<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core - I</td>
<td>Advanced Digital System Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core - II</td>
<td>Wireless Communications and Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - I</td>
<td>1. Design of Fault Tolerant Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. VLSI Technology and Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. System on Chip Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Elective - II</td>
<td>1. Coding Theory and Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Optical Communications and Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Wireless MIMO Communications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab - I</td>
<td>Digital System Design Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Lab - II</td>
<td>Wireless Communications and Networks Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Audit - I</td>
<td>Audit Course - I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
<td>0</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

I YEAR II – SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core - III</td>
<td>Network Security and Cryptography</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Core - IV</td>
<td>Advanced Communications and Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective - III</td>
<td>1. Embedded System Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Embedded Real Time Operating Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Embedded Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Elective - IV</td>
<td>1. Cognitive Radio</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Pattern Recognition and Machine Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Ad-hoc & Wireless Sensor Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab - III</td>
<td>Network Security and Cryptography Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Lab - IV</td>
<td>Advanced Communications and Networks Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Audit - II</td>
<td>Audit Course - II</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
<td>0</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>
III – SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional</td>
<td>Voice and Data Networks</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective - V</td>
<td>IOT and Its Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deep Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective</td>
<td>Open Elective</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Dissertation Work Review - II</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6</td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

II YEAR II - SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation</td>
<td>Dissertation Work Review - III</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Dissertation Viva-Voce</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

*For Dissertation Work Review - I, Please refer 7.8 in R19 Academic Regulations.

Audit Course I & II:
1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by yoga
8. Personality Development Through Life Enlightenment Skills
ADVANCED DIGITAL SYSTEM DESIGN (PC – I)

UNIT - I
Processor Arithmetic: Two’s Complement Number System - Arithmetic Operations; Fixed point Number System; Floating Point Number system - IEEE 754 format, Basic binary codes.

UNIT - II

UNIT - III
Sequential Logic - Latches and Flip-Flops, Sequential logic circuits - timing analysis (Set up and hold times), State machines - Mealy & Moore machines, Analysis, FSM design using D Flip-Flops, FSM optimization and partitioning; Synchronizers and metastability. FSM Design examples: Vending machine, Traffic light controller, Washing machine.

UNIT - IV
Subsystem Design using Functional Blocks (1) - Design (including Timing Analysis) of different logical blocks of varying complexities involving mostly combinational circuits:
- ALU
- 4-bit combinational multiplier
- Barrel shifter
- Simple fixed point to floating point encoder
- Dual Priority encoder
- Cascading comparators

UNIT - V
Subsystem Design using Functional Blocks (2) - Design, (including Timing Analysis) of different logical blocks of different complexities involving mostly sequential circuits:
- Pattern (sequence) detector
- Programmable Up-down counter
- Round robin arbiter with 3 requesters
- Process Controller
- FIFO

TEXT BOOK:

*Note 1: VHDL and ABEL are not part of this course.
*Note 2: SSI & MSI ICs listed in data books are not part of this course.
WIRELESS COMMUNICATIONS AND NETWORKS (PC – II)

Course Objectives: The objectives of this course are to make the student
1. To study the Channel planning for Wireless Systems
2. To study the Mobile Radio Propagation
3. To study the Equalization and Diversity
4. To study the Wireless Networks

Course Outcomes: At the end of this course, students will be able to
1. Understand Cellular communication concepts
2. Study the mobile radio propagation
3. Study the wireless network different type of MAC protocols

UNIT -I

UNIT –II

UNIT –III
Mobile Radio Propagation: Small –Scale Fading and Multipath: Small Scale Multipath propagation- Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke’s model for flat fading, spectral shape due to Doppler spread in Clarke’s model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

UNIT -IV
Equalization and Diversity: Introduction, Fundamentals of Equalization, Training A Generic Adaptive Equalizer, Equalizers in a communication Receiver, Linear Equalizers, Non-linear Equalization-

UNIT -V
Wireless Networks: Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11, IEEE 802.11 Medium Access Control, Comparison of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, Hiper Lan, WLL.

