I Year I Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core - I</td>
<td>Advanced CAD</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core - II</td>
<td>Computer Aided Manufacturing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
| Professional Elective - I | 1. Mechanical Behaviour of Materials
2. Experimental Stress Analysis
3. Additive Manufacturing Technologies | 3 | 0 | 0 | 3 |
| Professional Elective - II | 1. Automation in Manufacturing
2. Computer Aided Process Planning
3. Industrial Robotics | 3 | 0 | 0 | 3 |
| Research Methodology & IPR | 2 | 0 | 0 | 2 | |
| Lab - I | Advanced Computer Aided Design Lab | 0 | 0 | 4 | 2 |
| Lab - II | Computer Aided Manufacturing Lab | 0 | 0 | 4 | 2 |
| Audit - I | Audit Course - I | 2 | 0 | 0 | 0 |
| **Total** | **16** | **0** | **8** | **18** |

I Year II Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core - III</td>
<td>Advanced Finite Element and Boundary Element Methods</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core - IV</td>
<td>Manufacturing Systems: Simulation Modelling & Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
| Professional Elective - III | 1. Intelligent Manufacturing Systems
2. Advanced Manufacturing Processes
3. Optimization Techniques & Applications | 3 | 0 | 0 | 3 |
| Professional Elective - IV | 1. Advanced Mechatronics
2. MEMS: Design and Manufacturing
3. Fuzzy Logic & Neural Networks | 3 | 0 | 0 | 3 |
| Mini Project with Seminar | 0 | 0 | 4 | 2 | |
| Lab - III | Simulation of Manufacturing Systems Lab | 0 | 0 | 4 | 2 |
| Lab - IV | Computer Aided Engineering Lab | 0 | 0 | 4 | 2 |
| Audit - II | Audit Course - II | 2 | 0 | 0 | 0 |
| **Total** | **14** | **0** | **12** | **18** |
II Year I Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Elective - V</td>
<td>1. Design for Manufacturing & Assembly</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Composite Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Flexible Manufacturing Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective</td>
<td>Open Elective</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Dissertation Work Review - II</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6</td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation</td>
<td>Dissertation Work Review - III</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Dissertation Viva-Voce</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

*For Dissertation Work Review - I, Please refer 7.8 in R19 Academic Regulations.

Audit Course I & II:
1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by Yoga
8. Personality Development through Life Enlightenment Skills
UNIT- I:

CAD Tools: Definition of CAD Tools, Graphics standards, Graphics software: requirements of graphics software, Functional areas of CAD, Efficient use of CAD software.

UNIT- II:

Geometric Modeling: Classification of wireframe entities, Curve representation methods, Parametric representation of analytic curves: line, circle, arc, conics, Parametric representation of synthetic curves: Hermite cubic curve, Bezier curve, B-Spline curve, NURBS, Curve manipulations.

UNIT- III:

Surface Modeling: Classification of surface entities, Surface representation methods, Parametric representation of analytic surfaces: plane surface, ruled surface, surface of revolution, tabulated cylinder, Parametric representation of synthetic curves: Hermite cubic surface, Bezier surface, B-Spline surface, Blending surface, Surface manipulations.

UNIT- IV:

UNIT- V:

Transformations: 2-D and 3-D transformations: translation, scaling, rotation, reflection, concatenation, homogeneous coordinates, Perspective projection, orthotropic projection, isometric projection, Hidden surface removal, shading, rendering.

Evaluation Criteria: Evaluation criteria of CAD software, Data exchange formats: GKS, IGES, PHIGS, CGM, STEP

Dimensioning and tolerances: Linear, angular, angular dimensions, maximum material condition (MMC), Least material condition (LMC), Regardless of feature size (RFS).

TEXT BOOKS:

1. CAD/CAM Concepts and Applications/ Alavala/ PHI.
3. CAD/CAM Principles and Applications/ P.N. Rao/TMH/3rd Edition

REFERENCES BOOKS:

1. CAD/CAM /Groover M.P./ Pearson education
2. CAD / CAM / CIM, Radhakrishnan and Subramanian/ New Age
3. Principles of Computer Aided Design and Manufacturing/ Farid Amirouche/ Pearson
UNIT - I
Computer-Aided Programming: General information, APT programming, Examples APT programming problems (2D machining only). NC programming on CAD/CAM systems, the design and implementation of post processors. Introduction to CAD/CAM software, Automatic Tool Path generation.

UNIT - II
Tooling for CNC Machines: Interchangeable tooling system, preset and qualified tools, coolant fed tooling system, modular fixturing, quick change tooling system, automatic head changers. ATC, DNC Systems and Adaptive Control: Introduction, type of DNC systems, advantages and disadvantages of DNC, adaptive control with optimization, Adaptive control with constraints, Adaptive control of machining processes like turning, grinding.

