JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech. COMPUTER SCIENCE AND ENGINEERING/COMPUTER SCIENCE
EFFECTIVE FROM ACADEMIC YEAR 2019 - 20 ADMITTED BATCH
R19 COURSE STRUCTURE AND SYLLABUS

I YEAR I – SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core - I</td>
<td>Mathematical Foundations of Computer Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core - II</td>
<td>Advanced Data Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - I</td>
<td>1. Information Security</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Mobile Application Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Machine Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Elective - II</td>
<td>1. Network Security</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Cloud Computing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Data Mining</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab - I</td>
<td>Advanced Data Structures Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Lab - II</td>
<td>Machine Learning Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Research Methodology & IPR</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Audit - I</td>
<td>Audit Course - I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
<td>0</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

I YEAR II – SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core - III</td>
<td>Advanced Algorithms</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core - IV</td>
<td>Advanced Computer Architecture</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - III</td>
<td>1. Web and Database Security</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Internet of Things</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Data Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Elective - IV</td>
<td>1. Cyber Security</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Advanced Computer Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Big Data Analytics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab - III</td>
<td>Advanced Algorithms Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Lab - IV</td>
<td>Data Science Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mini Project with Seminar</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Audit - II</td>
<td>Audit Course - II</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
<td>0</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>
II YEAR III – SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Elective - V</td>
<td>1. Digital Forensics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. High Performance Computing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Deep Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective</td>
<td>Open Elective</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Dissertation Work Review - II</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6</td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

II YEAR II - SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation</td>
<td>Dissertation Work Review - III</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Dissertation Viva-Voce</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

*For Dissertation Work Review - I, Please refer 7.8 in R19 Academic Regulations.

Audit Course I & II:
1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by yoga
8. Personality Development Through Life Enlightenment Skills
Pre-Requisites: UG level course in Discrete Mathematics/ Mathematical Foundations of Computer Science

Course Objectives:
- To understand the mathematical fundamentals that is prerequisites for a variety of courses like Data mining, Network protocols, analysis of Web traffic, Computer security, Software engineering, Computer architecture, operating systems, distributed systems, Bioinformatics, Machine learning.
- To develop the understanding of the mathematical and logical basis to many modern techniques in information technology like machine learning, programming language design, and concurrency.
- To study various sampling and classification problems.

Course Outcomes: After completion of course, students would be able to:
- To understand the basic notions of discrete and continuous probability.
- To understand the methods of statistical inference, and the role that sampling distributions play in those methods.
- To be able to perform correct and meaningful statistical analyses of simple to moderate complexity.

UNIT – I
Probability mass, density, and cumulative distribution functions, Parametric families of distributions, Expected value, variance, conditional expectation, Applications of the univariate and multivariate Central Limit Theorem, Probabilistic inequalities, Markov chains

UNIT - II
Random samples, sampling distributions of estimators, Methods of Moments and Maximum Likelihood,

UNIT - III

UNIT – IV
Graph Theory: Isomorphism, Planar graphs, graph colouring, Hamilton circuits and Euler cycles. Permutations and Combinations with and without repetition. Specialized techniques to solve combinatorial enumeration problems

UNIT-V

Recent Trends in various distribution functions in mathematical field of computer science for varying fields like bio-informatics, soft computing, and computer vision.
Text Book:
John Vince, Foundation Mathematics for Computer Science, Springer.

References:
3. Alan Tucker, Applied Combinatorics, Wiley
Pre-Requisites: UG level course in Data Structures

Course Objectives:
- The student should be able to choose appropriate data structures, understand the ADT/libraries, and use it to design algorithms for a specific problem.
- Students should be able to understand the necessary mathematical abstraction to solve problems.
- To familiarize students with advanced paradigms and data structure used to solve algorithmic problems.
- Student should be able to come up with analysis of efficiency and proofs of correctness.

Course Outcomes: After completion of course, students would be able to:
- Understand the implementation of symbol table using hashing techniques.
- Develop algorithms for text processing applications.
- Identify suitable data structures and develop algorithms for computational geometry problems.

UNIT - I
Dictionaries:
Definition, Dictionary, Abstract Data Type, Implementation of Dictionaries.

Hashing:

UNIT - II
Skip Lists:

UNIT - III
Trees:

UNIT - IV
Text Processing:

UNIT - V
Computational Geometry:
One Dimensional Range Searching, Two-Dimensional Range Searching, constructing a Priority Search Tree, Searching a Priority Search Tree, Priority Range Trees, Quadtrees, k-D Trees.
Recent Trends in Hashing, Trees, and various computational geometry methods for efficiently solving the new evolving problem.
References:
INFORMATION SECURITY (Professional Elective - I)

Prerequisites
1. A Course on “Computer Networks and a course on Mathematics

Course Objectives
1. To understand the fundamentals of Cryptography
2. To understand various key distribution and management schemes
3. To understand how to deploy encryption techniques to secure data in transit across data networks
4. To apply algorithms used for secure transactions in real world applications

Course Outcomes
1. Demonstrate the knowledge of cryptography, network security concepts and applications.
2. Ability to apply security principles in system design.
3. Ability to identify and investigate vulnerabilities and security threats and mechanisms to counter them.

UNIT - I
Security Attacks (Interruption, Interception, Modification and Fabrication), Security Services (Confidentiality, Authentication, Integrity, Non-repudiation, access Control and Availability) and Mechanisms, A model for Internetwork security. Classical Encryption Techniques, DES, Strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles and Modes of operation, Blowfish, Placement of Encryption Function, Traffic Confidentiality, key Distribution, Random Number Generation.