TEXT BOOKS

REFERENCES:
1. Wireless Digital Communications – Kamilo Feher, 1999, PHI.
Pre-Requisite: Digital System Design with PLDs

Course Objectives:
- To provide broad understanding of fault diagnosis and tolerant design approach.
- To illustrate the framework of test pattern generation using semi and full automatic approach.

Course Outcomes:
- To acquire the knowledge of fundamental concepts in fault tolerant design.
- To acquire the knowledge of design requirements of self check-in circuits.
- To acquire the knowledge of test pattern generation using LFSR.
- To acquire the knowledge of design for testability rules and techniques for combinational circuits.
- To acquire the knowledge of scan architectures.
- To acquire the knowledge of design of built-in-self test.

UNIT - I
Fault Tolerant Design: Basic concepts: Reliability concepts, Failures & faults, Reliability and Failure rate, Relation between reliability and mean time between failure, maintainability and availability, reliability of series, parallel and parallel-series combinational circuits.
Fault Tolerant Design: Basic concepts-static, dynamic, hybrid, triple modular redundant system (TMR), 5MR reconfiguration techniques, Data redundancy, Time redundancy and software Redundancy concepts. [TEXTBOOK-1]

UNIT - II
Self Checking circuits & Fail safe Design: Self Checking Circuits: Basic concepts of self checking circuits, Design of Totally self checking checker, Checkers using m out of n codes, Berger code, Low cost residue code.
Fail Safe Design: Strongly fault secure circuits, fail safe design of sequential circuits using partition theory and Berger code, totally self checking PLA design. [TEXTBOOK-1]

UNIT - III
Design for Testability: Design for testability for combinational circuits: Basic concepts of Testability, Controllability and observability, The Reed Muller's expansion technique, use of control and syndrome testable designs.
Design for testability by means of scan: Making circuits Testable, Testability Insertion, Full scan DFT technique- Full scan insertion, flip-flop Structures, Full scan design and Test, Scan Architectures- full scan design, Shadow register DFT, Partial scan methods, multiple scan design, other scan designs. [TEXTBOOK-2]

UNIT - IV
Logic Built-in-self-test: BIST Basics-Memory-based BIST,BIST effectiveness, BIST types, Designing a BIST, Test Pattern Generation-Engaging TPGs, exhaustive counters, ring counters, twisted ring counter, Linear feedback shift register, Output Response Analysis-Engaging ORA’s, One’s counter, transition counter, parity checking, Serial LFSRs, Parallel Signature analysis, BIST architectures-BIST related terminologies, A centralized and separate Board-level BIST architecture,
Built-in evaluation and self test (BEST), Random Test socket (RTS), LSSD On-chip self test, Self – testing using MISR and SRSG, Concurrent BIST, BILBO, Enhancing coverage, RT level BIST design-CUT design, simulation and synthesis, RTS BIST insertion, Configuring the RTS BIST, incorporating configurations in BIST, Design of STUMPS, RTS and STUMPS results. [TEXTBOOK-2]

UNIT - V
Standard IEEE Test Access Methods: Boundary Scan Basics, Boundary scan architecture- Test access port, Boundary scan registers, TAP controller, the decoder unit, select and other units, Boundary scan Test Instructions-Mandatory instructions, Board level scan chain structure-One serial scan chain, multiple-scan chain with one control test port, multiple-scan chains with one TDI,TDO but multiple TMS, Multiple-scan chain, multiple access port, RT Level boundary scan-inserting boundary scan test hardware for CUT, Two module test case, virtual boundary scan tester, Boundary Scan Description language. [TEXTBOOK-2]

TEXTBOOKS:

REFERENCES:
Pre-requisite: Switching Theory And Logic Design

Course Objectives
1. Students from other engineering background to get familiarize with large scale integration technology.
2. To expose fabrication methods, layout and design rules.
3. Learn methods to improve Digital VLSI system’s performance.
4. To know about VLSI Design constraints.