UNIT - III
Post Processors for CNC: Introduction to Post Processors: The necessity of a Post Processor, the general structure of a Post Processor, the functions of a Post Processor, DAPP — based Post Processor: Communication channels and major variables in the DAPP — based Post Processor, the creation of a DAPP — Based Post Processor.

UNIT - IV

UNIT - V

TEXT BOOKS:
3. CAD/CAM Principles and Applications, P.N. Rao, TMH.
4. Alavala, CAD/CAM PHI.

REFERENCES:
1. CAD / CAM / CIM, Radhakrishnan and Subramanian, New Age
Prerequisite: Physical Metallurgy

Course Objectives: The main objectives are to provide students with basic understanding of phase transformation by heat treating and stress-induced hardening, linear and nonlinear elastic behavior, deformation under multiaxial loading, plastic deformation and yield criteria, dislocation plasticity and strengthening mechanisms, creep, stress concentration effects, brittle versus ductile fracture, fracture mechanisms at different scales, fatigue, contact deformation, and wear.

Course outcomes: After completing this course, the student should be able to understand the different modes of failures like fracture, fatigue and creep of ductile and brittle materials

UNIT-I:
Fracture Mechanics: Strain Energy Release rate, Fracture Toughness and Design, Crack Opening Displacement, J-Integral, R Curve,

UNIT-II:
Theory of Elasticity and Plasticity:
Plasticity: Hydrostatic and Deviatoric stress, Octahedral stress, yield criteria and yield surface, texture and distortion of yield surface, true stress and true strain, flow rules, strain hardening, Ramberg Osgood equation, stress-strain relation in plasticity, plastic deformation of metals and polymers

UNIT-III:
Fatigue-I: Introduction, Stress Cycles, S-N Curve, Effect of Mean Stress on Fatigue, Cyclic Stress strain curve, Low Cycle Fatigue, Strain Life Equation, Structural Features of Fatigue, Fatigue Crack Propagation, Effect of Metallurgical Variables on Fatigue.

UNIT-IV:
Fatigue-II: Effect of stress concentration on Fatigue, Size Effect, Surface effects on Fatigue, Fatigue under Combined stresses, Design for Fatigue, Machine Design approach-Infinite life design, Local strain approach, Corrosion Fatigue, Effect of Temperature on fatigue.

UNIT-V:

TEXT BOOKS:
REFERENCE BOOKS:

UNIT-I:
Two-dimensional elasticity theory in Cartesian coordinates, plane stress problem in polar coordinates
Thick cylinders, Rotating discs - stress concentration.

UNIT- II:
Torsion of non-circular prismatic sections, rectangular and axisymmetric, Circular plates, introduction
to shell theory — contact stresses.

UNIT- III:
Single degree freedom, two-degree freedom system without and with damping - Free and forced
vibrations, Transient vibrations.

UNIT- IV:
Transient vibrations of single- and two-degree freedom systems, multi-degree of freedom systems -
applications of matrix methods, continuous systems.

UNIT -V:
Free and forced vibrations of strings bars and be CAD/CAM. Principle of orthogonality - classical and
energy methods.

TEXT BOOKS:
2. Advanced strength of materials / Den Hortog J.P./Torrent
4. Theory of Vibrations with Applications/ Thomson W.T./ CBS Publishing
5. Mechanical Vibrations/ Rao S.S./ Addison Wesley Longman
Prerequisites: Basics of Manufacturing, Basic knowledge in Calculus, Physics, Thermodynamics, and Chemistry

Course Objectives: The objective of the Course is to study methods used in additive manufacturing, theories governing the additive manufacturing, give information on materials, explain relations between materials to be processed and methods of additive manufacturing with introduction to common machines used for the technology and show applications and business opportunities with future directions.

Course outcomes:
- Understand the fundamentals for additive manufacturing and how it is different and discuss about various types of liquid based, solid based and powder-based AM technologies.
- Understand the various types of Pre-processing, processing, post-processing errors in AM. Also to know the various types of data formats and software’s used in AM.
- Know the various applications of AM in design analysis, aerospace, automotive, biomedical and other fields.

UNIT–I:

UNIT–II:

UNIT–III:

UNIT – IV:
AM Software’s: Need for AM software, Features of various AM software’s like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, Surgi Guide, 3-matic, Simplant, Mesh Lab.

UNIT – V:

TEXT BOOK:

REFERENCE BOOKS:
AUTOMATION IN MANUFACTURING (Professional Elective - II)

Prerequisites: Production Technology, Machine Tools, Operations Research

Course Objectives:
- Lower Cost and Improve Time-to-Market
- Automation investment life-cycle analysis
- Empowered teams of talented employees
- Partnering with automation suppliers
- On-line process analysis
- Procedural process control
- Information integration and data warehousing

Course Outcomes: Upon completion of this course the student will be able to:
- Illustrate the basic concepts of automation in machine tools.
- Analyze various automated flow lines, Explain assembly systems and line balancing methods.
- Describe the importance of automated material handling and storage systems.
- Interpret the importance of adaptive control systems, automated inspection systems.