UNIT - II

UNIT - III

UNIT - IV

UNIT - V

Text Book:

Reference Books:
MOBILE APPLICATION DEVELOPMENT (Professional Elective - I)

Prerequisites:
1. Acquaintance with JAVA programming
2. A Course on DBMS

Course Objectives:
1. To demonstrate their understanding of the fundamentals of Android operating systems
2. To improve their skills of using Android software development tools
3. To demonstrate their ability to develop software with reasonable complexity on mobile platform
4. To demonstrate their ability to deploy software to mobile devices
5. To demonstrate their ability to debug programs running on mobile devices

Course Outcomes:
1. Student understands the working of Android OS Practically.
2. Student will be able to develop Android user interfaces
3. Student will be able to develop, deploy and maintain the Android Applications.

UNIT - I
Introduction to Android Operating System: Android OS design and Features – Android development framework, SDK features, Installing and running applications on Android Studio, Creating AVDs, Types of Android applications, Best practices in Android programming, Android tools Android application components – Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes Android Application Lifecycle – Activities, Activity lifecycle, activity states, monitoring state changes

UNIT - II
Android User Interface: Measurements – Device and pixel density independent measuring UNIT - s Layouts – Linear, Relative, Grid and Table Layouts User Interface (UI) Components – Editable and non editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers Event Handling – Handling clicks or changes of various UI components Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

UNIT - III
Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity Notifications – Creating and Displaying notifications, Displaying Toasts

UNIT - IV
Persistent Storage: Files – Using application specific folders and files, creating files, reading data from files, listing contents of a directory Shared Preferences – Creating shared preferences, saving and retrieving data using Shared Preference

UNIT - V
Database – Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and etindelg data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

Text Books:
1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012

Reference:
1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013
Course Objectives:

- To learn the concept of how to learn patterns and concepts from data without being explicitly programmed in various IOT nodes.
- To design and analyse various machine learning algorithms and techniques with a modern outlook focusing on recent advances.
- Explore supervised and unsupervised learning paradigms of machine learning.
- To explore Deep learning technique and various feature extraction strategies.

Course Outcomes: After completion of course, students would be able to:

- Extract features that can be used for a particular machine learning approach in various IOT applications.
- To compare and contrast pros and cons of various machine learning techniques and to get an insight of when to apply a particular machine learning approach.
- To mathematically analyse various machine learning approaches and paradigms.

UNIT - I
Supervised Learning (Regression/Classification)
Basic methods: Distance-based methods, Nearest-Neighbours, Decision Trees, Naive Bayes.
Linear models: Linear Regression, Logistic Regression, Generalized Linear Models.
Beyond Binary Classification: Multi-class/Structured Outputs, Ranking.

UNIT – II
Unsupervised Learning:
Clustering: K-means/Kernel K-means.
Dimensionality Reduction: PCA and kernel PCA.
Matrix Factorization and Matrix Completion.
Generative Models (mixture models and latent factor models).

UNIT - III
Evaluating Machine Learning algorithms and Model Selection, Introduction to Statistical Learning Theory, Ensemble Methods (Boosting, Bagging, Random Forests)

UNIT - IV
Sparse Modeling and Estimation, Modeling Sequence/Time-Series Data, Deep Learning and Feature Representation Learning

UNIT - V
Scalable Machine Learning (Online and Distributed Learning) A selection from some other advanced topics, e.g., Semi-supervised Learning, Active Learning, Reinforcement Learning, Inference in Graphical Models, Introduction to Bayesian Learning and Inference.
Recent trends in various learning techniques of machine learning and classification methods for IOT applications. Various models for IOT applications.

References:
2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009 (freely available online)
NETWORK SECURITY (Professional Elective - II)

Pre-Requisites: Computer Networks, Web Programming

Course Objectives:
- To learn the basics of security and various types of security issues.
- To study different cryptography techniques available and various security attacks.
- Explore network security and how they are implemented in real world.
- To get an insight of various issues of Web security and biometric authentication.

Course Outcomes: After completion of course, students would be able to:
- To understand basics of security and issues related to it.
- Understanding of biometric techniques available and how they are used in today’s world.
- Security issues in web and how to tackle them.
- Learn mechanisms for transport and network security.

UNIT – I
Data security: Review of cryptography. Examples RSA, DES, ECC.

UNIT – II
Authentication, non-repudiation and message integrity. Digital signatures and certificates. Protocols using cryptography (example Kerberos). Attacks on protocols

UNIT - III
Network security: Firewalls, Proxy-Servers, Network intrusion detection.
Transport security: Mechanisms of TLS, SSL, IPSec.

UNIT - IV
Web security – SQL injection, XSS, etc. Software security and buffer overflow. Malware types and case studies. Access Control, firewalls and host/network intrusion detection.

UNIT - V
Other topics: Biometric authentication, Secure E-Commerce (ex. SET), Smart Cards, Security in Wireless Communication. Recent trends in IOT security, IDS and Biometric.

References:
CLOUD COMPUTING (Professional Elective - II)

Pre-Requisites: Computer Networks, Web Programming

Course Objectives:
- The student will also learn how to apply trust-based security model to real-world security problems.
- An overview of the concepts, processes, and best practices needed to successfully secure information within Cloud infrastructures.
- Students will learn the basic Cloud types and delivery models and develop an understanding of the risk and compliance responsibilities and Challenges for each Cloud type and service delivery model.