Course Outcomes
1. Review of FET fundamentals for VLSI design.
2. To acquires knowledge about stick diagrams and layouts.
3. Enable to design the subsystems based on VLSI concepts.

UNIT I

UNIT II

UNIT III
Combinational Logic Networks: Layouts, Simulation, Network delay, Interconnect design, Power optimization, Switch logic networks, Gate and Network testing.

UNIT IV
Sequential Systems: Memory cells and Arrays, Clocking disciplines, Design, Power optimization, Design validation and testing.

UNIT V
Floor Planning: Floor planning methods, Global Interconnect, Floor Plan Design, Off-chip connections.

TEXT BOOKS

REFERENCES
UNIT – I

UNIT – II

UNIT – III

UNIT - IV

UNIT – V
Application Studies / Case Studies: SOC Design approach, AES algorithms, Design and evaluation, Image compression – JPEG compression.

TEXT BOOKS:

REFERENCES:
2. Co-Verification of Hardware and Software for ARM System on Chip Design (Embedded Technology) – Jason Andrews – Newnes, BK and CDROM
CODING THEORY AND TECHNIQUES (PE – II)

Prerequisite: Digital Communications

Course Objectives
1. To acquire the knowledge in measurement of information and errors.
2. To study the generation of various code methods.
3. To study the various application of codes.

Course Outcomes: On completion of this course student will be able to
1. Learning the measurement of information and errors.
2. Obtain knowledge in designing Linear Block Codes and Cyclic codes.
3. Construct tree and trellies diagrams for convolution codes
4. Design the Turbo codes and Space time codes and also their applications

UNIT – I
Coding for Reliable Digital Transmission and storage: Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.

Linear Block Codes Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT - II
Cyclic Codes Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding, Cyclic Hamming Codes, Shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT – III
Convolutional Codes Encoding of Convolutional Codes, Structural and Distance Properties, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of Convolutional codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

UNIT - IV
Turbo Codes LDPC Codes- Codes based on sparse graphs, Decoding for binary erasure channel, Log-likelihood algebra, Brief propagation, Product codes, Iterative decoding of product codes, Concatenated convolutional codes- Parallel concatenation, The UMTS Turbo code, Serial concatenation, Parallel concatenation, Turbo decoding

UNIT - V
Space-Time Codes Introduction, Digital modulation schemes, Diversity, Orthogonal space- Time Block codes, Alamouti’s schemes, Extension to more than Two Transmit Antennas, Simulation Results, Spatial Multiplexing: General Concept, Iterative APP Preprocessing and Per-layer Decoding, Linear Multilayer Detection, Original BLAST Detection, QL Decomposition and Interface Cancellation, Performance of Multi – Layer Detection Schemes, Unified Description by Linear Dispersion Codes.
TEXT BOOKS

REFERENCES
1. Digital Communications-Fundamental and Application - Bernard Sklar, PE.
UNIT I
Optical Fibers: Structures, waveguiding and Fabrication: Nature of Light, Basic optical laws and definitions, Single mode fibers, Graded index fiber structure, Attenuation, Signal Dispersion in fibers.
Optical Sources- LEDs, Laser Diodes, Line Coding.

UNIT II
Photo detectors: Photo detector Noise, Detector Response Time, Avalanche Multiplication Noise.
WDM Concepts and Components: Passive optical Couplers, Isolators and Circulators

UNIT III
Digital Links: Point to point links, power penalties, error control, Coherent detection, Differential Quadrature Phase Shift Keying.
Analog Links: Carrier to noise ration, Multichannel Transmission Techniques, RF over Fiber, Radio over fiber links, Microwave Photonics.

UNIT IV

UNIT V
Performance Measurement and Monitoring: Measurement standards, Basic Test Equipment, Optical power measurement, Optical fiber characterization, Eye diagram tests, optical time domain reflectomter, optical performance monitoring, optical fiber system performance measurements.

TEXTBOOKS:

REFERENCE BOOKS:
UNIT - I
Fading Channels and Diversity Techniques: Wireless channels – Error/Outage probability over fading channels – Diversity techniques – Channel coding as a means of time diversity – Multiple antennas in wireless communications.