UNIT - I:

UNIT - II:

UNIT - III:

UNIT - IV:
Transfer lines, Fundamentals of Automated Production Lines, Storage Buffers, and Applications of Automated Production Lines. Analysis of Transfer Lines with no Internal Storage, Analysis of Transfer lines with Storage Buffers.

UNIT - V
Automated Assembly Systems, Fundamentals of Automated Assembly Systems, Design for Automated Assembly, and Quantitative Analysis of Assembly Systems - Parts Delivery System at
Work Stations, Multi-Station Assembly Machines, Single Station Assembly Machines, Partial Automation.

TEXT BOOKS:
1. Automation, Production systems and computer integrated manufacturing by Mikel P. Groover, Pearson Education.

REFERENCE BOOKS:
1. CAD CAM: Principles, Practice and Manufacturing Management by Chris Mc Mohan, Jimmie Browne, Pearson edu. (LPE)
UNIT-I:

UNIT-II:

UNIT-III:

UNIT-IV:
Computer Aided Process Planning Systems: Logical Design of process planning - Implementation Considerations - Manufacturing system components, Production Volume, No. of production families - CAM-I, CAPP, MIPLAN, APPAS, AUTOPLAN and PRO, CPPP.

UNIT-V:

Text Books:

References:
Prerequisites: Kinematics of machinery

Course Objectives:
- To demonstrate knowledge of different types of actuators used in robotic systems.
- To analyze the position and velocity kinematics of a robot arm, implement in 2D.
- To analyze the dynamics of a robot arm, implement in 2D.
- To analyze sensor signals to implement real-time control algorithms.
- To demonstrate knowledge of error propagation in electrical, mechanical and computational systems.
- To construct, program, and test the operation of a robotic system to perform a specified task.

Course Outcomes: After doing this course, the student should be able to,
- Understand the evolution, classification, structures and drives for robots.
- Teach the students about the kinematic arrangement of robots and its applications in the area of manufacturing sectors.
- Expose the students to build a robot for any type of application.

UNIT-I:

Control System and Components: basic concept and modals controllers control system analysis, robot actuators and feedback components (sensors): Internal & External Sensors, Positions sensors, velocity sensors - Desirable features, tactile, proximity and range sensors, uses sensors in robotics, Power Transmission Systems.

UNIT-II:
Motion Analysis and Control: Manipulator kinematics, position representation Homogeneous transformation, D-H Notation, D-H Transformation Matrix, Forward & Inverse transformations, problems on planar & spatial manipulators, Differential Kinematics, Jacobian Formulation, problems, manipulator path control: Slew, Joint Interpolated & Straight line motions, trajectory planning: Joint space scheme, Cartesian space scheme, Cubic Polynomial fit without and with via point, blending.

UNIT-III:
Robot Dynamics: Lagrange – Euler & Newton - Euler formulations, problems on two link planar manipulators, configuration of robot controller.

End Effectors: Grippers-types, operation, mechanism, force analysis, tools as end effectors consideration in gripper selection and design.

Machine Vision: Functions, Sensing and Digitizing-imaging, Devices, Lighting techniques, Analog to digital single conversion, Image storage, Image processing and Analysis-image data reduction, Segmentation feature extraction. Object recognition, training the vision system, Robotics application.
UNIT-IV:
Robot Programming: Lead through programming, Robot programming as a path in space, Motion interpolation, WAIT, SINGNAL AND DELAY commands, Branching capabilities and Limitations.
Robot Languages: Textual robot languages, Generation, Robot language structures, Elements and functions.

UNIT-V:
Robot Cell Design and Control: Robot cell layouts-Robot centered cell, In-line robot cell, Considerations in work cell design, Work cell control, Inter locks, Error detection, Work cell controller.
Robot Applications: Material transfer, Machine loading/unloading, Processing operations, Assembly and Inspection, Future Applications.

TEXT BOOKS:
1. Introduction to Robotics Mechanics & Control by John J. Craig, Pearson
2. Industrial robotics by Mikell P. Groover, McGraw Hill.

