distribution.

UNIT – I:

UNIT – II:
Single Point Cutting Tool: Various systems of specifications, single point cutting tool geometry and their inter-relation. Theories of formation of built-up edge and their effect, design of single point contact tools throwaway inserts.

UNIT – III:
Multipoint Cutting Tool: Drill geometry, design of drills, Rake & Relief angles of twist drill, speed, feed and depth of cut, machining time, forces, milling cutters, cutting speed &feed machining time- design – from cutters.
Grinding: Specifications of grinding of grinding wheel, mechanics of grinding, Effect of Grinding conditions on wheel wear and grinding ratio. Depth of cut, speed, machining time, temperature power.

UNIT – IV:
Tool Life and Tool Wear: Theories of tool wear – adhesion, abrasive and diffusion wear mechanisms, forms of wear, Tool life criteria and machinability index.
Types of sliding contact, real area of contact, laws of friction and nature of frictional force in metal cutting. Effect Tool angle, Economics, cost analysis, mean co-effect of friction.

UNIT – V:
Cutting Temperature: Sources of heat in metal cutting, influence of metal conditions, Temperature distribution, zones, experimental techniques, analytical approach. Use of tool- work thermocouple for determination of temperature. Temperature distribution in Metal Cutting.
Cutting fluids: Functions of cutting fluids, types of cutting fluids, properties, selection of cutting fluids.
Cutting tool materials: Historical developments, essential properties of cutting tool materials, types, composition and application of various cutting tool materials, selection of cutting tool materials.

TEXT BOOKS:

REFERENCES:
1. ‘Tool Design’ by David Son / Lacain/ Goud, Tata Me Graw Hill.
Descriptive text about the course "Design for Manufacturing and Assembly."
fastening, effect of part symmetry on handling time, effect of part thickness and size on handling time, effect of weight on handling time, parts requiring two hands for manipulation, effects of combinations of factors, effect of symmetry effect of chamfer design on insertion operations, estimation of insertion time.

TEXT BOOKS:

REFERENCES:
1. Computer Aided Assembly London/ A Delbainbre/
ADVANCED MANUFACTURING PROCESSES (Professional Elective - I)

Prerequisites: Production Technology, Machine Tools, Metal Cutting, Material Science.

Course Objectives:
- To make acquainted the various unconventional manufacturing processes
- To know about the applications of advanced manufacturing processes (which are exceptional)
- To encourage the students for developing the models of Advanced Manufacturing Processes

Course Outcomes: At the end of the course, the student will be able to understand the working principle of Electron beam, laser beam and laser beam processes.
- Able to understand different types of composite material characteristics, types of micro & macro machining processes.
- Understand the e-manufacturing & nano materials.

UNIT-I:
Surface treatment: Scope, Cleaners, Methods of cleaning, Surface coating types, and ceramic and organic methods of coating, economics of coating. Electro forming, Chemical vapour deposition, thermal spraying, Ion implantation, diffusion coating, Diamond coating and cladding.

UNIT-II:

UNIT-III:

UNIT-IV:
Processing of ceramics: Applications, characteristics, classification. Processing of particulate ceramics, Powder preparations, consolidation, Drying, sintering, Hot compaction, Area of application, finishing of ceramics.
Processing of Composites: Composite Layers, Particulate and fiber reinforced composites, Elastomers, Reinforced plastics, MMC, CMC, Polymer matrix composites.

UNIT-V:
Fabrication of Microelectronic devices: Crystal growth and wafer preparation, Film Deposition oxidation, lithography, bonding and packaging, reliability and yield, Printed Circuit boards, computer aided design in microelectronics, surface mount technology, Integrated circuit economics.
E-Manufacturing, nanotechnology, micromachining and High-speed Machining, basic principles, working, applications, advantages.
TEXT BOOKS:
3. Advanced Machining Processes by V. K. Jain, Allied Publications.

REFERENCE BOOKS:
5. Advanced Methods of Machining by J. A Mc Geough, Springer.
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. TECH. I Year I Sem. (AMS)

PRODUCT DATA MANAGEMENT (Professional Elective - I)

Prerequisites: Management Science

Course Objectives:
- Competence with a set of tools and methods for product design and development.
- Confidence in own abilities to create a new product.
- Awareness of the role of multiple functions in creating a new product (e.g. marketing, finance, industrial design, engineering, production).
- Ability to coordinate multiple, interdisciplinary tasks in order to achieve a common objective.
- Reinforcement of specific knowledge from other courses through practice and reflection in an action-oriented setting.
- Enhanced team working skills.