UNIT - II
Capacity and Information Rates of MIMO Channels: Capacity and Information rates of noisy, AWGN and fading channels – Capacity of MIMO channels – Capacity of non-coherent MIMO channels – Constrained signaling for MIMO communications.

UNIT - III
Space-Time Block and Trellis Codes: Transmit diversity with two antennas: The Alamouti scheme – Orthogonal. and Quasi-orthogonal space-time block codes – Linear dispersion codes – Generic space-time trellis codes – Basic space-time code design principles – Representation of space-time trellis codes for PSK constellation – Performance analysis for space-time trellis codes – Comparison of space-time block and trellis codes.

UNIT - IV
Concatenated Codes and Iterative Decoding: Development of concatenated codes – Concatenated codes for AWGN and MIMO channels – Turbo coded modulation for MIMO channels – Concatenated space-time block coding.

UNIT - V
Space-Time Coding for Frequency Selective Fading Channels: MIMO frequency-selective channels – Capacity and Information rates of MIMO FS fading channels – Space-time coding and Channel detection for MIMO FS channels – MIMO OFDM systems.

TEXT BOOKS:

REFERENCES:
Programming can be done using any complier. Down load the programs on FPGA/CPLD boards and performance testing may be done using pattern generator (32 channels) and logic analyzer apart from verification by simulation with any of the front-end tools.

1. HDL code to realize all the logic gates
2. Design and Simulation of adder, Serial Binary Adder, Multi Precession Adder, Carry
3. Look Ahead Adder.
4. Design of 2-to-4 decoder
5. Design of 8-to-3 encoder (without and with parity)
6. Design of 8-to-1 multiplexer
7. Design of 4 bit binary to gray converter
8. Design of Multiplexer/ Demultiplexer, comparator
9. Design of Full adder using 3 modeling styles
10. Design of flip flops: SR, D, JK, T
11. Design of 4-bit binary, BCD counters (synchronous/ asynchronous reset) or any sequence counter
12. Design of a N- bit Register of Serial- in Serial –out, Serial in parallel out, Parallel in
15. Design of 4- Bit Multiplier, Divider.
16. Design of ALU to Perform – ADD, SUB, AND-OR, 1’s and 2’s Compliment, Multiplication, and Division.
17. Design of Finite State Machine.
18. Implementing the above designs on Xilinx/Altera/Cypress/equivalent based FPGA/CPLD kits.

Part –II

1. Static and Dynamic Characteristics of CMOS Inverter
2. Implementation of EX-OR gate using complementary CMOS, Pscedo-NMOS, Dynamic and domino logic style
3. Implementation of Full Adder using Transmission Gates
Course Outcomes: At the end of this course, students will be able to
1. Implement the advanced digital modulation techniques.
2. Design Convolutional encoder and decoder for error control coding techniques.
3. Calculate path loss for Free space, Okumura and Hata models for outdoor propagation.
5. Simulate RAKE receiver for CDMA with MATLAB.

List of Experiments:
1. FSK Modulation and Demodulation technique.
2. QPSK Modulation and Demodulation technique.
3. DQPSK Modulation and Demodulation technique
4. 8-QAM Modulation and Demodulation technique.
5. Implementation of Convolutional Encoder and Decoder.
6. Simulation of the following Outdoor Path loss propagation models using MATLAB.
 a. Free Space Propagation model
 b. Okumura model
 c. Hata model
7. Simulation of Adaptive Linear Equalizer using MATLAB software.
9. Study of GSM handset for various signalling and fault insertion techniques (Major GSM handset sections: clock, SIM card, charging, LCD module, Keyboard, User interface).
10. Study of transmitter and receiver section in mobile handset and measure frequency
12. Simulation of RAKE Receiver for CDMA communication using MATLAB software.
13. Simulate and test various types of PN codes, chip rate, spreading factor and processing gain on performance of DSSS in CDMA.
14. Simulate and test the 3G Network system features using GSM AT Commands. (Features of 3G Communication system: Transmission of voice, video calls, SMS, MMS, TCP/IP, HTTP, GPS)
15. Modelling of communication system using Simulink.