REFERENCE BOOKS:
1. Industrial robotics by Mikell P. Groover, McGraw Hill.
2. Robotics by K.S.Fu, McGraw Hill.
3. Introduction to Robotics Mechanics & Control by John J. Craig, Pearson
4. Robot Analysis by Lung Wen Tsai, John Wiley & Sons
Prerequisite: None

Course Objectives:
- To understand the research problem
- To know the literature studies, plagiarism and ethics
- To get the knowledge about technical writing
- To analyze the nature of intellectual property rights and new developments
- To know the patent rights

Course Outcomes: At the end of this course, students will be able to
- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I:
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT-II:
Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT-III:
Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-IV:

UNIT-V:
TEXT BOOKS:
2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”

REFERENCES:
Note: Conduct any Ten exercises from the list given below:

1. Two-dimensional drawing using CAD software.
2. Three-dimensional drawing using CAD software.
3. Various Dimensioning and tolerancing techniques on typical products using CAD software.
4. Assembly and animation of simple assemblies like screw jack, bolt-nut mechanism, etc.
5. Truss analysis using FEA software.
7. Frame analysis using FEA software.
8. Buckling analysis of columns using FEA software.
9. Harmonic analysis using FEA software.
10. Fracture analysis using FEA software.
11. Analysis of laminated composites using FEA software.
12. Couple-field analysis using FEA software.
13. Modal Analysis
14. Transient dynamic analysis.
15. Spectrum analysis.
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. TECH. I Year I Sem. (CAD/CAM)

COMPUTER AIDED MANUFACTURING LAB (Lab - II)

List of Experiments:
1. CNC programs for turning- 4 exercises
2. CNC programs for milling- 4 exercises
3. Robot programming- Lead through programming using teach product, forward kinematics, inverse kinematics, trajectory planning.
Prerequisite: Strength of Materials, Mathematics, Heat Transfer and Vibrations.

Course Objectives:
- To Introduce the basic concepts of the finite element method, the boundary element method
- To discuss the advantages and limitations of each method
- To Demonstrate the capabilities of each method on a variety of problems

Course outcomes: After completing this course, the student should be able to
- Understand the background of mathematical equations used for development of modeling software modules to develop the various structural related applications
- Identify mathematical model for solution of common engineering problems.
- Solve structural, thermal, fluid flow problems.
- Use professional-level finite element software to solve engineering problems in Solid mechanics, fluid mechanics and heat transfer.

UNIT –I:
One Dimensional Problems: Formulation of Stiffness Matrix for a Bar Element by the Principle of Minimum Potential Energy, Properties of Stiffness Matrix, Characteristics of Shape Functions, Quadratic shape functions.
Analysis of Trusses: Derivation of Stiffness Matrix for Trusses, Stress and strain Calculations, Calculation of reaction forces and displacements.
Analysis of Beams: Derivation of Stiffness matrix for two noded, two degrees of freedom per node beam element, Load Vector, Deflection, Stresses, Shear force and Bending moment, Problems on uniform and stepped beams for different types of loads applied on beams.

UNIT –II:

UNIT –III:
Steady state heat transfer analysis: One Dimensional Finite Element analysis of fin and composite slabs. Two-dimensional steady state heat transfer problems: Derivation of Thermal Stiffness matrix for 2D heat transfer problems-CST, Derivation of thermal force vector for 2D heat transfer problems.
Dynamic Analysis: Formulation of mass matrices for uniform bar and beam Elements using lumped and consistent mass methods, Evaluation of Eigen values and Eigen vectors for a stepped bar and beam Problems.

UNIT –IV:
Plate Bending: Introduction – Plate behavior – C¹ (Kirchoff) Plate elements – C⁰ (Mindlin) Plate elements – Mindlin beam – More devices for C⁰ Plate elements – Boundary conditions - Analytical problems.
Nonlinear finite element of solids: Material Nonlinearities, objective rates, nonlinear elasticity, Plasticity, viscoplasticity, viscoelasticity

UNIT–V:
Boundary Element Formulation for Electrostatic Problems: Introduction, Basic Relation- Boundary condition, other relations. Discretization and Matrix Formulation – Determination of term C(p)m.

Text Books:

Reference Books:
1. Finite Element Methods by Alavala, PHI.
2. Introduction to Finite Elements in Engineering by Tirupathi K. Chandrupatla and Ashok D. Belagundu.
3. An Introduction to Finite Element Methods by J. N. Reddy, Mc Grawhill
5. Concepts and Applications of Finite Element Analysis by Robert Cook, Wiley
MANUFACTURING SYSTEMS: SIMULATION MODELLING & ANALYSIS (Professional Core – IV)

Prerequisites: Operations Research, Optimization Techniques and Applications and Probability Statistics

Course Objectives:
- Learn way of analyzing the systems.
- Classification of systems based nature of dynamics and knowledge of elements.
- To develop simulation model for dynamic discrete – event stochastic system.
- To run the model and collect the data.
- To analyze the output data of simulation for specified for performance measures bases on type of simulation and method of output data analysis.

Course Outcomes: At the end of course, student should able to
- Define the state of system W.R.T specified performance measures.
- Identify Dynamic Discrete- event stochastic system.
- Develop simulation model for the said system
- Analyze the model and present the results to specified confidence level.

