I YEAR I – SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core - I</td>
<td>Wireless Communications and Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core - II</td>
<td>Advanced Data Communications</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - I</td>
<td>1. Cognitive Radio</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. TCP/IP Internetworking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Detection and Estimation Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Elective - II</td>
<td>1. 4G Technologies</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Coding Theory and Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Spread Spectrum Communications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab - I</td>
<td>Wireless Communications and Networks Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Lab - II</td>
<td>Advanced Data Communications Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Audit - I</td>
<td>Audit Course - I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
<td>0</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

I YEAR II – SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core - III</td>
<td>Advanced Communications and Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core - IV</td>
<td>Network Security and Cryptography</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - III</td>
<td>1. Optical Communications and Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Ad-hoc & Wireless Sensor Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Wireless MIMO Communications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Elective - IV</td>
<td>1. Pattern Recognition and Machine Learning</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. High Performance Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Remote Sensing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab - III</td>
<td>Advanced Communications and Networks Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Lab - IV</td>
<td>Network Security and Cryptography Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mini project with Seminar</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Audit - II</td>
<td>Audit Course - II</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
<td>0</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>
III SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P/D</th>
<th>Credits</th>
</tr>
</thead>
</table>
| Professional Elective – V | 1. Voice and Data Networks
2. IOT and Its Applications
3. Deep Learning | 3 | 0 | 0 | 3 |
| Open Elective | Open Elective | 3 | 0 | 0 | 3 |
| Dissertation | Dissertation Work Review - II | 0 | 0 | 12 | 6 |
| **Total** | | 6 | 0 | 12 | 12 |

II YEAR II - SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation</td>
<td>Dissertation Work Review - III</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Dissertation Viva-Voce</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

*For Dissertation Work Review - I, Please refer 7.8 in R19 Academic Regulations.

Audit Course I & II:
1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by yoga
8. Personality Development Through Life Enlightenment Skills
Course Objectives: The objectives of this course are to make the student
1. To study the Channel planning for Wireless Systems
2. To study the Mobile Radio Propagation
3. To study the Equalization and Diversity
4. To study the Wireless Networks

Course Outcomes: At the end of this course, students will be able to
1. Understand Cellular communication concepts
2. Study the mobile radio propagation
3. Study the wireless network different type of MAC protocols

UNIT -I

UNIT –II

UNIT –III
Mobile Radio Propagation: Small –Scale Fading and Multipath: Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke's model for flat fading, spectral shape due to Doppler spread in Clarke's model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.
UNIT -IV

UNIT -V
Wireless Networks: Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11, IEEE 802.11 Medium Access Control, Comparision of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, Hiper Lan, WLL.

TEXT BOOKS

REFERENCES:
1. Wireless Digital Communications – Kamilo Feher, 1999, PHI.
Course Objectives: The main objectives of the course are:
1. To learn about basics of Data Communication networks, different protocols, standards and layering concepts.
2. To study about error detection and correction techniques.
3. To know about link layer, point to point, Medium Access and Control sub layer protocols.
4. To know about Switching circuits, Multiplexing and Spectrum Spreading techniques for data transmission.

Course Outcomes: At the end of the course, the student will be able to:
1. Understand the concepts of Networks and data link layer.
2. Acquire the knowledge of error detection, forward and reverse error correction techniques.
3. Compare the performance of different MAC protocols like Aloha, CSMA, CSMA/CA, TDMA, FDMA & CDMA.
4. Understand the significance of Switching circuits and characteristics of Wired LANs

UNIT I
Data Communications, Networks and Network Types, Internet History, Standards and Administration, Protocol Layering, TCP/IP protocol suite, OSI Model. Digital Data Transmission, DTE-DCE interface.

Data Link Layer: Introduction, Data Link Layer, Nodes and Links, Services, Categories of Links, sub layers, Link Layer Addressing, Address Resolution Protocol.

UNIT II
Error Detection and Correction: Types of Errors, Redundancy, detection versus correction, Coding Block Coding: Error Detection, Vertical redundancy checks, longitudinal redundancy checks, Error Correction, Error correction single bit, Hamming code.
Cyclic Codes: Cyclic Redundancy Check, Polynomials, Cyclic Code Encoder Using Polynomials, Cyclic Code Analysis, Advantage of Cyclic Codes, Checksum

Data Link Control: DLC Services, Data Link Layer Protocols, HDLC, Point to Point Protocol

UNIT III
Media Access Control (MAC) Sub Layer: Random Access, ALOHA, Carrier Sense Multiple Access (CSMA), Carrier Sense Multiple Access with Collision Detection (CSMA/CD), Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), Controlled Access- Reservation, Polling- Token Passing, Channelization - Frequency Division Multiple Access (FDMA), Time - Division Multiple Access (TDMA), Code - Division Multiple Access (CDMA).

Wired LANS: Ethernet Protocol, Standard Ethernet, Fast Ethernet, Gigabit Ethernet, 10 Giga bit Ethernet

UNIT IV
Switching: Introduction to Switching, Circuit Switched Networks, Packet Switching, Structure of switch
Multiplexing: Multiplexing, Frequency Division Multiplexing, Time Division Multiplexing.
Spectrum Spreading: Spread Spectrum-Frequency Hopping Spread Spectrum and Direct Sequence Spread Spectrum
Connecting devices: Passive Hubs, Repeaters, Active Hubs, Bridges, Two Layer Switches, Routers, Three Layer Switches, Gateway, Backbone Networks.