Note: Experiments 1 to 5 need to be simulated using MATLAB and tested on hardware.
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M.TECH.- I YEAR- I SEMESTER
DECE/DECS

RESEARCH METHODOLOGY AND IPR

Prerequisite: None

Course Objectives:
- To understand the research problem
- To know the literature studies, plagiarism and ethics
- To get the knowledge about technical writing
- To analyze the nature of intellectual property rights and new developments
- To know the patent rights

Course Outcomes: At the end of this course, students will be able to
- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I:
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT-II:
Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT-III:
Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-IV:

UNIT-V:

TEXT BOOKS:

2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”

REFERENCES:

Course Outcomes: At the end of the course, students will be able to:

1. Identify and utilize different forms of cryptography techniques.
2. Incorporate authentication and security in the network applications.
3. Distinguish among different types of threats to the system and handle the same.

UNIT-I:

UNIT-II

UNIT-III

UNIT-IV

UNIT-V

TEXT BOOKS:

REFERENCES:
UNIT - I

UNIT - II
Orthogonal Frequency Division Multiplexing: Basic Principles of Orthogonality, Single vs Multicarrier Systems, OFDM Block Diagram and Its Explanation, OFDM Signal Mathematical Representation, Selection parameter for Modulation, Pulse shaping in OFDM Signal and Spectral Efficiency, Window in OFDM Signal and Spectrum, Synchronization in OFDM, Pilot Insert in OFDM Transmission and Channel Estimation, Amplitude Limitations in OFDM, FFT Point Selection Constraints in OFDM, CDMA vs OFDM, Hybrid OFDM.

UNIT - III
MIMO Systems: Introduction, Space Diversity and System Based on Space Diversity, Smart Antenna system and MIMO, MIMO Based System Architecture, MIMO Exploits Multipath, Space – Time Processing, Antenna Consideration for MIMO, MIMO Channel Modelling, MIMO Channel Measurement, MIMO Channel Capacity, Cyclic Delay Diversity (CDD), Space Time Coding, Advantages and Applications of MIMO in Present Context, MIMO Applications in 3G Wireless System and Beyond, MIMO-OFDM

UNIT - IV
Wireless LANs/IEEE 802.11x: Introduction to IEEE802.11x Technologies, Evolution of wireless LANs, IEEE 802.11 Design Issues, IEEE 802.11 Services, IEEE 802.11 MAC Layer operations, IEEE 802.11 Layer1, IEEE 802.11 a/b/g Higher Rate Standards, Wireless LAN Security, Computing Wireless Technologies, Typical WLAN Hardware

UNIT - V
Wireless PANs/IEEE 802.15x: Introduction to IEEE 802.15x Technologies: Wireless PAN Applications and Architecture, IEEE 802.15.1 Physical Layer Details, Bluetooth Link Controllers Basics, Bluetooth Link Controllers Operational States, IEEE 802.15.1 Protocols and Host Control Interface. Evaluation of IEEE 802.15 Standards

Broad Band Wireless MANs/IEEE 802.16x: Introduction to WMAN/IEEE 802.16x Technology, IEEE 802.16Wireless MANs, IEEE 802.16 MAC Layer Details, IEEE 802.16 Physical Layer Details, IEEE 802.16 Physical Layer Details for 2-11 GHz, IEEE 802.16 Common System Operations.

TEXT BOOKS:
REFERENCES:
2. Gottapu Sasibhusan Rao, “Mobile Cellular Communication”, PEARSON
Prerequisite: Microprocessor and Microcontrollers

Course Objectives:
1. To provide an overview of Design Principles of Embedded System.
2. To provide clear understanding about the role of firmware, operating systems in correlation with hardware systems.