UNIT - I:

UNIT - II:

UNIT - III:

UNIT - IV:
Output data analysis – Types of Simulation with respect to output data analysis – warm up period- Welch algorithm – Approaches for Steady – State Analysis – replication – Batch means methods – comparisons

UNIT –V:
Applications of Simulation – flow shop system – job shop system – M/M/1 queues with infinite and finite capacities – Simple fixed period inventory system – New boy paper problem.
TEXT BOOKS:

REFERENCE BOOKS:
INTELLIGENT MANUFACTURING SYSTEMS (Professional Elective – III)

UNIT - I:

UNIT - II:
Components of Knowledge Based Systems - Basic Components of Knowledge Based Systems, Knowledge Representation, Comparison of Knowledge Representation Schemes, Interference Engine, Knowledge Acquisition.

UNIT - III:
Machine Learning - Concept of Artificial Intelligence, Conceptual Learning, Artificial Neural Networks - Biological Neuron, Artificial Neuron, Types of Neural Networks, Applications in Manufacturing.

UNIT - IV:

UNIT - V:

REFERENCES:
1. Intelligent Manufacturing Systems/ Andrew Kusiak/Prentice Hall.
2. Artificial Neural Networks/ Yagna Narayana/PHI/2006
4. Neural networks: A comprehensive foundation/ Simon Haykin/ PHI.
5. Artificial neural networks/ B. Vegnanarayana/PHI
6. Neural networks in Computer intelligence/ Li Min Fu/ TMH/2003
ADVANCED MANUFACTURING PROCESSES (Professional Elective – III)

Prerequisites: Production Technology, Machine Tools, Metal Cutting, Material Science.

Course Objectives:
- To make acquainted the various unconventional manufacturing processes.
- To know about the applications of advanced manufacturing processes (which are exceptional).
- To encourage the students for developing the models of Advanced Manufacturing Processes.

Course Outcomes:
- At the end of the course, the student will be able to understand the working principle of Electron beam, laser beam and laser beam processes.
- Able to understand different types of composite material characteristics, types of micro & macro machining processes.
- Understand the e-manufacturing & nano materials.

UNIT-I:
Surface treatment: Scope, Cleaners, Methods of cleaning, Surface coating types, and ceramic and organic methods of coating, economics of coating. Electro forming, Chemical vapour deposition, thermal spraying, Ion implantation, diffusion coating, Diamond coating and cladding.

UNIT-II:

UNIT-III:

UNIT-IV:
Processing of ceramics: Applications, characteristics, classification. Processing of particulate ceramics, Powder preparations, consolidation, Drying, sintering, Hot compaction, Area of application, finishing of ceramics.
Processing of Composites: Composite Layers, Particulate and fiber reinforced composites, Elastomers, Reinforced plastics, MMC, CMC, Polymer matrix composites.

UNIT-V:
Fabrication of Microelectronic devices: Crystal growth and wafer preparation, Film Deposition oxidation, lithography, bonding and packaging, reliability and yield, Printed Circuit boards, computer aided design in microelectronics, surface mount technology, Integrated circuit economics.
E-Manufacturing, nanotechnology, micromachining and High-speed Machining, basic principles, working, applications, advantages.

TEXT BOOKS:
3. Advanced Machining Processes by V. K. Jain, Allied Publications.

REFERENCE BOOKS:
5. Advanced Methods of Machining by J. A Mc Geough, Springer.
OPTIMIZATION TECHNIQUES AND APPLICATIONS (Professional Elective – III)

Pre-requisites: Operations Research

Course Objectives: The main objectives of the course are: Learn
- Numerical optimization techniques for single variable and multi variable non-linear optimization problems.
- Sensitivity analysis on LPP queuing
- Simulation of annexing problem & inventory problem.
- Geometry cutting plane method & branch bound method for linear IPP.
- Meaning of stochastic programming problem simple problems for finding mean variance of random variables chance constrained algorithm.
- Formulation of GP model and solving it using arithmetic geometric inequality theorem.
- State of art nontraditional optimization technique, namely genetic algorithm simulated annealing & particle swarm optimization.

Course Outcomes: At the end of the course, the student is able to apply appropriate optimization techniques and solve.
- Based on the type of optimization problem like single variable or multivariable, Make sensitivity analysis to study effect of changes in parameters of LPP on the optimal solution without reworking.
- Simulate the system to estimate specified performance measures.
- Solve integer programming problem by either geometry cutting plane algorithm or branch band method.
- Apply chance constrained algorithm and solve stochastic linear programme.
- Formulate GP model and solve it.
- Solve given optimization problem by genetic algorithm or simulated annealing or PSO.