Course Outcomes:
- After doing this course, the student should be able to understand the need of Industrial Product & Development, customer needs & Design aspects of new products.
- Able to involve customer into the development of new products and managing requirements.
- Able to understand the design of experiments and technical analysis.
- Know product architecture.
- Investigate the customer requirement and survey of problems.
- Design for manufacture and do prototyping.

UNIT - I:

UNIT – II:

UNIT - III:

UNIT – IV:
UNIT – V:

TEXT BOOKS:

REFERENCES:
3. Production and Operations Management/Chase/TMH
OPTIMIZATION TECHNIQUES AND APPLICATIONS (Professional Elective - II)

Pre-requisites: Operations Research

Course Objectives: The main objectives of the course are: Learn
- Numerical optimization techniques for single variable and multi variable non-linear optimization problems.
- Sensitivity analysis on LPP queuing
- Simulation of annexing problem & inventory problem.
- Geometry cutting plane method & branch bound method for linear IPP.
- Meaning of stochastic programming problem simple problems for finding mean variance of random variables chance constrained algorithm.
- Formulation of GP model and solving it using arithmetic geometric inequality theorem.
- State of art nontraditional optimization technique, namely genetic algorithm simulated annealing & particle swarm optimization.

Course Outcomes: At the end of the course, the student is able to apply appropriate optimization techniques and solve.
- Based on the type of optimization problem like single variable or multivariable,
- Make sensitivity analysis to study effect of changes in parameters of LPP on the optimal solution without reworking.
- Simulate the system to estimate specified performance measures.
- Solve integer programming problem by either geometry cutting plane algorithm or branch band method.
- Apply chance constrained algorithm and solve stochastic linear programme.
- Formulate GP model and solve it.
- Solve given optimization problem by genetic algorithm or simulated annealing or PSO.

UNIT-I:

UNIT-II:

UNIT-III:

UNIT-IV:
Integer Programming: Introduction – formulation – Geometry cutting plane algorithm – Zero or one algorithm, branch and bound method
Stochastic Programming: Basic concepts of probability theory, random variables- distributions-mean, variance, correlation, co variance, joint probability distribution. Stochastic linear programming: Chance constrained algorithm.

UNIT-V:
Geometric Programming: Posynomials – Arithmetic - Geometric inequality – unconstrained G.P- constrained G.P (≤ type only)

TEXT BOOKS:
2. Optimization for Engineering Design by Kalyanmoy Deb, PHI

REFERENCE BOOKS:
1. Operations Research by S. D. Sharma
2. Operation Research by H. A. Taha, TMH
3. Optimization in operations research by R. L Rardin
PREPARATION ENGINEERING (Professional Elective - II)

Pre-requisites: Machine Tools, Metrology

Course Objectives:
- To give the basic precision engineering methodology and state-of-the-art concepts for designing high-precision CNC machines and products.
- The course is specifically tailored to teach the novel design principles leading to improved machine performance and reliability.
- To apply the acquired knowledge to other design efforts and fields as well.

Course Outcomes: At the end of the course, the student will be able to:
- Apply fits and tolerances for parts and assemblies according to ISO standards.
- Apply selective assembly concept for quality and economic production.
- Assign tolerances using principles of dimensional chains for individual features of a part or assembly.
- Evaluate the part and machine tool accuracies.
- Analyze the causes for dimensional and geometrical errors prior to and during machining and suggest remedies.

UNIT-I:

UNIT-II:
Datum Systems: Design of freedom, Grouped Datum Systems – different types, two and three mutually perpendicular grouped datum planes; Grouped datum system with spigot and recess, pin and hole; Grouped Datum system with spigot and recess pair and tongue – slot pair – Computation of Transnational and rotational accuracy, Geometric analysis and application.

UNIT-III:

Tolerance Charting Techniques: Operation Sequence for typical shaft type of components, Preparation of Process drawings for different operations, Tolerance worksheets and central analysis, Examples. Design features to facilitate machining; Datum Features – functional and manufacturing. Components design – Machining considerations, Redesign for manufactured parts examples.