Course Outcomes:
1. Expected to understand the selection procedure of Processors in the Embedded domain.
2. Design Procedure for Embedded Firmware.
3. Expected to visualize the role of Real time Operating Systems in Embedded Systems
4. Expected to evaluate the Correlation between task synchronization and latency issues

UNIT - I

UNIT- II
Typical Embedded System: Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.

UNIT- III
Embedded Firmware: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.

UNIT -IV

UNIT -V
Task Communication: Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.

TEXTBOOKS
1. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill.

REFERENCES
1. Embedded Systems - Raj Kamal, TMH.
4. An Embedded Software Primer - David E. Simon, Pearson Education.
EMBEDDED REAL TIME OPERATING SYSTEMS (PE – III)

Prerequisite: Computer Organization and Operating System

Course Objectives: The objectives of this course are:
1. To provide broad understanding of the requirements of Real Time Operating Systems.
2. To make the student understand, applications of these Real Time features using case studies.

Course Outcomes:
1. Be able to explain real-time concepts such as preemptive multitasking, task priorities, priority inversions, mutual exclusion, context switching, and synchronization, interrupt latency and response time, and semaphores.
2. Able describe how a real-time operating system kernel is implemented.
3. Able explain how tasks are managed.
4. Explain how the real-time operating system implements time management.
5. Discuss how tasks can communicate using semaphores, mailboxes, and queues.
6. Be able to implement a real-time system on an embedded processor.
7. Be able to work with real time operating systems like RT Linux, Vx Works, MicroC /OS- II, Tiny Os

UNIT – I
Introduction: Introduction to UNIX/LINUX, Overview of Commands, File I/O, (open, create, close, lseek, read, write), Process Control (fork, vfork, exit, wait, waitpid, exec).

UNIT – II

UNIT – III
Objects, Services and I/O: Pipes, Event Registers, Signals, Other Building Blocks, Component Configuration, Basic I/O Concepts, I/O Subsystem

UNIT – IV

UNIT – V
Case Studies of RTOS: RT Linux, MicroC/OS-II, Vx Works, Embedded Linux, and Tiny OS.

TEXT BOOKS

REFERENCES
1. Embedded Systems - Architecture, Programming and Design by Rajkamal, 2007, TMH.
2. Advanced UNIX Programming, Richard Stevens
3. Embedded Linux: Hardware, Software and Interfacing – Dr. Craig Hollabaugh
Prerequisite: Computer Networks.

Course Objectives:
1. To elaborate on the conceptual framework of physical layer and topological issues of networking in Embedded Systems.
2. To emphasize on issues related to guided and unguided media with specific reference to Embedded device level connectivity.

Course Outcomes:
1. Expected to acquire knowledge on communication protocols of connecting Embedded Systems.
2. Expected to master the design level parameters of USB and CAN bus protocols.
3. Understand the design issues of Ethernet in Embedded networks.
4. Acquire the knowledge of wireless protocols in Embedded domain.

UNIT –I

UNIT –II

UNIT –III

UNIT –IV

UNIT –V

TEXT BOOKS:

REFERENCES
1. Advanced PIC microcontroller projects in C: from USB to RTOS with the PIC18F series - Dogan Ibrahim, Elsevier 2008.
Course Outcomes: At the end of this course, students will be able to understand the fundamental concepts of cognitive radio networks.

1. Develop the cognitive radio, as well as techniques for spectrum holes detection that cognitive radio takes advantages in order to exploit it.
2. Understand technologies to allow an efficient use of TVWS for radio communications based on two spectrum sharing business models/policies.
3. Understand fundamental issues regarding dynamic spectrum access, the radio-resource management and trading, as well as a number of optimization techniques for better spectrum exploitation.

UNIT I:
Introduction to Cognitive Radios: Digital dividend, cognitive radio (CR) architecture, functions of cognitive radio, dynamic spectrum access (DSA), components of cognitive radio, spectrum sensing, spectrum analysis and decision, potential applications of cognitive radio.

UNIT II:
Spectrum Sensing: Spectrum sensing, detection of spectrum holes (TVWS), collaborative sensing, geo-location database and spectrum sharing business models (spectrum of commons, real time secondary spectrum market).