UNIT-I:

UNIT-II:

UNIT-III:

UNIT-IV:
Integer Programming: Introduction – formulation – Geometry cutting plane algorithm – Zero or one algorithm, branch and bound method

UNIT-V:
Geometric Programming: Posynomials – Arithmetic - Geometric inequality – unconstrained G.P- constrained G.P (≤ type only)

TEXT BOOKS:
2. Optimization for Engineering Design by Kalyanmoy Deb, PHI

REFERENCE BOOKS:
1. Operations Research by S.D.Sharma
2. Operation Research by H.A.Taha, TMH
3. Optimization in operations research by R.LRardin
UNIT – I:
Mechatronics systems, elements, levels of mechatronics system, Mechatronics design process, system, measurement systems, control systems, microprocessor-based controllers, advantages and disadvantages of mechatronics systems. Sensors and transducers, types, displacement, position, proximity, velocity, motion, force, acceleration, torque, fluid pressure, liquid flow, liquid level, temperature and light sensors.

UNIT – II:
Solid state electronic devices, PN junction diode, BJT, FET, DIA and TRIAC. Analog signal conditioning, amplifiers, filtering. Introduction to MEMS & typical applications.

UNIT – III:

UNIT – IV:
Digital electronics and systems, digital logic control, micro processors and micro controllers, programming, process controllers, programmable logic controllers, PLCs versus computers, application of PLCs for control.

UNIT – V:
System and interfacing and data acquisition, DAQS, SCADA, A to D and D to A conversions; Dynamic models and analogies, System response. Design of mechatronics systems & future trends.

TEXT BOOKS:

REFERENCES BOOKS:
4. Mechatronics/M. D. Singh/J. G. Joshi PHI.
MEMS: DESIGN AND MANUFACTURING (Professional Elective – IV)

Prerequisites: Electronic Circuits, Basic knowledge in material science

Course Objectives:
- To make students to gain basic knowledge on overview of MEMS (Micro electro Mechanical System) and various fabrication techniques.
- To design, analysis, fabrication and testing the MEMS based components.
- To introduce the students various opportunities in the emerging field of MEMS.

Course Outcomes: At the end of the course, the student will be able to
- Synthesize and characterize nanomaterials for engineering applications
- Design and analyze methods and tools for micro and nano manufacturing.
- Improve the quality of MEMS by analyzing the variables of the underlying micro and nano manufacturing method
- Select appropriate industrially-viable process, equipment and tools for a specific product.

UNIT-I:
Overview and working principles of MEMS and Microsystems: MEMS & Microsystems, Evolution of Micro fabrication, Microsystems & Microelectronics, Microsystems & miniaturization, Applications of MEMs in Industries, Micro sensors, Micro actuation, MEMS with Micro actuators Micro accelerometers, Micro fluidics

UNIT-II:

UNIT-III:
Engineering Mechanics for Microsystems Design: Static Bending of Thin plates, Mechanical Vibration, Thermomechanics, Fracture Mechanics, Thin- Film Mechanics, Overview of Finite Element Stress Analysis

UNIT-IV:

UNIT-V:
Materials for MEMS & Microsystems and their fabrication: Substrates and Wafers, Active substrate materials, Silicon as a substrate material, Silicon compounds, Silicon Piezo resistors, Gallium Arsenide, Quartz, Piezoelectric Crystals and Polymers, Photolithography, Ion implantation, Diffusion and oxidation, Chemical and Physical vapor deposition, etching, Bulk micro manufacturing, Surface Micromachining, The LIGA Process.
TEXT BOOKS:
1. Tia-Ran Hsu, MEMS & Microsystems. Design & Manufacturing, TMH 2002
2. Foundation of MEMS/ Chang Liu/Pearson, 2012

REFERENCE BOOKS:

UNIT-IV: Mapping and Recurrent Networks: Counter propagation –Self organization Map- Congnitrion and Neocognitron- Hopfield Net- Kohonnen Nets- Grossberg Nets- Art-I, Art-II reinforcement learning

TEXT BOOK:

REFERENCE BOOKS:
A. MANUFACTURING SIMULATION
The students will be given training on the use and application of the following software to manufacturing problems:
1. Auto MOD Software.
2. PROMODEL
3. SLAM-II
4. CAFIMS
5. Flexsim

They also learn how to write sub routines in C-language and interlinking with the above packages.

Problems for modelling and simulation experiments:
1. AGV planning
2. ASRS simulation and performance evaluation
3. Machines, AGVs and AS/RS integrated problems
4. JIT system
5. Kanban flow
6. Material handling systems
7. M.R.P. Problems
8. Shop floor scheduling etc.