UNIT-IV:
Surface finish, Review of relationship between attainable tolerance grades and different machining process. Cumulative effect of tolerances sure fit law, normal law and truncated normal law.
UNIT-V:
Measuring Systems Processing: In process or in-situ measurement of position of processing point. Post process and on-machine measurement of dimensional features and surface-mechanical and optical measuring systems.

TEXT BOOKS:

REFERENCE BOOK:
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. TECH. I Year I Sem. (AMS)

ADDITIVE MANUFACTURING TECHNOLOGIES (Professional Elective - I)

Prerequisites: Basics of Manufacturing, Basic knowledge in Calculus, Physics, Thermodynamics, and Chemistry

Course Objectives: The objective of the Course is to study methods used in additive manufacturing, theories governing the additive manufacturing, give information on materials, explain relations between materials to be processed and methods of additive manufacturing with introduction to common machines used for the technology and show applications and business opportunities with future directions.

Course outcomes:
- Understand the fundamentals for additive manufacturing and how it is different and discuss about various types of liquid based, solid based and powder-based AM technologies.
- Understand the various types of Pre-processing, processing, post-processing errors in AM. Also to know the various types of data formats and software’s used in AM.
- Know the various applications of AM in design analysis, aerospace, automotive, biomedical and other fields.

UNIT–I:

UNIT–II:

UNIT–III:

Rapid Tooling: Introduction to Rapid Tooling (RT), Conventional Tooling Vs RT, Need for RT. Rapid Tooling Classification: Indirect Rapid Tooling Methods: Arc Spray Metal Deposition, Investment

UNIT–IV:
AM Software’s: Need for AM software, Features of various AM software’s like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, Surgi Guide, 3-matic, Simplant, Mesh Lab.

UNIT–V:

TEXT BOOK:

REFERENCE BOOKS:
RESEARCH METHODOLOGY AND IPR

Prerequisite: None

Course Objectives:
- To understand the research problem
- To know the literature studies, plagiarism and ethics
- To get the knowledge about technical writing
- To analyze the nature of intellectual property rights and new developments
- To know the patent rights

Course Outcomes: At the end of this course, students will be able to
- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I:
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT-II:
Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT-III:
Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-IV:

UNIT-V:
TEXT BOOKS:
2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”

REFERENCES:
Note: Conduct any Ten exercises from the list given below:

1. Draw the circuit diagram to operate single acting pneumatic cylinder using 3/2 push button direction control valve.
2. Draw the circuit diagram to operate double acting pneumatic cylinder using 5/2 direction control valve using push button momentary switch/push button latch.
3. Draw the circuit diagram to operate single acting pneumatic cylinder using 5/2 air spring valve & PLC.
4. Draw the circuit diagram to operate double acting pneumatic cylinder using 5/2 air spring valve & PLC.
5. Draw the circuit diagram to operate double acting hydraulic cylinder using 4/2 direction control valve (solenoid control) using push button switch/latch switch.
6. Draw the circuit diagram to operate double acting hydraulic cylinder using 4/2 direction.
7. Draw the circuit diagram to operate double acting hydraulic cylinder using 4/2 direction control valve (solenoid control) using PLC.
8. Draw the circuit diagram to operate double acting hydraulic cylinder using 4/3 direction control valve (solenoid control) using PLC.
10. Inverse Kinematic Analysis of a Robot.
11. Trajectory planning of a Robot joint in Space scheme.
13. Robotic programming using SCARA.
List of Experiments:

1. Study of the morphology of chips produced from different materials and machining processes.
2. Effect of tool geometry on chip flow direction in simulated orthogonal cutting conditions.
3. Study of cutting ratio/chip thickness ratio in simulated orthogonal cutting with different materials and tool geometry.
4. Evaluations of tool face temperature with thermocouple method.
5. Roughness of machined surface. Influence of tool geometry and feed rate.
6. Extrusion of cylindrical billets through dies of different included angles and exit diameters and their effect on extrusion pressure.
7. Practice and study of blanking and punching process and their characteristic features on mechanical press with existing dies.
8. Study of operation of tool and cutter grinder, twist drill grinder, Centreless grinder
9. Determination of cutting forces in turning
10. Inspection of parts using tool makers microscope, roughness and form tester
11. Experimental Study of MRR on EDM
12. Experimental Study of TWR on EDM
13. Experimental Study of Surface Roughness on EDM
14. Experimental Study on ECM
15. Experimental Study on 3D Printing