UNIT III:
Optimization Techniques of Dynamic Spectrum Allocation: Linear programming, convex programming, non-linear programming, integer programming, dynamic programming, stochastic programming.

UNIT IV:
Dynamic Spectrum Access and Management: Spectrum broker, cognitive radio architectures, centralized dynamic spectrum access, distributed dynamic spectrum access, learning algorithms and protocols.

UNIT V:
Spectrum Trading: Introduction to spectrum trading, classification to spectrum trading, radio resource pricing, brief discussion on economics theories in DSA (utility, auction theory), and classification of auctions (single auctions, double auctions, concurrent, sequential). Research Challenges in Cognitive Radio: Network layer and transport layer issues, cross layer design for cognitive radio networks.

REFERENCES:
Prerequisite: Statistics and Linear Algebra

Course Objectives:
1. The student will be able to understand the mathematical formulation of patterns.
2. To study the various linear models.
3. Understand the basic classifiers.
4. Can able to distinguish different models.

Course Outcomes: On completion of this course student will be able to
1. Learn the basics of pattern classes and functionality.
2. Construct the various linear models.
3. Understand the importance kernel methods.
4. Learn the Markov and Mixed models.

UNIT-I
Introduction to Pattern recognition: Mathematical Formulation and Basic Functional Equation, Reduction of Dimensionality, Experiments in Pattern Classification, Backward Procedure for Both Feature Ordering- and Pattern Classification, Suboptimal Sequential Pattern Recognition, Nonparametric Design of Sequential Pattern Classifiers, Analysis of Optimal Performance and a Multiclass Generalization

UNIT-II
Linear Models: Linear Basis Function Models - Maximum likelihood and least squares, Geometry of least squares, Sequential learning, Regularized least squares, Multiple outputs, The Bias-Variance Decomposition, Bayesian Linear Regression - Parameter distribution, Predictive, Equivalent, Bayesian Model Comparison, Probabilistic Generative Models-Continuous inputs, Maximum likelihood solution, Discrete features, Exponential family, Probabilistic Discriminative Models - Fixed basis functions, Logistic regression, Iterative reweighted least squares, Multiclass logistic regression, Probit regression, Canonical link functions

UNIT-III
Kernel Methods: Constructing Kernels, Radial Basis Function Networks - Nadaraya-Watson model, Gaussian Processes - Linear regression revisited, Gaussian processes for regression, Learning the hyper parameters, Automatic relevance determination, Gaussian processes for classification, Laplace approximation, Connection to neural networks, Sparse Kernel Machines- Maximum Margin Classifiers, Overlapping class distributions, Relation to logistic regression, Multiclass SVMs, SVMs for regression, Computational learning theory, Relevance Vector Machines- RVM for regression, Analysis of sparsity, RVM for classification

UNIT-IV
Graphical Models: Bayesian Networks, Example: Polynomial regression, Generative models, Discrete variables, Linear-Gaussian models, Conditional Independence- Three example graphs, D-separation, Markov Random Fields - Conditional independence properties, Factorization properties, Illustration: Image de-noising, Relation to directed graphs, Inference in Graphical Models- Inference

UNIT-V

TEXT BOOKS:

REFERENCES:
Prerequisite: Wireless Sensor Networks

Course Objectives: The objectives of this course are to make the student
1. To study the fundamentals of wireless Ad-Hoc Networks.
2. To study the operation and performance of various Adhoc wireless network protocols.
3. To study the architecture and protocols of Wireless sensor networks.

Course Outcomes: On completion of this course student will be able to
1. Students will be able to understand the basis of Ad-hoc wireless networks.
2. Students will be able to understand design, operation and the performance of MAC layer protocols of Adhoc wireless networks.
3. Students will be able to understand design, operation and the performance of routing protocol of Adhoc wireless network.
4. Students will be able to understand design, operation and the performance of transport layer protocol of Adhoc wireless networks.
5. Students will be able to understand sensor network Architecture and will be able to distinguish between protocols used in Adhoc wireless network and wireless sensor networks.