UNIT V

TEXT BOOKS:

REFERENCES:
Course Outcomes: At the end of this course, students will be able to understand the fundamental concepts of cognitive radio networks.

1. Develop the cognitive radio, as well as techniques for spectrum holes detection that cognitive radio takes advantages in order to exploit it.
2. Understand technologies to allow an efficient use of TVWS for radio communications based on two spectrum sharing business models/policies.
3. Understand fundamental issues regarding dynamic spectrum access, the radio-resource management and trading, as well as a number of optimization techniques for better spectrum exploitation.

UNIT-I
Introduction to Cognitive Radios: Digital dividend, cognitive radio (CR) architecture, functions of cognitive radio, dynamic spectrum access (DSA), components of cognitive radio, spectrum sensing, spectrum analysis and decision, potential applications of cognitive radio.

UNIT-II
Spectrum Sensing: Spectrum sensing, detection of spectrum holes (TVWS), collaborative sensing, geo-location database and spectrum sharing business models (spectrum of commons, real time secondary spectrum market).

UNIT-III
Optimization Techniques of Dynamic Spectrum Allocation: Linear programming, convex programming, non-linear programming, integer programming, dynamic programming, stochastic programming.

Unit-IV
Dynamic Spectrum Access and Management: Spectrum broker, cognitive radio architectures, centralized dynamic spectrum access, distributed dynamic spectrum access, learning algorithms and protocols.

UNIT-V
Spectrum Trading: Introduction to spectrum trading, classification to spectrum trading, radio resource pricing, brief discussion on economics theories in DSA (utility, auction theory), and classification of auctions (single auctions, double auctions, concurrent, sequential). Research Challenges in Cognitive Radio: Network layer and transport layer issues, cross layer design for cognitive radio networks.

REFERENCES:
UNIT - I
Connecting devices: Passive Hubs, Repeaters, Active Hubs, Bridges, Two Layer Switches, Routers, Three Layer Switches, Gateway, Backbone Networks.

UNIT -II

UNIT -III
Congestion and Quality of Service: Data Traffic, Congestion, Congestion Control, Congestion Control in TCP, Congestion Control in Frame Relay, Source Based Congestion Avoidance, DEC Bit Scheme, Quality of Service, Techniques to Improve QOS: Scheduling, Traffic Shaping, Admission Control, Resource Reservation, Integrated Services and Differentiated Services.

UNIT - IV
Queue Management: Concepts of Buffer Management, Drop Tail, Drop Front, Random Drop, Passive Buffer Management Schemes, Drawbacks of PQM, Active Queue Management: Early Random Drop, RED Algorithm.

UNIT - V
Mobile Network Layer: Entities and Terminology, IP Packet Delivery, Agents, Addressing, Agent Discovery, Registration, Tunneling and Encapsulating, Inefficiency in Mobile IP.
Mobile Transport Layer: Classical TCP Improvements, Indirect TCP, Snooping TCP, Mobile TCP, Fast Retransmit/Fast Recovery, Transmission, Timeout Freezing, Selective Retransmission, Transaction Oriented TCP.

TEXT BOOKS:

REFERENCES:
1. Mahbub Hasan & Raj Jain, ” High performance TCP/IP Networking”, PHI -2005
Prerequisite: Probability Theory and Stochastic Processes

Course Objectives: The main objectives of the course are:
1. The main objective of this course is to provide basic estimation and detection background for engineering applications.
2. This course provides the main concepts and algorithms for detection and estimation theory.
4. To apply estimation methods for real time engineering problems.

Course Outcomes: On completion of this course student will be able to
1. Understand the basic Random Process and detection methods.
2. Known the significance of Probability of error
3. Learn about basic estimation methods and filters
4. Measure the statistical parameters for random processes

UNIT –I

UNIT –II
Detection Theory: Basic Detection Problem, Maximum A posteriori Decision Rule, Minimum Probability of Error Classifier, Bayes Decision Rule, Multiple-Class Problem (Bayes) - minimum probability error with and without equal a priori probabilities, Neyman-Pearson Classifier, General Calculation of Probability of Error, General Gaussian Problem, Composite Hypotheses.

UNIT –III
Linear Minimum Mean-Square Error Filtering: Linear Minimum Mean Squared Error Estimators, Nonlinear Minimum Mean Squared Error Estimators. Innovations, Digital Wiener Filters with Stored Data, Real-time Digital Wiener Filters, Kalman Filters.

UNIT –IV

UNIT –V
TEXT BOOKS

REFERENCES
2. Introduction to Statistical Signal Processing with Applications – Srinath, Rajasekaran, Viswanathan, 2003, PHI.
Prerequisite: Wireless and Mobile Communications.

Course Objectives: The objectives of the course 4G Technologies are
1. To know about Second Generation, Third Generation Cellular technologies.
2. To study the Evolution Generation (2.5G) technology platforms.
3. To study various 4G technologies like OFDM, MC-CDMA etc.
4. To understand UWB wireless channels, channel modelling for micro, picocells.