Course Outcomes: After completion of course, students would be able to:
- Identify security aspects of each cloud model
- Develop a risk-management strategy for moving to the Cloud
- Implement a public cloud instance using a public cloud service provider
- Apply trust-based security model to different layer

UNIT – I
Introduction to Cloud Computing:
Online Social Networks and Applications, Cloud introduction and overview, Different clouds, Risks, Novel applications of cloud computing

UNIT – II
Cloud Computing Architecture:

Cloud Deployment Models:
Key Drivers to Adopting the Cloud, The Impact of Cloud Computing on Users, Governance in the Cloud, Barriers to Cloud Computing Adoption in the Enterprise

UNIT - III
Security Issues in Cloud Computing:

Identity and Access Management:
Trust Boundaries and IAM, IAM Challenges, Relevant IAM Standards and Protocols for Cloud Services, IAM Practices in the Cloud, Cloud Authorization Management

UNIT - IV
Security Management in the Cloud
Security Management Standards, Security Management in the Cloud, Availability Management: SaaS, PaaS, IaaS

Privacy Issues
Privacy Issues, Data Life Cycle, Key Privacy Concerns in the Cloud, Protecting Privacy, Changes to Privacy Risk Management and Compliance in Relation to Cloud Computing, Legal and Regulatory Implications, U.S. Laws and Regulations, International Laws and Regulations

UNIT - V
Audit and Compliance
Internal Policy Compliance, Governance, Risk, and Compliance (GRC), Regulatory/External Compliance, Cloud Security Alliance, Auditing the Cloud for Compliance, Security-as-a-Cloud

Advanced Topics
Recent developments in hybrid cloud and cloud security.

References:
Course Objectives:

- To understand data mining concepts.
- To learn about various data preprocessing techniques.
- To learn about data warehousing.
- To learn about various data mining functionalities such as association rule mining, clustering, classification and outlier analysis.

UNIT - I

Introduction: Fundamentals of data mining, Data Mining Functionalities, Classification of Data Mining systems, Data Mining Task Primitives, Integration of a Data Mining System with a Database or a Data Warehouse System, Issues in Data Mining.

Data Preprocessing: Need for Preprocessing the Data, Data Cleaning, Data Integration and Transformation, Data Reduction, Discretization and Concept Hierarchy Generation.

UNIT - II

Data Warehouse and OLAP Technology for Data Mining: Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Data Warehouse Implementation, Usage of Data Warehousing Online Analytical Processing and Mining

Data Cube Computation: Efficient Methods for simple Data Cube Computation (Full Cube, Iceberg Cube, Closed Cube and Shell Cube), Discovery Driven exploration of data cubes, Attribute-Oriented Induction for data characterization and its implementation

UNIT - III

Mining Frequent Patterns, Associations and Correlations: Basic Concepts, The Apriori algorithm for finding frequent itemsets using candidate generation, Generating association rules from frequent itemsets, Mining frequent itemsets without candidate generation, Mining various kinds of Association Rules, Correlation Analysis

UNIT - IV

Classification and Prediction: Description and comparison of classification and prediction, preparing data for Classification and Prediction
Classification by Decision Tree Induction, Bayesian Classification, Rule-Based Classification, Classification by Backpropagation
Prediction, linear and non-linear regression, evaluating accuracy of a Classifier or a Predictor

UNIT - V

Cluster Analysis: Types of Data in Cluster Analysis, A Categorization of Major Clustering Methods, k-means and k-mediods methods, CLARANS, Agglomerative and divisive hierarchical clustering, chameleon dynamic modeling, DBSCAN, Grid based clustering method: STING, Conceptual Clustering, Constraint-Based Cluster Analysis, Outlier Analysis.

Text Books:

1. Data Mining – Concepts and Techniques - Jiawei Han, Micheline Kamber and Jian Pei, 3rd edition, Morgan Kaufmann Publishers, ELSEVIER.
2. Introduction to Data Mining – Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Pearson education.
References:
4. The Data Warehouse Life cycle Tool kit – Ralph Kimball Wiley student edition
6. Data Mining Introductory and advanced topics –Margaret H Dunham, Pearson education
ADVANCED DATA STRUCTURES LAB (Lab - I)

Prerequisites: A course on Computer Programming & Data Structures

Course Objectives:
1. Introduces the basic concepts of Abstract Data Types.
2. Reviews basic data structures such as stacks and queues.
3. Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs, and B-trees.
4. Introduces sorting and pattern matching algorithms.

Course Outcomes:
1. Ability to select the data structures that efficiently model the information in a problem.
2. Ability to assess efficiency trade-offs among different data structure implementations or combinations.
3. Implement and know the application of algorithms for sorting and pattern matching.
4. Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and B-trees.

List of Programs
1. Write a program to perform the following operations:
 a) Insert an element into a binary search tree.
 b) Delete an element from a binary search tree.
 c) Search for a key element in a binary search tree.

2. Write a program for implementing the following sorting methods:
 a) Merge sort b) Heap sort c) Quick sort

3. Write a program to perform the following operations:
 a) Insert an element into a B-tree.
 b) Delete an element from a B-tree.
 c) Search for a key element in a B-tree.

4. Write a program to perform the following operations:
 a) Insert an element into a Min-Max heap
 b) Delete an element from a Min-Max heap
 c) Search for a key element in a Min-Max heap

5. Write a program to perform the following operations:
 a) Insert an element into a Leftist tree
 b) Delete an element from a Leftist tree
 c) Search for a key element in a Leftist tree

6. Write a program to perform the following operations:
 a) Insert an element into a binomial heap
 b) Delete an element from a binomial heap.
 c) Search for a key element in a binomial heap
7. Write a program to perform the following operations:
 a) Insert an element into an AVL tree.
 b) Delete an element from an AVL search tree.
 c) Search for a key element in an AVL search tree.

8. Write a program to perform the following operations:
 a) Insert an element into a Red-Black tree.
 b) Delete an element from a Red-Black tree.
 c) Search for a key element in a Red-Black tree.

9. Write a program to implement all the functions of a dictionary using hashing.

10. Write a program for implementing Knuth-Morris-Pratt pattern matching algorithm.

11. Write a program for implementing Brute Force pattern matching algorithm.

12. Write a program for implementing Boyer pattern matching algorithm.

TEXT BOOKS:

REFERENCES:
1. The C Programming Language, B.W. Kernighan, Dennis M.Ritchie, PHI/Pearson Education
Course Objective:
1. The objective of this lab is to get an overview of the various machine learning techniques and can able to demonstrate them using python.