B. PRECISION ENGINEERING
1. Hydraulic and Pneumatic circuits
2. Closed loop control systems
3. Study of the chip formation in turning process
4. Study of operation of tool and cutter grinder, twist drill grinder, Centreless grinder
5. Determination of cutting forces in turning
6. Experiments in unconventional manufacturing processes-AJM and study of USM, EDM, Laser Machining and Plasma spraying
7. Inspection of parts using tool makers microscope, roughness and form tester
8. Study of micro-controllers, programming on various CNC machine tools and also controllers
9. Studies on PLC programming
10. Study and programming of robots
2-D stress analysis of bar
 1. Plane stress analysis
 2. Plain strain analysis
 3. Beam analysis
 4. Truss analysis

3-D analysis
 1. Modal analysis
 2. Buckling analysis Ansys, Abaqus
Prerequisites: Manufacturing Processes, Engineering Materials

Course Objectives: The objective of course is to identify the manufacturing constraints that influence the design of parts and part systems. Students will be introduced to the Design for Manufacturability (DFM) methodology, and will be motivated to understand infeasible or impractical designs.

Course Outcomes: At the end of the course, the student will be able to:
- Understand the quality aspects of design for manufacture and assembly
- Apply Boothroyd method of DFM for product design and assembly
- Apply the concept of DFM for casting, welding, forming and assembly
- Identify the design factors and processes as per customer specifications
- Apply the DFM method for a given product

UNIT - I:
Introduction: Design philosophy steps in Design process - General Design rules for manufacturability - basic principles of design King for economical production - creativity in design. Materials: Selection of Materials for design Developments in Material technology - criteria for material selection - Material selection interrelationship with process selection process selection charts.

UNIT - II:
Machining Process: Overview of various machining processes - general design rules for machining - Dimensional tolerance and surface roughness - Design for machining - Ease - Redesigning of components for machining ease with suitable examples. General design recommendations for machined parts. Metal Casting: Appraisal of various casting processes, selection of casting process, - general design considerations for casting - casting tolerances - use of solidification simulation in casting design - product design rules for sand casting.

UNIT - III:

UNIT-IV
Assemble Advantages: Development of the assemble process, choice of assemble method assemble advantages social effects of automation.
Automatic Assembly Transfer Systems: Continuous transfer, intermittent transfer, indexing mechanisms, and operator - paced free – transfer machine.

UNIT-V:
Design of Manual Assembly: Design for assembly fits in the design process, general design guidelines for manual assembly, development of the systematic DFA methodology, assembly efficiency, classification system for manual handling, classification system for manual insertion and
fastening, effect of part symmetry on handling time, effect of part thickness and size on handling time, effect of weight on handling time, parts requiring two hands for manipulation, effects of combinations of factors, effect of symmetry effect of chamfer design on insertion operations, estimation of insertion time.

TEXT BOOKS:

REFERENCES:
1. Computer Aided Assembly London/ A Delbainbre/.
Prerequisite: Structure and properties of composite materials and design procedures for composite structures

Course objectives: To identify the properties of fiber and matrix materials used in commercial composites as well as some common manufacturing teaching and to predict the elastic properties of both long and short fiber and understand the stress-strain relations and establish the failure criteria for laminated structures.

Course Outcomes: At the end of the course the students will be able to

- Understanding of types, manufacturing processes, and applications of composite materials.
- Basic understanding of linear elasticity with emphasis on the difference between isotropic and anisotropic material behavior.
- Ability to analyze problems on macro and micro mechanical behavior of lamina
- Ability to analyze problems on macro mechanical behavior of laminate
- An ability to predict the loads and moments that cause an individual composite layer and a composite laminate to fail and to compute hygro thermal loads in composites.
- An ability to compute the properties of a composite laminate with any stacking sequence.
- An ability to use the ideas developed in the analysis of composites towards using composites in aerospace design.

UNIT-I:
Introduction to Composite Materials: Introduction, Classification Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, Carbon–Carbon Composites, Fiber-Reinforced Composites and nature-made composites, and applications.

UNIT-II:
Manufacturing methods: Autoclave, tape production, moulding methods, filament winding, man layup, pultrusion, RTM.

UNIT-III:

UNIT-IV:

UNIT-V:
TEXT BOOKS:
1. Mechanics of Composite Materials, Second Edition (Mechanical Engineering), By Autar K.Kaw, Publisher: CRC.

REFERENCE BOOK:
Prerequisites: Machine Tools, Basics of Industrial Engineering

Course Objectives:
- To Understand the role of Flexible Manufacturing Systems (FMS) in manufacturing
- To Understand the concept of Group Technology
- To Understand the concept of Cellular Mfg Systems
- To Understand the benefits of automation
- To Know types of manufacturing industries
- To have a basic knowledge of automation equipment
- To Understand logic control and associated technologies

Course Outcomes: At the end of the course, the student shall be able to:
- Develop FMS using the most appropriate technique.
- Implement FMS concept in a manufacturing environment
- Use various types of sensors and actuators in PLC implementations
- Explain the role of automation in manufacturing
- Tell the difference between Group Technology and Cellular Manufacturing
- Classify automation equipment and assembly systems into different categories.