Course Outcomes: At the end of the course, the students will be able to
1. Explain and compare Second and Third Generation technologies, their architectures.
2. Describe improved version of 2G technology i.e., evolution Generation(2.5G).
3. Define 4G technologies, their applications in modern wireless communication systems.
4. Evaluate the performance of OFDM system in fading environment.
5. Differentiate various hybrid multiple access schemes used in 4G systems.
6. Demonstrate the knowledge about UWB wireless channels.

UNIT – I
2G Technology: Second Generation (2G): Overview, Enhancements over 1G Systems, Integration with Existing 1G Systems, GSM, IS-136 System Description, IS-95 System Description, iDEN (Integrated Dispatch Enhanced Network), CDPD.

UNIT – II
The Evolution Generation (2.5G): What Is 2.5G?, Enhancements over 2G, Technology Platforms, General Packet Radio Service, (GPRS), Enhanced Data Rates for Global Evolution (EDGE), High-Speed Circuit Switched Data (HSCSD), CDMA 2000 (1XRTT), WAP, SMS, Migration Path from 2G to 2.5G to 3G.

UNIT – III

OFDM: Timing and frequency offset in OFDM, Fading channel estimation for OFDM signals, Space-Time coding with OFDM signals, Layered Space-Time coding for MIMO OFDM, PAPR Reduction of OFDM signals.

UNIT – IV
Hybrid Multiple Access Schemes: Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier FDMA (SC-FDMA), OFDMA with Code Division Multiplexing (SS-MC-MA).

UNIT – V

UWB: Ultra-Wide Band Radio, The UWB channel, Coded UWB schemes, Multiuser detection in UWB radio, UWB with space–time processing.

Channel Modelling and Measurements for 4G: Macrocellular environments (1.8 GHz), urban spatial radio channels in macro/microcell (2.154 GHz), MIMO channels in microcell and picocell environments (1.71/2.05 GHz), Outdoor mobile channel (5.3 GHz), Microcell channel (8.45 GHz), Wireless MIMO LAN environments (5.2GHz).

TEXT BOOKS:

REFERENCE BOOKS:
Prerequisite: Digital Communications

Course Objectives
1. To acquire the knowledge in measurement of information and errors.
2. To study the generation of various code methods.
3. To study the various application of codes.

Course Outcomes: On completion of this course student will be able to
1. Learning the measurement of information and errors.
2. Obtain knowledge in designing Linear Block Codes and Cyclic codes.
3. Construct tree and trellies diagrams for convolution codes
4. Design the Turbo codes and Space time codes and also their applications

UNIT – I
Coding for Reliable Digital Transmission and storage: Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.
Linear Block Codes Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT - II
Cyclic Codes Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding, Cyclic Hamming Codes, Shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT – III
Convolutional Codes Encoding of Convolutional Codes, Structural and Distance Properties, maximum likelihood decoding, Sequential decoding, Majority-logic decoding of Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

UNIT – IV
Turbo Codes LDPC Codes- Codes based on sparse graphs, Decoding for binary erasure channel, Log-likelihood algebra, Brief propagation, Product codes, Iterative decoding of product codes, Concatenated convolutional codes- Parallel concatenation, The UMTS Turbo code, Serial concatenation, Parallel concatenation, Turbo decoding

UNIT - V
Space-Time Codes Introduction, Digital modulation schemes, Diversity, Orthogonal space- Time Block codes, Alamouti’s schemes, Extension to more than Two Transmit Antennas, Simulation Results, Spatial Multiplexing: General Concept, Iterative APP Preprocessing and Per-layer Decoding, Linear Multilayer Detection, Original BLAST Detection, QL Decomposition and Interface Cancellation, Performance of Multi – Layer Detection Schemes, Unified Description by Linear Dispersion Codes.
TEXT BOOKS:

REFERENCES:
1. Digital Communications - Fundamental and Application - Bernard Sklar, PE.
Prerequisite: Digital Communications

Course Objectives: The objectives of this course are to make the student
1. Understand the concept of Spread Spectrum and study various types of Spread spectrum sequences and their generation.
2. Understand the principles of Code Division Multiple Access (CDMA) and use of Spread spectrum concept in CDMA
3. Understand various Code tracing loops for optimum tracking of wideband signals viz spread spectrum signals
4. Understand the procedure for synchronization of receiver for receiving the Spread spectrum signal.
5. Study the performance of spread spectrum systems in Jamming environment, systems with Forward Error Correction and Multiuser detection in CDMA cellular radio.

Course Outcomes: On completion of this course student will be able to
1. Generate various types of Spread spectrum sequences and can simulate CDMA system (Both Transmitter & Receiver).
2. Analyze the performance of Spread spectrum systems in Jamming environment and systems with Forward Error Correction.
3. Can provide detection and cancellation schemes for Multi-user's in CDMA cellular radio.

UNIT -I
Introduction, Definitions, Mathematical Background and Sequence Generator Fundamentals, Maximal Length Sequences, Gold Codes.