Course Outcomes: After the completion of the “Machine Learning” lab, the student can able to:
1. Understand complexity of Machine Learning algorithms and their limitations;
2. Understand modern notions in data analysis-oriented computing;
3. Be capable of confidently applying common Machine Learning algorithms in practice and implementing their own;
4. Be capable of performing experiments in Machine Learning using real-world data.

List of Experiments
1. The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Baye’s rule in python to get the result. (Ans: 15%)
2. Extract the data from database using python
3. Implement k-nearest neighbours classification using python
4. Given the following data, which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of k-means clustering with 3 means (i.e., 3 centroids).

<table>
<thead>
<tr>
<th>VAR1</th>
<th>VAR2</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.713</td>
<td>1.586</td>
<td>0</td>
</tr>
<tr>
<td>0.180</td>
<td>1.786</td>
<td>1</td>
</tr>
<tr>
<td>0.353</td>
<td>1.240</td>
<td>1</td>
</tr>
<tr>
<td>0.940</td>
<td>1.566</td>
<td>0</td>
</tr>
<tr>
<td>1.486</td>
<td>0.759</td>
<td>1</td>
</tr>
<tr>
<td>1.266</td>
<td>1.106</td>
<td>0</td>
</tr>
<tr>
<td>1.540</td>
<td>0.419</td>
<td>1</td>
</tr>
<tr>
<td>0.459</td>
<td>1.799</td>
<td>1</td>
</tr>
<tr>
<td>0.773</td>
<td>0.186</td>
<td>1</td>
</tr>
</tbody>
</table>

5. The following training examples map descriptions of individuals onto high, medium and low credit-worthiness.

medium skiing design single twenties no -> highRisk
high golf trading married forties yes -> lowRisk
low speedway transport married thirties yes -> medRisk
medium football banking single thirties yes -> lowRisk
high flying media married fifties yes -> highRisk
low football security single twenties no -> medRisk
medium golf media single thirties yes -> medRisk
medium golf transport married forties yes -> lowRisk
high skiing banking single thirties yes -> highRisk
low golf unemployed married forties yes -> highRisk

Input attributes are (from left to right) income, recreation, job, status, age-group, home-owner. Find the unconditional probability of `golf' and the conditional probability of `single' given `medRisk' in the dataset?
6. Implement linear regression using python.
7. Implement Naïve Bayes theorem to classify the English text
8. Implement an algorithm to demonstrate the significance of genetic algorithm
9. Implement the finite words classification system using Back-propagation algorithm

Text Books:
1. Machine Learning – Tom M. Mitchell, MGH
2. Fundamentals of Speech Recognition By Lawrence Rabiner and Biing – Hwang Juang.

Reference Book:
RESEARCH METHODOLOGY & IPR

Prerequisite: None

Course Objectives:
- To understand the research problem
- To know the literature studies, plagiarism and ethics
- To get the knowledge about technical writing
- To analyze the nature of intellectual property rights and new developments
- To know the patent rights

Course Outcomes: At the end of this course, students will be able to
- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I:
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT-II:
Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT-III:
Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-IV:

UNIT-V:
TEXT BOOKS:
2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”

REFERENCES:
ADVANCED ALGORITHMS (Professional Core – III)

Pre-Requisites: UG level course in Algorithm Design and Analysis

Course Objectives:
- Introduce students to the advanced methods of designing and analyzing algorithms.
- The student should be able to choose appropriate algorithms and use it for a specific problem.
- To familiarize students with basic paradigms and data structures used to solve advanced algorithmic problems.
- Students should be able to understand different classes of problems concerning their computation difficulties.
- To introduce the students to recent developments in the area of algorithmic design.

Course Outcomes: After completion of course, students would be able to:
- Analyze the complexity/performance of different algorithms.
- Determine the appropriate data structure for solving a particular set of problems.
- Categorize the different problems in various classes according to their complexity.
- Students should have an insight of recent activities in the field of the advanced data structure.

UNIT – I
Sorting:
Review of various sorting algorithms, topological sorting

Graph:
Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case (Dijkasra's), depth-first search and computation of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis.

UNIT – II
Matroids:
Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST.

Graph Matching:
Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path.

UNIT - III
Flow-Networks:
Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm.

Matrix Computations:
Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition.

UNIT - IV
Shortest Path in Graphs:
Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming.
Modulo Representation of integers/polynomials:

Discrete Fourier Transform (DFT):

UNIT - V
Linear Programming:
Geometry of the feasibility region and Simplex algorithm

NP-completeness:
Examples, proof of NP-hardness and NP-completeness.

One or more of the following topics based on time and interest:
Approximation algorithms, Randomized Algorithms, Interior Point Method, Advanced Number Theoretic Algorithm
Recent Trends in problem solving paradigms using recent searching and sorting techniques by applying recently proposed data structures.

References:
1. "Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
ADVANCED COMPUTER ARCHITECTURE (Professional Core - IV)

Prerequisites: Computer Organization

Course Objectives:
1. To impart the concepts and principles of parallel and advanced computer architectures.
2. To develop the design techniques of Scalable and multithreaded Architectures.
3. To Apply the concepts and techniques of parallel and advanced computer architectures to design modern computer systems

Course Outcomes: Gain knowledge of
1. Computational models and Computer Architectures.
2. Concepts of parallel computer models.
3. Scalable Architectures, Pipelining, Superscalar processors, multiprocessors

UNIT - I

UNIT - II
Principals of Scalable performance, Performance metrics and measures, Parallel Processing applications, Speed up performance laws, Scalability Analysis and Approaches, Hardware Technologies, Processes and Memory Hierarchy, Advanced Processor Technology, Superscalar and Vector Processors, Memory Hierarchy Technology, Virtual Memory Technology.