Note: Conduct any Ten exercises from the list given above
ENGLISH FOR RESEARCH PAPER WRITING (Audit Course - I & II)

Prerequisite: None

Course objectives: Students will be able to:
- Understand that how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission

UNIT-I:
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

UNIT-III:
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:
key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT-V:
skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

TEXT BOOKS/ REFERENCES:
Prerequisite: None

Course Objectives: Students will be able to
- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches,
- planning and programming in different countries, particularly their home country or the countries they work in

UNIT-I:
Introduction:
Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Disaster Prone Areas in India:
Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT-II:
Repercussions of Disasters and Hazards:

UNIT-III:
Disaster Preparedness and Management:
Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT-IV:
Risk Assessment Disaster Risk:

UNIT-V:
Disaster Mitigation:
Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.
TEXT BOOKS/ REFERENCES:

2. Sahni, Pardeep Et. Al. (Eds.),” Disaster Mitigation Experiences and Reflections”, Prentice Hall of India, New Delhi.
SANSKRIT FOR TECHNICAL KNOWLEDGE (Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Course Outcomes: Students will be able to
- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT-I:
Alphabets in Sanskrit,

UNIT-II:
Past/Present/Future Tense, Simple Sentences

UNIT-III:
Order, Introduction of roots,

UNIT-IV:
Technical information about Sanskrit Literature

UNIT-V:
Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TEXT BOOKS/ REFERENCES:
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
Prerequisite: None

Course Objectives: Students will be able to
- Understand value of education and self-development
- Imbibe good values in students
- Let the should know about the importance of character

Course outcomes: Students will be able to
- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT-I:

UNIT-II:

UNIT-III:
Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline, Punctuality, Love and Kindness.

UNIT-IV:

UNIT-V:

TEXT BOOKS/ REFERENCES:
CONSTITUTION OF INDIA (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:
- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:
- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:

UNIT-II:

UNIT-III:
Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualification, Powers and Functions.

UNIT-IV:

UNIT-V:
TEXT BOOKS/ REFERENCES:
1. The Constitution of India, 1950 (Bare Act), Government Publication.
PEDAGOGY STUDIES (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:
- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DFID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: Students will be able to understand:
- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT-I:

UNIT-II:
Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT-III:
Evidence on the effectiveness of pedagogical practices, Methodology for the indepth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers’ attitudes and beliefs and Pedagogic strategies.

UNIT-IV:
Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes

UNIT-V:
Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

TEXT BOOKS/ REFERENCES:
M. Tech (AMS)

STRESS MANAGEMENT BY YOGA (Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To achieve overall health of body and mind
- To overcome stress

Course Outcomes: Students will be able to:
- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

UNIT-I:
Definitions of Eight parts of yog. (Ashtanga)

UNIT-II:
Yam and Niyam.

UNIT-III:
Do`s and Don’t`s in life.
i) Ahinsa, satya, astheya, bramhacharya and aparigraha
ii) Shaucha, santosh, tapa, swadhya, ishwarpranidhan

UNIT-IV:
Asan and Pranayam

UNIT-V:
i) Various yog poses and their benefits for mind & body
ii) Regularization of breathing techniques and its effects-Types of pranayam

TEXT BOOKS/ REFERENCES:
1. "Yogic Asanas for Group Training-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur
2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama
 (Publication Department), Kolkata
PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS
(Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes: Students will be able to
- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetisatakam will help in developing versatile personality of students

UNIT-I:
Neetisatakam-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)

UNIT-II:
Neetisatakam-Holistic development of personality
- Verses- 52,53,59 (don’ts)
- Verses- 71,73,75,78 (do’s)

UNIT-III:
Approach to day to day work and duties.
- Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT-IV:
Statements of basic knowledge.
- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta:

UNIT-V:
- Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 – Verses 37,38,63

TEXT BOOKS/ REFERENCES:
1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
2. Bhartrihari’s Three Satakam (Niti-tringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.
3.