UNIT -II

UNIT -III
Initial Synchronization of the Receiver Spreading Code: Introduction, Problem Definition and the Optimum Synchronizer, Serial Search Synchronization Techniques, Synchronization using a Matched Filter, Synchronization by Estimated the Received Spreading Code.

UNIT -IV
UNIT -V

TEXT BOOKS:

REFERENCES:
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M.TECH. - I YEAR - I SEMESTER
COMMUNICATION SYSTEMS

WIRELESS COMMUNICATIONS AND NETWORKS LAB (Lab – I)

Course Outcomes: At the end of this course, students will be able to
1. Implement the advanced digital modulation techniques.
2. Design Convolutional encoder and decoder for error control coding techniques.
3. Calculate path loss for Free space, Okumura and Hata models for outdoor propagation.
5. Simulate RAKE receiver for CDMA with MATLAB.

List of Experiments:
1. FSK Modulation and Demodulation technique.
2. QPSK Modulation and Demodulation technique.
3. DQPSK Modulation and Demodulation technique
4. 8-QAM Modulation and Demodulation technique.
5. Implementation of Convolutional Encoder and Decoder.
6. Simulation of the following Outdoor Path loss propagation models using MATLAB.
 a. Free Space Propagation model b. Okumura model
 b. Hata model
7. Simulation of Adaptive Linear Equalizer using MATLAB software.
9. Study of GSM handset for various signalling and fault insertion techniques (Major GSM handset sections: clock, SIM card, charging, LCD module, Keyboard, User interface).
10. Study of transmitter and receiver section in mobile handset and measure frequency
11. band signal and GMSK modulating signal.
12. Simulation of RAKE Receiver for CDMA communication using MATLAB software.
13. Simulate and test various types of PN codes, chip rate, spreading factor and processing gain on performance of DSSS in CDMA.
14. Simulate and test the 3G Network system features using GSM AT Commands. (Features of 3G Communication system: Transmission of voice, video calls, SMS, MMS,TCP/IP,HTTP,GPS)
15. Modelling of communication system using Simulink.

Note: Experiments 1 to 5 need to be simulated using MATLAB and tested on hardware.
ADVANCED DATA COMMUNICATIONS LAB (Lab – II)

List of Experiments:
1. Measurement of Bit Error Rate using Binary Data.
2. Verification of minimum distance in Hamming code.
3. Determination of output of Convolutional Encoder for a given sequence.
4. Determination of output of Convolutional Decoder for a given sequence.
5. Efficiency of DS Spread- Spectrum Technique.
6. Simulation of Frequency Hopping (FH) system.
7. Determination of Losses in Optical fiber.
9. Observing the waveforms at various test points of a mobile phone using Mobile Phone Trainer.
10. Study of direct sequence spread spectrum modulation and demodulation using CDMA-DSSS-BER trainer.
11. Study of ISDN training system with protocol analyzer.

Note:
A. Minimum of 10 Experiments have to be conducted
B. All Experiments may be Simulated using MATLAB and to be verified using related training kits.
Prerequisite: None

Course Objectives:
- To understand the research problem
- To know the literature studies, plagiarism and ethics
- To get the knowledge about technical writing
- To analyze the nature of intellectual property rights and new developments
- To know the patent rights

Course Outcomes: At the end of this course, students will be able to
- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I:
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT-II:
Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT-III:
Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-IV:

UNIT-V:

TEXT BOOKS:
2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”

REFERENCES:
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M.TECH. - I YEAR- II SEMESTER
COMMUNICATION SYSTEMS

ADVANCED COMMUNICATIONS AND NETWORKS (PC – III)

UNIT - I

Spread Spectrum Communications: Spreading sequences- Properties of Spreading Sequences, Pseudo- noise sequence, Gold sequences, Kasami sequences, Walsh Sequences, Orthogonal Variable Spreading Factor Sequences, Barker Sequence, Complementary Codes

UNIT - II

Orthogonal Frequency Division Multiplexing: Basic Principles of Orthogonality, Single vs Multicarrier Systems, OFDM Block Diagram and Its Explanation, OFDM Signal Mathematical Representation, Selection parameter for Modulation, Pulse shaping in OFDM Signal and Spectral Efficiency, Window in OFDM Signal and Spectrum, Synchronization in OFDM, Pilot Insert in OFDM Transmission and Channel Estimation, Amplitude Limitations in OFDM, FFT Point Selection Constraints in OFDM, CDMA vs OFDM, Hybrid OFDM.