UNIT - III
Bus Cache and Shared memory, Backplane bus systems, Cache Memory organizations, Shared-Memory Organizations, Sequential and weak consistency models, Pipelining and superscalar techniques, Linear Pipeline Processors, Non-Linear Pipeline Processors, Instruction Pipeline design, Arithmetic pipeline design, superscalar pipeline design.

UNIT - IV
Parallel and Scalable Architectures, Multiprocessors and Multicomputers, Multiprocessor system interconnects, cache coherence and synchronization mechanism, Three Generations of Multicomputers, Message-passing Mechanisms, Multivector and SIMD computers, Vector Processing Principals, Multivector Multiprocessors, Compound Vector processing, SIMD computer Organizations, The connection machine CM-5,

UNIT - V
Scalable, Multithreaded and Dataflow Architectures, Latency-hiding techniques, Principals of Multithreading, Fine-Grain Multicomputers, Scalable and multithreaded Architectures, Dataflow and hybrid Architectures.

Text Book
References:
WEB AND DATABASE SECURITY (Professional Elective - III)

Pre-Requisites: Database Management

Course Objectives:
1. Give an Overview of information security
2. Give an overview of Access control of relational databases

Course Outcomes: Students should be able to
1. Understand the Web architecture and applications
2. Understand client side and service side programming
3. Understand how common mistakes can be bypassed and exploit the application
4. Identify common application vulnerabilities

UNIT - I
The Web Security
The Web Security Problem, Risk Analysis and Best Practices

UNIT - II
The Web Privacy

UNIT - III
Database Security
Recent Advances in Access Control, Access Control Models for XML, Database Issues in Trust Management and Trust Negotiation, Security in Data Warehouses and OLAP Systems

UNIT - IV
Security Re-engineering for Databases
Concepts and Techniques, Database Watermarking for Copyright Protection, Trustworthy Records Retention, Damage Quarantine and Recovery in Data Processing Systems, Hippocratic Databases: Current Capabilities and

UNIT - V
Future Trends Privacy in Database Publishing
A Bayesian Perspective, Privacy-enhanced Location-based Access Control, Efficiently Enforcing the Security and Privacy Policies in a Mobile Environment

Text Books:
1. Web Security, Privacy and Commerce, Simson G. Arfinkel, Gene Spafford, O’ Reilly,
2. Handbook on Database security applications and trends, Michael Gertz, Sushil Jajodia.
INTERNET OF THINGS (Professional Elective - III)

Course Objectives:
- To introduce the terminology, technology and its applications
- To introduce the concept of M2M (machine to machine) with necessary protocols
- To introduce the Python Scripting Language which is used in many IoT devices
- To introduce the Raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of web-based services on IoT devices

UNIT - I
Introduction to Internet of Things – Definition and Characteristics of IoT,
Physical Design of IoT – IoT Protocols, IoT communication models, IoT communication APIs
IoT enabled Technologies – Wireless Sensor Networks, Cloud Computing, Big data analytics,
Communication protocols, Embedded Systems, IoT Levels and Templates
Domain Specific IoTs – Home, City, Environment, Energy, Retail, Logistics, Agriculture, Industry,
health and Lifestyle

UNIT - II
IoT and M2M – Software defined networks, network function virtualization, difference between SDN
and NFV for IoT
Basics of IoT System Management with NETCOZF, YANG, NETCONF, YANG, SNMP NETOPEER

UNIT - III
Introduction to Python - Language features of Python, Data types, data structures, Control of flow,
functions, modules, packaging, file handling, data/time operations, classes, Exception handling
Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib

UNIT - IV
IoT Physical Devices and Endpoints - Introduction to Raspberry PI-Interfaces (serial, SPI, I2C)
Programming – Python program with Raspberry PI with focus of interfacing external gadgets,
controlling output, reading input from pins.

UNIT - V
IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication
APIs
Webserver – Web server for IoT, Cloud for IoT, Python web application framework
Designing a RESTful web API

Text Books:
1. Internet of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities
2. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014,
 ISBN: 9789350239759
DATA SCIENCE (Professional Elective - III)

Course Objectives:
- Provide you with the knowledge and expertise to become a proficient data scientist.
- Demonstrate an understanding of statistics and machine learning concepts that are vital for data science;
- Produce Python code to statistically analyse a dataset;
- Critically evaluate data visualizations based on their design and use for communicating stories from data;

Course Outcomes: After completion of course, students would be able to:
- Explain how data is collected, managed and stored for data science;
- Understand the key concepts in data science, including their real-world applications and the toolkit used by data scientists
- Implement data collection and management scripts using MongoDB

UNIT – I
Introduction to core concepts and technologies: Introduction, Terminology, data science process, data science toolkit, Types of data, Example applications.

UNIT – II
Data collection and management: Introduction, Sources of data, Data collection and APIs, Exploring and fixing data, Data storage and management, Using multiple data Sources

UNIT-III
Data analysis: Introduction, Terminology and concepts, Introduction to statistics, Central tendencies and distributions, Variance, Distribution properties and arithmetic, Samples/CLT, Basic machine learning algorithms, Linear regression, SVM, Naive Bayes.

UNIT-IV
Data visualization: Introduction, Types of data visualization, Data for visualization: Data types, Data encodings, Retinal variables, Mapping variables to encodings, Visual encodings.

UNIT-V
Applications of Data Science, Technologies for visualization, Bokeh (Python). Recent trends in various data collection and analysis techniques, various visualization techniques, application development methods of used in data science.

References:
M. Tech - CSE/CS – I Year – II Semester
Common to CSE and CS Syllabus

CYBER SECURITY (Professional Elective - IV)

Course Objectives:
- To learn about cyber crimes and how they are planned.
- To learn the vulnerabilities of mobile and wireless devices.
- To learn about the crimes in mobile and wireless devices.