UNIT-I:
Understanding of FMS: Evolution of Manufacturing Systems, Definition, objective and Need, Components, Merits, Demerits and Applications Flexibility in Pull and Push type

UNIT-II:
Classification of FMS Layout: Layouts and their Salient features, Single line, dual line, loop, ladder, robot centre type etc.

UNIT-III:
Processing stations: Salient features Machining Centers, Turning centre, Coordinate measuring machine (CMM), Washing/Deburring station

UNIT-IV:
Material Handling System: An introduction, Conveyor, Robots, Automated Guided Vehicle (AGV), Automated Storage Retrieval System (ASRS) Management technology: Tool Management, tool magazine, Tool preset, identification, Tool monitoring and fault detection, routing, Production Planning and Control, Scheduling and loading of FMS

UNIT-V:
Design of FMS: Performance Evaluation of FMS, Analytical model and Simulation model of FMS
Case studies: Typical FMS problems from research papers

TEXT BOOKS:
REFERENCE BOOK:
ENGLISH FOR RESEARCH PAPER WRITING (Audit Course - I & II)

Prerequisite: None

Course objectives: Students will be able to:
- Understand that how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission

UNIT-I:
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

UNIT-III:
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:
key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT-V:
skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

UNIT-VI:
useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

TEXT BOOKS/ REFERENCES:
Prerequisite: None

Course Objectives: Students will be able to
- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches.
- planning and programming in different countries, particularly their home country or the countries they work in.

UNIT-I: Introduction:
Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

UNIT-II: Repercussions Of Disasters And Hazards:
Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

UNIT-III: Disaster Prone Areas In India:
Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics.

UNIT-IV: Disaster Preparedness And Management:
Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

UNIT-V: Risk Assessment Disaster Risk:

UNIT-VI: Disaster Mitigation:
Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.
TEXT BOOKS/ REFERENCES:

2. Sahni, Pardeep Et.Al. (Eds.),” Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. TECH. (CAD/CAM)

SANSKRIT FOR TECHNICAL KNOWLEDGE (Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Course Outcomes: Students will be able to
- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT-I:
Alphabets in Sanskrit,

UNIT-II:
Past/Present/Future Tense, Simple Sentences

UNIT-III:
Order, Introduction of roots,

UNIT-IV:
Technical information about Sanskrit Literature

UNIT-V:
Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TEXT BOOKS/ REFERENCES:
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
VALUE EDUCATION (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to
- Understand value of education and self-development
- Imbibe good values in students
- Let the should know about the importance of character

Course outcomes: Students will be able to
- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT-I:

UNIT-II:

UNIT-III:
Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline, Punctuality, Love and Kindness.

UNIT-IV:

UNIT-V:

TEXT BOOKS/ REFERENCES:
CONSTITUTION OF INDIA (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:
- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:
- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:
History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working)

UNIT-II:
Philosophy of the Indian Constitution: Preamble, Salient Features

UNIT-III:

UNIT-IV:
Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualification, Powers and Functions

UNIT-V:
UNIT-VI:

TEXT BOOKS/ REFERENCES:
1. The Constitution of India, 1950 (Bare Act), Government Publication.
PEDAGOGY STUDIES (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:
- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DFID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: Students will be able to understand:
- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT-II: Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT-IV: Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

UNIT-V: Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

TEXT BOOKS/REFERENCES:
STRESS MANAGEMENT BY YOGA (Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To achieve overall health of body and mind
- To overcome stress

Course Outcomes: Students will be able to:
- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

UNIT-I:
Definitions of Eight parts of yog. (Ashtanga)

UNIT-II:
Yam and Niyam.

UNIT-III:
Do’s and Don’t’s in life.
1) Ahinsa, satya, astheya, bramhacharya and aparigraha
2) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

UNIT-IV:
Asan and Pranayam

UNIT-V:
i) Various yog poses and their benefits for mind & body
ii) Regularization of breathing techniques and its effects-Types of pranayam

TEXT BOOKS/ REFERENCES:
1. "Yogic Asanas for Group Training-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur
2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama
 (Publication Department), Kolkata
PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS
(Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes: Students will be able to
- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students

UNIT-I:
Neetisatakam-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)

UNIT-II:
Neetisatakam-Holistic development of personality
- Verses- 52,53,59 (dont’s)
- Verses- 71,73,75,78 (do’s)

UNIT-III:
Approach to day to day work and duties.
- Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT-IV:
Statements of basic knowledge.
- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta:

UNIT-V:
- Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 – Verses 37,38,63

TEXT BOOKS/ REFERENCES:
1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.