UNIT - III

MIMO Systems: Introduction, Space Diversity and System Based on Space Diversity, Smart Antenna system and MIMO, MIMO Based System Architecture, MIMO Exploits Multipath, Space – Time Processing, Antenna Consideration for MIMO, MIMO Channel Modelling, MIMO Channel Measurement, MIMO Channel Capacity, Cyclic Delay Diversity (CDD), Space Time Coding, Advantages and Applications of MIMO in Present Context, MIMO Applications in 3G Wireless System and Beyond, MIMO-OFDM

UNIT - IV

Wireless LANs/IEEE 802.11x: Introduction to IEEE802.11x Technologies, Evolution of wireless LANs, IEEE 802.11 Design Issues, IEEE 802.11 Services, IEEE 802.11 MAC Layer operations, IEEE 802.11 Layer1, IEEE 802.11 a/b/g Higher Rate Standards, Wireless LAN Security, Computing Wireless Technologies, Typical WLAN Hardware

UNIT - V

Wireless PANs/IEEE 802.15x: Introduction to IEEE 802.15x Technologies: Wireless PAN Applications and Architecture, IEEE 802.15.1 Physical Layer Details, Bluetooth Link Controllers Basics, Bluetooth Link Controllers Operational States, IEEE 802.15.1 Protocols and Host Control Interface. Evaluation of IEEE 802.15 Standards

Broad Band Wireless MANs/IEEE 802.16x: Introduction to WMAN/IEEE 802.16x Technology, IEEE 802.16Wireless MANs, IEEE 802.16 MAC Layer Details, IEEE 802.16 Physical Layer Details, IEEE 802.16 Physical Layer Details for 2-11 GHz, IEEE 802.16 Common System Operations.

TEXT BOOKS:
REFERENCES:
2. Gottapu Sasibhusan Rao, “Mobile Cellular Communication”, PEARSON
Network Security and Cryptography (PC – IV)

Course Outcomes: At the end of the course, students will be able to:

1. Identify and utilize different forms of cryptography techniques.
2. Incorporate authentication and security in the network applications.
3. Distinguish among different types of threats to the system and handle the same.

UNIT-I:
Security: Need, security services, Attacks, OSI Security Architecture, one time passwords, Model for Network security, Classical Encryption Techniques like substitution ciphers, Transposition ciphers, Cryptanalysis of Classical Encryption Techniques.

UNIT-II
Number Theory: Introduction, Fermat’s and Euler’s Theorem, The Chinese Remainder Theorem, Euclidean Algorithm, Extended Euclidean Algorithm, and Modular Arithmetic.

UNIT-III
Private-Key (Symmetric) Cryptography: Block Ciphers, Stream Ciphers, RC4 Stream cipher, Data Encryption Standard (DES), Advanced Encryption Standard (AES), Triple DES, RC5, IDEA, Linear and Differential Cryptanalysis.

UNIT-IV
Public-Key (Asymmetric) Cryptography: RSA, Key Distribution and Management, Diffie-Hellman Key Exchange, Elliptic Curve Cryptography, Message Authentication Code, hash functions, message digest algorithms: MD4 MD5, Secure Hash algorithm, RIPEMD-160, HMAC.

UNIT-V

TEXT BOOKS:

REFERENCES:
UNIT -I
Optical Fibers: Structures, waveguiding and Fabrication: Nature of Light, Basic optical laws and definitions, Single mode fibers, Graded index fiber structure, Attenuation, Signal Dispersion in fibers.
Optical Sources- LEDs, Laser Diodes, Line Coding.

UNIT -II
Photo detectors: Photo detector Noise, Detector Response Time, Avalanche Multiplication Noise.
WDM Concepts and Components: Passive optical Couplers, Isolators and Circulators

UNIT -III
Digital Links: Point to point links, power penalties, error control, Coherent detection, Differential Quadrature Phase Shift Keying.
Analog Links: Carrier to noise ration, Multichannel Transmission Techniques, RF over Fiber, Radio over fiber links, Microwave Photonics.

UNIT -IV

UNIT -V
Performance Measurement and Monitoring: Measurement standards, Basic Test Equipment, Optical power measurement, Optical fiber characterization, Eye diagram tests, optical time domain reflectometer, optical performance monitoring, optical fiber system performance measurements.

TEXTBOOKS:

REFERENCE BOOKS:
Prerequisite: Wireless Sensor Networks

Course Objectives: The objectives of this course are to make the student
1. To study the fundamentals of wireless Ad-Hoc Networks.
2. To study the operation and performance of various Adhoc wireless network protocols.
3. To study the architecture and protocols of Wireless sensor networks.

Course Outcomes: On completion of this course student will be able to
1. Students will be able to understand the basis of Ad-hoc wireless networks.
2. Students will be able to understand design, operation and the performance of MAC layer protocols of Adhoc wireless networks.
3. Students will be able to understand design, operation and the performance of routing protocol of Adhoc wireless network.
4. Students will be able to understand design, operation and the performance of transport layer protocol of Adhoc wireless networks.
5. Students will be able to understand sensor network Architecture and will be able to distinguish between protocols used in Adhoc wireless network and wireless sensor networks.

UNIT - I

UNIT - II

UNIT - III

UNIT – IV

UNIT – V
TEXT BOOKS

REFERENCES:
UNIT - I
Fading Channels and Diversity Techniques: Wireless channels – Error/Outage probability over fading channels – Diversity techniques – Channel coding as a means of time diversity – Multiple antennas in wireless communications.

UNIT - II
Capacity and Information Rates of MIMO Channels: Capacity and Information rates of noisy, AWGN and fading channels – Capacity of MIMO channels – Capacity of non-coherent MIMO channels – Constrained signaling for MIMO communications.