UNIT - I
Introduction to Cybercrime: Introduction, Cybercrime and Information security, who are cybercriminals, Classifications of Cybercrimes, Cybercrime: The legal Perspectives and Indian Perspective, Cybercrime and the Indian ITA 2000, A Global Perspective on Cybercrimes.

UNIT- II

UNIT - III
Cybercrimes and Cyber security: the Legal Perspectives
Introduction, Cyber Crime and Legal Landscape around the world, Why Do We Need Cyber laws: The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario In India, Digital signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment, Cyber law, Technology and Students: Indian Scenario.

UNIT - IV
Understanding Computer Forensics
Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Chain of Custody concept, Network Forensics, Approaching a computer, Forensics Investigation, Challenges in Computer Forensics, Special Tools and Techniques, Forensics Auditing

UNIT - V
Cyber Security: Organizational Implications

Text Books:

Reference Book:
ADVANCED COMPUTER NETWORKS (Professional Elective - IV)

Prerequisites: Data Communication, Basic Networking Principles

Course Objective:
- This course aims to provide advanced background on relevant computer networking topics to have a comprehensive and deep knowledge in computer networks.

Course Outcomes:
- Understanding of holistic approach to computer networking
- Ability to understand the computer networks and their application
- Ability to design simulation concepts related to packet forwarding in networks.

UNIT - I

UNIT - II

UNIT - IV

UNIT - V
The Web and HTTP, File Transfer: FTP, Electronic Mail in the Internet, Domain Name System (DNS), P2P File Sharing, Socket Programming with TCP and UDP, building a Simple Web Server Creating simulated networks and passing packets through them using different routing techniques. Installing and using network monitoring tools.

Text books:
References:
BIG DATA ANALYTICS (Professional Elective - IV)

Course Objectives:
- To understand about big data
- To learn the analytics of Big Data
- To Understand the MapReduce fundamentals

UNIT - I
Big Data Analytics: What is big data, History of Data Management; Structuring Big Data; Elements of Big Data; Big Data Analytics; Distributed and Parallel Computing for Big Data; Big Data Analytics: What is Big Data Analytics, What Big Data Analytics Isn’t, Why this sudden Hype Around Big Data Analytics, Classification of Analytics, Greatest Challenges that Prevent Business from Capitalizing Big Data; Top Challenges Facing Big Data; Why Big Data Analytics Important; Data Science; Data Scientist; Terminologies used in Big Data Environments; Basically Available Soft State Eventual Consistency (BASE); Open source Analytics Tools;

UNIT - II
Understanding Analytics and Big Data: Comparing Reporting and Analysis, Types of Analytics; Points to Consider during Analysis; Developing an Analytic Team; Understanding Text Analytics; Analytical Approach and Tools to Analyze Data: Analytical Approaches; History of Analytical Tools; Introducing Popular Analytical Tools; Comparing Various Analytical Tools.

UNIT - III
Understanding MapReduce Fundamentals and HBase : The MapReduce Framework; Techniques to Optimize MapReduce Jobs; Uses of MapReduce; Role of HBase in Big Data Processing; Storing Data in Hadoop : Introduction of HDFS, Architecture, HDFC Files, File system types, commands, org.apache.hadoop.io package, HDF, HDFC High Availability; Introducing HBase, Architecture, Storing Big Data with HBase , Interacting with the Hadoop Ecosystem; HBase in Operations-Programming with HBase; Installation, Combining HBase and HDFS;

UNIT - IV
Big Data Technology Landscape and Hadoop: NoSQL, Hadoop; RDBMS versus Hadoop; Distributed Computing Challenges; History of Hadoop; Hadoop Overview; Use Case of Hadoop; Hadoop Distributors; HDFC (Hadoop Distributed File System), HDFC Daemons, read, write, Replica Processing of Data with Hadoop; Managing Resources and Applications with Hadoop YARN.

UNIT - V
Social Media Analytics and Text Mining: Introducing Social Media; Key elements of Social Media; Text mining; Understanding Text Mining Process; Sentiment Analysis, Performing Social Media Analytics and Opinion Mining on Tweets; Mobile Analytics: Introducing Mobile Analytics; Define Mobile Analytics; Mobile Analytics and Web Analytics; Types of Results from Mobile Analytics; Types of Applications for Mobile Analytics; Introducing Mobile Analytics Tools;
Text Books:
3. Business Analytics 5e, BY Albright |Winston

Reference Books:
2. Lariss T. Moss, Shaku Atre, “Business Intelligence Roadmap”, Addison-Wesley It Service.
ADVANCED ALGORITHMS LAB (Lab - III)

Course Objective: The student can able to attain knowledge in advance algorithms.

Course Outcomes: The student can able to analyze the performance of algorithms

List of Experiments
1. Implement assignment problem using Brute Force method
2. Perform multiplication of long integers using divide and conquer method.
4. Implement Gaussian elimination method.
5. Implement LU decomposition
6. Implement Warshall algorithm
8. Implement KMP algorithm.
9. Implement Harspool algorithm
10. Implement max-flow problem.

Text Book:
1. Design and Analysis of Algorithms, S.Sridhar, OXFORD University Press

References:
DATA SCIENCE LAB (Lab – IV)

Course Objectives:
- To make students understand learn about a Big Data – R Programming, way of solving problems.
- To teach students to write programs in Scala to solve problems.

Introduction to R Programming:
What is R and RStudio? R is a statistical software program. It has extremely useful tools for data exploration, data analysis, and data visualization. It is flexible and also allows for advanced programming. RStudio is a user interface for R, which provides a nice environment for working with R.

<table>
<thead>
<tr>
<th>No.</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Write an R program to evaluate the following expression (ax+b/ax-b).</td>
</tr>
<tr>
<td>2.</td>
<td>Write an R program to read input from keyboard (hint: readLine()).</td>
</tr>
<tr>
<td>3.</td>
<td>Write an R program to find the sum of (n) natural numbers: 1+2+3+4+…..(n).</td>
</tr>
<tr>
<td>4.</td>
<td>Write an R program to read (n) numbers.</td>
</tr>
<tr>
<td></td>
<td>(i) Sum of all even numbers (ii) Total number of even numbers.</td>
</tr>
<tr>
<td>5.</td>
<td>Write an R program to read (n) numbers.</td>
</tr>
<tr>
<td></td>
<td>(i) Total number of odd numbers (ii) Sum of all odd numbers</td>
</tr>
<tr>
<td>6.</td>
<td>Write an R program to obtain</td>
</tr>
<tr>
<td></td>
<td>(i) Sum of two matrices A and B (ii) Subtraction of two matrices A and B</td>
</tr>
<tr>
<td></td>
<td>(iii) Product of two matrices.</td>
</tr>
<tr>
<td>7.</td>
<td>Write an R program for “declaring and defining functions “</td>
</tr>
<tr>
<td>8.</td>
<td>Write an R program that uses functions to add (n) numbers reading from keyboard</td>
</tr>
<tr>
<td>9.</td>
<td>Write an R program uses functions to swap two integers.</td>
</tr>
<tr>
<td>10.</td>
<td>Write an R program that use both recursive and non-recursive functions for implementing the Factorial of a given number, (n).</td>
</tr>
<tr>
<td>11.</td>
<td>Write an R program to reverse the digits of the given number {example 1234 to be written as 4321}</td>
</tr>
<tr>
<td>12.</td>
<td>Write an R program to implement</td>
</tr>
<tr>
<td></td>
<td>(i) Linear search (ii) Binary Search.</td>
</tr>
<tr>
<td>13.</td>
<td>Write an R program to implement</td>
</tr>
<tr>
<td></td>
<td>(i) Bubble sort (ii) selection sort.</td>
</tr>
<tr>
<td>14.</td>
<td>Write a R program to implement the data structures</td>
</tr>
<tr>
<td></td>
<td>(i) Vectors (ii) Array (iii) Matrix (iv) Data Frame (v) Factors</td>
</tr>
<tr>
<td>15.</td>
<td>Write a R program to implement scan(), merge(), read.csv() and read.table() commands.</td>
</tr>
<tr>
<td>16.</td>
<td>Write an R program to implement “Executing Scripts” written on the note pad, by calling to the R console.</td>
</tr>
<tr>
<td>17.</td>
<td>Write a R program, Reading data from files and working with datasets</td>
</tr>
<tr>
<td></td>
<td>(i) Reading data from csv files, inspection of data.</td>
</tr>
<tr>
<td></td>
<td>(ii) Reading data from Excel files.</td>
</tr>
<tr>
<td>18.</td>
<td>Write a R program to implement Graphs</td>
</tr>
<tr>
<td></td>
<td>(i) Basic high-level plots (ii) Modifications of scatter plots</td>
</tr>
<tr>
<td></td>
<td>(iii) Modifications of histograms, parallel box plots.</td>
</tr>
</tbody>
</table>

Suggested Books for Lab:
2. Introducing to programming and problem solving by scala, mark c. lewis, lisa l.lacher.

Suggested Links:
1. https://www.tutorialspoint.com/scala/
2. https://www.tutorialspoint.com/r/
DIGITAL FORENSICS (Professional Elective - V)

Pre-Requisites: Cybercrime and Information Warfare, Computer Networks

Course Objectives:
- Provides an in-depth study of the rapidly changing and fascinating field of computer forensics.
- Combines both the technical expertise and the knowledge required to investigate, detect and prevent digital crimes.
- Knowledge on digital forensics legislations, digital crime, forensics processes and procedures, data acquisition and validation, e-discovery tools
- E-evidence collection and preservation, investigating operating systems and file systems, network forensics, art of steganography and mobile device forensics

Course Outcomes: On completion of the course the student should be able to
- Understand relevant legislation and codes of ethics.
- Computer forensics and digital detective and various processes, policies and procedures.
- E-discovery, guidelines and standards, E-evidence, tools and environment.
- Email and web forensics and network forensics.

UNIT - I
Digital Forensics Science: Forensics science, computer forensics, and digital forensics.
Computer Crime: Criminalistics as it relates to the investigative process, analysis of cyber-criminalistics area, holistic approach to cyber-forensics

UNIT - II
Cyber Crime Scene Analysis:
Discuss the various court orders etc., methods to search and seizure electronic evidence, retrieved and un-retrieved communications, Discuss the importance of understanding what court documents would be required for a criminal investigation.

UNIT - III
Evidence Management & Presentation:
Create and manage shared folders using operating system, importance of the forensic mindset, define the workload of law enforcement, Explain what the normal case would look like, Define who should be notified of a crime, parts of gathering evidence, Define and apply probable cause.

UNIT - IV
Computer Forensics: Prepare a case, Begin an investigation, Understand computer forensics workstations and software, Conduct an investigation, Complete a case, Critique a case,
Network Forensics: open-source security tools for network forensic analysis, requirements for preservation of network data.

UNIT - V
Mobile Forensics: mobile forensics techniques, mobile forensics tools.
Recent trends in mobile forensic technique and methods to search and seizure electronic evidence
References:
HIGH PERFORMANCE COMPUTING (Professional Elective - V)

Prerequisites: Computer Organization & Architecture, Operating System Programming

Course Objectives:

- To improve the system performance
- To learn various distributed and parallel computing architecture
- To learn different computing technologies

Course Outcomes:

- Understanding the concepts in grid computing
- Ability to set up cluster and run parallel applications
- Ability to understand the cluster projects and cluster OS
- Understanding the concepts of pervasive computing & quantum computing.

UNIT - I

UNIT - II

UNIT - III:

UNIT - IV
Device Connectivity; Java For Pervasive Devices; Application Examples.