UNIT - III
Space-Time Block and Trellis Codes: Transmit diversity with two antennas: The Alamouti scheme – Orthogonal, and Quasi-orthogonal space-time block codes – Linear dispersion codes – Generic space-time trellis codes – Basic space-time code design principles – Representation of space-time trellis codes for PSK constellation – Performance analysis for space-time trellis codes – Comparison of space-time block and trellis codes.

UNIT - IV
Concatenated Codes and Iterative Decoding: Development of concatenated codes – Concatenated codes for AWGN and MIMO channels – Turbo coded modulation for MIMO channels – Concatenated space-time block coding.

UNIT - V
Space-Time Coding for Frequency Selective Fading Channels: MIMO frequency-selective channels – Capacity and Information rates of MIMO FS fading channels – Space-time coding and Channel detection for MIMO FS channels – MIMO OFDM systems.

TEXT BOOKS:

REFERENCES:
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M.TECH.- I YEAR- II SEMESTER
COMMUNICATION SYSTEMS

PATTERN RECOGNITION AND MACHINE LEARNING (PE – IV)

Prerequisite: Statistics and Linear Algebra

Course Objectives
1. The student will be able to understand the mathematical formulation of patterns.
2. To study the various linear models.
3. Understand the basic classifiers.
4. Can able to distinguish different models.

Course Outcomes: On completion of this course student will be able to
1. Learn the basics of pattern classes and functionality.
2. Construct the various linear models.
3. Understand the importance kernel methods.
4. Learn the Markov and Mixed models.

UNIT-I
Introduction to Pattern recognition: Mathematical Formulation and Basic Functional Equation, Reduction of Dimensionality, Experiments in Pattern Classification, Backward Procedure for Both Feature Ordering- and Pattern Classification, Suboptimal Sequential Pattern Recognition, Nonparametric Design of Sequential Pattern Classifiers, Analysis of Optimal Performance and a Multiclass Generalization

UNIT-II
Linear Models: Linear Basis Function Models -Maximum likelihood and least squares, Geometry of least squares , Sequential learning, Regularized least squares, Multiple outputs , The Bias-Variance Decomposition, Bayesian Linear Regression -Parameter distribution, Predictive, Equivalent, Bayesian Model Comparison, Probabilistic Generative Models-Continuous inputs, Maximum likelihood solution, Discrete features, Exponential family, Probabilistic Discriminative Models -Fixed basis functions, Logistic regression, Iterative reweighted least squares, Multiclass logistic regression, Probit regression, Canonical link functions

UNIT-III
Kernel Methods: Constructing Kernels, Radial Basis Function Networks -Nadaraya-Watson model, Gaussian Processes -Linear regression revisited, Gaussian processes for regression, Learning the hyper parameters, Automatic relevance determination, Gaussian processes for classification, Laplace approximation, Connection to neural networks, Sparse Kernel Machines- Maximum Margin Classifiers, Overlapping class distributions, Relation to logistic regression, Multiclass SVMs, SVMs for regression, Computational learning theory, Relevance Vector Machines- RVM for regression, Analysis of sparsity, RVM for classification

UNIT-IV
UNIT-V

TEXT BOOKS:

REFERENCES:
HIGH PERFORMANCE NETWORKS (PE - IV)

Prerequisite: Computer Networks, AWSN

Course Objectives: The main objectives of the course are:
1. To study about the services offered by communication networks.
3. To learn about QoS solutions of MAC and Network Layers.
4. Study about QoS Frame work for Ad-Hoc wireless networks
5. To learn the Next Generation Hybrid wireless networks

Course Outcomes: After completing this course the student will be able to:
1. Understand the features and services offered by communication networks.
3. Acquire the knowledge about various QoS models, QoS solutions of MAC layer and Network layer
4. Understand the features, architectures and functions of various Next generation Hybrid wireless networks.

UNIT - I
Types of Networks, Network design issues, Data in support of network design, Network design tools, protocols and architecture. Streaming stored Audio and Video, Best effort service, protocols for real time interactive applications, Beyond best effort, scheduling and policing mechanism, integrated services, and RSVP-differentiated services.

UNIT - II
MAC Layer Solutions: Cluster TDMA, IEEE802.11e, IEEE802.11 MAC Protocol - Distributed Coordination Function, Point Coordination Function, QoS Support Mechanisms of IEEE802.11e, Enhanced Distributed Coordination Function, Hybrid Coordination Function.

UNIT - III

UNIT - IV
QoS frame work for Ad Hoc Wireless Networks: QoS Models-Flexible QoS Model for Mobile Ad Hoc Networks Advantages and Disadvantages
INSIGNIA-Operation of INSIGNIA Framework, Releasing Resources in INSIGNIA, Route Maintenance, Advantages and Disadvantages, INORA- Coarse Feedback Scheme, Class-Based Fine Feedback Scheme, Advantages and Disadvantages.

SWAN-SWAN Model, Local Rate Control of Best-Effort Traffic, Source-Based Admission Control of Real-Time Traffic, Impact of Mobility and False Admission, Regulation Algorithms- Source-Based Regulation, Network-Based Regulation, Advantages and Disadvantages of SWAN.

UNIT - V

TEXTBOOKS:

REFERENCES:
1. Ad Hoc and Sensor Networks Theory and Appications- Carols de Morais Cordeiro and Dharma prakash Agrawal, World Scientific
Course Outcomes: At the end of this course, students shall be able to
1. Understand basic concepts, principles and applications of remote sensing, particularly the
 geometric and radiometric principles;
2. Provide examples of applications of principles to a variety of topics in remote sensing,
 particularly related to data collection, radiation, resolution, and sampling.

of Atmosphere-Scattering–Different types–Absorption-Atmospheric window-Energy interaction with
surface features –Spectral reflectance of vegetation, soil and water atmospheric influence on spectral
response patterns-multi concept in Remote sensing.

UNIT-II: Data Acquisition: Types of Platforms–different types of aircrafts-Manned and Unmanned
spacecrafts–sun synchronous and geo synchronous satellites –Types and characteristics of different
platforms –LANDSAT, SPOT, IRS, INSAT, IKONOS, QUICKBIRD etc

UNIT-III: Photographic products, B/W, color, color IR film and their characteristics –resolving power of
lens and film -Opto mechanical electro optical sensors –across track and along track scanners-
multispectral scanners and thermal scanners–geometric characteristics of scanner imagery -
calibration of thermal scanners.

UNIT-IV: Scattering System: Microwave scatterometry, types of RADAR –SLAR –resolution – range
and azimuth –real aperture and synthetic aperture RADAR. Characteristics of Microwave images
topographic effect-different types of Remote Sensing platforms –airborne and space borne sensors -
ERS, JERS, RADARSAT, RISAT - Scatterometer, Altimeter-LiDAR remote sensing, principles,
applications.

UNIT-V: Thermal And Hyper Spectral Remote Sensing: Sensors characteristics-principle of
spectroscopy-imaging spectroscopy–field conditions, compound spectral curve, Spectral library,
radiative models, processing procedures, derivative spectrometry, thermal remote sensing – thermal
sensors, principles, thermal data processing, applications.: Data Analysis: Resolution–Spatial,
Spectral, Radiometric and temporal resolution-signal to noise ratio-data products and their
characteristics-visual and digital interpretation–Basic principles of data processing –Radiometric
correction–Image enhancement–Image classification– Principles of LiDAR, Aerial Laser Terrain
Mapping.

TEXT BOOKS:
 Sons-2000, 6thEdition

REFERENCE BOOKS:
Note: Perform Below Experiments Using MATLAB

List of Experiments:
1. Implementation of Matched Filters.
2. Optimum receiver for the AWGN channel.
5. Generation of constant envelope PSK signal wave form for different values of M.
6. Simulation of PSK system with M=4
7. Simulation of DPSK system with M=4
8. Design of FSK system
9. Simulation of correlation type demodulation for FSK signal
10. BPSK Modulation and Demodulation techniques
11. QPSK Modulation and Demodulation techniques
12. DQPSK Modulation and Demodulation techniques
13. 8-QAM Modulation and Demodulation techniques
14. DQAM Modulation and Demodulation techniques
15. Verification of Decimation and Interpolation of a given signal
16. Power spectrum estimation using AR models
Note:
I. Perform Below experiments using C/C++/JAVA
II. Minimum 10 experiments must be performed

List of Experiments:
1. Write a program to perform encryption and decryption using substitution and transposition cipher.
2. Write a program to implement DES algorithm logic
3. Write a program for evaluation of AES
4. Write a program for evaluation Triple DES
5. Write a program to implement Blowfish algorithm logic
6. Write a program to implement RSA algorithm logic
7. Implement Diffie-Hellman key exchange mechanism using html
8. Write a program to implement Euclid algorithm
9. Calculate the message digest of a text using SHA-1 algorithm
10. Implement the signature scheme digital signature standard
11. Implement electronic mail security
12. Case study on web security requirement
Course Outcomes: At the end of this course, students will be able to
1. Protocol, algorithms, trade-offs rationale.
2. Routing, transport, DNS resolutions
3. Network extensions and next generation architectures.

UNIT -I

UNIT -II
Layered and Layer less Communication, Cross layer design of Networks, Voice Networks (wired and wireless) and Switching, Circuit Switching and Packet Switching, Statistical Multiplexing.

UNIT -III
Data Networks and their Design, Link layer design- Link adaptation, Link Layer Protocols, Retransmission. Mechanisms (ARQ), Hybrid ARQ (HARQ), Go Back N, Selective Repeat protocols and their analysis.

UNIT -IV
Queuing Models of Networks, Traffic Models, Little's Theorem, Markov chains, M/M/1 and other Markov systems, Multiple Access Protocols, Aloha System, Carrier Sensing, Examples of Local area networks,

UNIT -V
Inter-networking, Bridging, Global Internet, IP protocol and addressing, Sub netting, Classless Inter domain Routing (CIDR), IP address lookup, Routing in Internet. End to End Protocols, TCP and UDP. Congestion Control, Additive Increase/Multiplicative Decrease, Slow Start, Fast Retransmit/ Fast Recovery: Congestion avoidance, RED TCP Throughput Analysis, Quality of Service in Packet Networks, Network Calculus, Packet Scheduling Algorithms.