UNIT - V
Classical Vs Quantum Logic Gates; One, Two & Three Qubit Quantum Gates; Fredkin & Toffoli Gates; Quantum Circuits; Quantum Algorithms.

Text Book:
1. “Selected Topics In Advanced Computing” Edited By Dr. P. Padmanabham And Dr. M.B. Srinivas, 2005 Pearson Education.

References:
2. J. Burkhardt et.al: ‘pervasive computing’ Pearson Education
DEEP LEARNING (Professional Elective - V)

Course Objectives:
- To introduce the foundations of Artificial Neural Networks
- To acquire the knowledge on Deep Learning Concepts
- To learn various types of Artificial Neural Networks
- To gain knowledge to apply optimization strategies

Course Outcomes:
- Ability to understand the concepts of Neural Networks
- Ability to select the Learning Networks in modeling real world systems
- Ability to use an efficient algorithm for Deep Models
- Ability to apply optimization strategies for large scale applications

UNIT - I
Deep Feedforward Networks: Example: Learning XOR, Gradient-Based Learning, Hidden Units, Architecture Design, Back-Propagation and Other Differentiation Algorithms, Historical Notes

UNIT - II
Regularization for Deep Learning:
Parameter Norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised Learning, Multi-Task Learning, Early Stopping, Parameter Tying and Parameter Sharing, Sparse Representations, Bagging and Other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, Tangent Prop, and Manifold Tangent Classifier.

UNIT - III

UNIT - IV
Convolutional Networks:
The Convolution Operation, Motivation, Pooling, Convolution and Pooling as an Infinitely Strong Prior, Variants of the Basic Convolution Function, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or Unsupervised Features, The Neuro-scientific Basis for Convolutional Networks, Convolutional Networks and the History of Deep Learning

UNIT - V
Applications:
Large-Scale Deep Learning, Computer Vision, Speech Recognition, Natural Language Processing, Other Applications

Text Book:
Reference Books:

ENGLISH FOR RESEARCH PAPER WRITING (Audit Course - I & II)

Prerequisite: None

Course objectives: Students will be able to:
- Understand that how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title. Ensure the good quality of paper at very first-time submission

UNIT-I:
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

UNIT-III:
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:
key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT-V:
skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. Useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

TEXT BOOKS/ REFERENCES:
Prerequisite: None

Course Objectives: Students will be able to
- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches,
- planning and programming in different countries, particularly their home country or the countries they work in

UNIT-I:
Introduction:
Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Disaster Prone Areas in India:
Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT-II:
Repercussions of Disasters and Hazards:

UNIT-III:
Disaster Preparedness and Management:
Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT-IV:
Risk Assessment Disaster Risk:

UNIT-V:
Disaster Mitigation:
Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.
TEXT BOOKS/ REFERENCES:
2. Sahni, Pardeep Et. Al. (Eds.),” Disaster Mitigation Experiences and Reflections”, Prentice Hall of India, New Delhi.
SANSKRIT FOR TECHNICAL KNOWLEDGE (Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Course Outcomes: Students will be able to
- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT-I:
Alphabets in Sanskrit,

UNIT-II:
Past/Present/Future Tense, Simple Sentences

UNIT-III:
Order, Introduction of roots,

UNIT-IV:
Technical information about Sanskrit Literature

UNIT-V:
Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TEXT BOOKS/ REFERENCES:
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
VALUE EDUCATION (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to
- Understand value of education and self-development
- Imbibe good values in students
- Let the should know about the importance of character

Course outcomes: Students will be able to
- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT-I:

UNIT-II:

UNIT-III:
Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline, Punctuality, Love and Kindness.

UNIT-IV:

UNIT-V:

TEXT BOOKS/REFERENCES:
CONSTITUTION OF INDIA (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:
- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:
- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:

UNIT-II:

UNIT-III:
Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualification, Powers and Functions.

UNIT-IV:

UNIT-V:
TEXT BOOKS/ REFERENCES:
1. The Constitution of India, 1950 (Bare Act), Government Publication.
Prerequisite: None

Course Objectives: Students will be able to:
- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: Students will be able to understand:
- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT-I:

UNIT-II:
Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT-III:
Evidence on the effectiveness of pedagogical practices, Methodology for the indepth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers’ attitudes and beliefs and Pedagogic strategies.

UNIT-IV:
Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

UNIT-V:
Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

TEXT BOOKS/ REFERENCES:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech. (CSE/CS)

STRESS MANAGEMENT BY YOGA (Audit Course - I & II)

Prerequisite: None

Course Objectives:
• To achieve overall health of body and mind
• To overcome stress

Course Outcomes: Students will be able to:
• Develop healthy mind in a healthy body thus improving social health also
• Improve efficiency

UNIT-I:
Definitions of Eight parts of yog. (Ashtanga)

UNIT-II:
Yam and Niyam.

UNIT-III:
Do’s and Don’t’s in life.
i) Ahinsa, satya, astheya, bramhacharya and aparigraha
ii) Shaucha, santosh, tapa, swadhyay, ishwarrpanidhan

UNIT-IV:
Asan and Pranayam

UNIT-V:
i) Various yog poses and their benefits for mind & body
ii) Regularization of breathing techniques and its effects-Types of pranayam

TEXT BOOKS/ REFERENCES:
1. "Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur
2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama
 (Publication Department), Kolkata
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech. (CSE/CS)

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS
(Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes: Students will be able to
- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students

UNIT-I:
Neetisatakam-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)

UNIT-II:
Neetisatakam-Holistic development of personality
- Verses- 52,53,59 (don'ts)
- Verses- 71,73,75,78 (do's)

UNIT-III:
Approach to day to day work and duties.
- Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT-IV:
Statements of basic knowledge.
- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta:

UNIT-V:
- Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 – Verses 37,38,63

TEXT BOOKS/ REFERENCES:
1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagyagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.