TEXT BOOKS:

REFERENCES
Course Outcomes: At the end of this course, students will be able to
1. Understand the concept of IOT and M2M
2. Study IOT architecture and applications in various fields
3. Study the security and privacy issues in IOT.

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

UNIT-V
Internet of Things Privacy, Security and Governance Introduction, Overview of Governance, Privacy and Security Issues,

TEXTBOOKS
Course Objectives:
1. Introduce to the basic concepts of neural networks.
2. Identify and analyze the various types of neural networks and models of neuron and apply accordingly.
3. Introduce the concept of deep learning and its types.
4. Explore the concepts of applications of deep learning.

Course Outcomes: Upon completing this course students will be able to:
1. Analyze and apply the basic the concepts of neural networks
2. Analyze various types of neural networks and use various activation functions to solve complex problems.
3. Relate the concept of deep learning and its architecture.
4. Design and carry out empirical analysis for various types of applications of deep learning systems.

UNIT-I

UNIT – II

UNIT-III

UNIT-IV
Convolution Neural Networks: The convolution operation, motivation, pooling, Convolution and Pooling as an Infinitely Strong Prior, Applications of deep learning: Large scale deep learning, Computer vision, Speech Recognition, Natural Processing, other applications.

UNIT V
TEXT BOOKS:
1. Artificial Neural Networks B. Yagna Narayana, PHI. (Chapter 1,2 and 3)

REFERENCES:
1. Neural Networks by Simon Haykin PHI
ENGLISH FOR RESEARCH PAPER WRITING (Audit Course - I & II)

Prerequisite: None

Course objectives: Students will be able to:

- Understand how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title
- Ensure the good quality of paper at very first-time submission

UNIT-I:
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

UNIT-III:
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:
Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT-V:
Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. Useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

TEXT BOOKS/ REFERENCES:
M. Tech. (COMMUNICATION SYSTEMS)

DISASTER MANAGEMENT (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to
- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches.
- planning and programming in different countries, particularly their home country or the countries they work in

UNIT-I:
Introduction:
Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.
Disaster Prone Areas in India:
Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT-II:
Repercussions of Disasters and Hazards:

UNIT-III:
Disaster Preparedness and Management:
Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT-IV:
Risk Assessment Disaster Risk:

UNIT-V:
Disaster Mitigation:
Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.
TEXT BOOKS/ REFERENCES:
2. Sahni, Pardeep Et. Al. (Eds.),” Disaster Mitigation Experiences and Reflections”, Prentice Hall of India, New Delhi.
SANSKRIT FOR TECHNICAL KNOWLEDGE (Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Course Outcomes: Students will be able to
- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT-I:
Alphabets in Sanskrit,

UNIT-II:
Past/Present/Future Tense, Simple Sentences

UNIT-III:
Order, Introduction of roots,

UNIT-IV:
Technical information about Sanskrit Literature

UNIT-V:
Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TEXT BOOKS/REFERENCES:
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sanstanamam, New Delhi Publication
JAWAHRLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech. (COMMUNICATION SYSTEMS)

VALUE EDUCATION (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to
- Understand value of education and self-development
- Imbibe good values in students
- Let the should know about the importance of character

Course outcomes: Students will be able to
- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT-I:

UNIT-II:

UNIT-III:
Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline, Punctuality, Love and Kindness.

UNIT-IV:

UNIT-V:

TEXT BOOKS/REFERENCES:
CONSTITUTION OF INDIA (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:
- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:
- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:

UNIT-II:

UNIT-III:
Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualification, Powers and Functions.

UNIT-IV:

UNIT-V:
TEXT BOOKS/ REFERENCES:
1. The Constitution of India, 1950 (Bare Act), Government Publication.
PEDAGOGY STUDIES (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:
- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DFID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: Students will be able to understand:
- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT-I:

UNIT-II:
Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT-III:

UNIT-IV:
Professional development: alignment with classroom practices and follow-up support. Peer support, Support from the head teacher and the community. Curriculum and assessment. Barriers to learning: limited resources and large class sizes

UNIT-V:

TEXT BOOKS/ REFERENCES:
STRESS MANAGEMENT BY YOGA (Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To achieve overall health of body and mind
- To overcome stress

Course Outcomes: Students will be able to:
- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

UNIT-I:
Definitions of Eight parts of yog. (Ashtanga)

UNIT-II:
Yam and Niyam.

UNIT-III:
Do’s and Don’t’s in life.
 i) Ahinsa, satya, astheya, bramhacharya and aparigraha
 ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

UNIT-IV:
Asan and Pranayam

UNIT-V:
i) Various yog poses and their benefits for mind & body
 ii) Regularization of breathing techniques and its effects-Types of pranayam

TEXT BOOKS/ REFERENCES:
1. "Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur
2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama
 (Publication Department), Kolkata
PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS
(Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes: Students will be able to
- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students

UNIT-I:
Neetisatakam-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)

UNIT-II:
Neetisatakam-Holistic development of personality
- Verses- 52,53,59 (dont’s)
- Verses- 71,73,75,78 (do’s)

UNIT-III:
Approach to day to day work and duties.
- Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT-IV:
Statements of basic knowledge.
- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta:

UNIT-V:
- Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 – Verses 37,38,63

TEXT BOOKS/ REFERENCES:
1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.