UNIT - I

UNIT - II

UNIT - III

UNIT – IV

UNIT – V
TEXT BOOKS:

REFERENCES:
Note:
I. Below experiment perform using C/C++/JAVA.
II. Minimum 10 experiments must perform.

List of Experiments:
1. Write a program to perform encryption and decryption using substitution and transposition cipher.
2. Write a program to implement DES algorithm logic
3. Write a program for evaluation of AES
4. Write a program for evaluation Triple DES
5. Write a program to implement Blowfish algorithm logic
6. Write a program to implement RSA algorithm logic
7. Implement Diffie-Hellman key exchange mechanism using html
8. Write a program to implement Euclid algorithm
9. Calculate the message digest of a text using SHA-1 algorithm
10. Implement the signature scheme digital signature standard
11. Implement electronic mail security
12. Case study on web security requirement
Note: Below experiment perform using MATLAB

List of Experiments:
1. Implementation of Matched Filters.
2. Optimum receiver for the AWGN channel.
5. Generation of constant envelope PSK signal wave form for different values of M.
6. Simulation of PSK system with M=4
7. Simulation of DPSK system with M=4
8. Design of FSK system
9. Simulation of correlation type demodulation for FSK signal
10. BPSK Modulation and Demodulation techniques
11. QPSK Modulation and Demodulation techniques
12. DQPSK Modulation and Demodulation techniques
13. 8-QAM Modulation and Demodulation techniques
14. DQAM Modulation and Demodulation techniques
15. Verification of Decimation and Interpolation of a given signal
16. Power spectrum estimation using AR models
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M.TECH.- II YEAR- I SEMESTER
DECE/DECS

VOICE AND DATA NETWORKS (PE – V)

Course Outcomes: At the end of this course, students will be able to
1. Protocol, algorithms, trade-offs rationale.
2. Routing, transport, DNS resolutions
3. Network extensions and next generation architectures.

UNIT -I

UNIT-II
Layered and Layer less Communication, Cross layer design of Networks, Voice Networks (wired and wireless) and Switching, Circuit Switching and Packet Switching, Statistical Multiplexing.

UNIT-III
Data Networks and their Design, Link layer design- Link adaptation, Link Layer Protocols, Retransmission. Mechanisms (ARQ), Hybrid ARQ (HARQ), Go Back N, Selective Repeat protocols and their analysis.

UNIT-IV
Queuing Models of Networks, Traffic Models, Little’s Theorem, Markov chains, M/M/1 and other Markov systems, Multiple Access Protocols, Aloha System, Carrier Sensing, Examples of Local area networks

UNIT-V
Inter-networking, Bridging, Global Internet, IP protocol and addressing, Sub netting, Classless Inter domain Routing (CIDR), IP address lookup, Routing in Internet. End to End Protocols, TCP and UDP. Congestion Control, Additive Increase/Multiplicative Decrease, Slow Start, Fast Retransmit/ Fast Recovery: Congestion avoidance, RED TCP Throughput Analysis, Quality of Service in Packet Networks. Network Calculus, Packet Scheduling Algorithms.

TEXT BOOKS:

REFERENCES:
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M.TECH.- II YEAR- I SEMESTER
DECE/DECS

IOT AND ITS APPLICATIONS (PE – V)

Course Outcomes: At the end of this course, students will be able to:
1. Understand the concept of IOT and M2M
2. Study IOT architecture and applications in various fields
3. Study the security and privacy issues in IOT

UNIT-I
IoT & Web Technology

UNIT-II

UNIT-III

UNIT-IV
IoT Applications for Value Creations

UNIT-V
Internet of Things Privacy, Security and Governance
Introduction, Overview of Governance, Privacy and Security Issues,

TEXTBOOKS
Course Objectives:
1. Introduce to the basic concepts of neural networks.
2. Identify and analyze the various types of neural networks and models of neuron and apply accordingly.
3. Introduce the concept of deep learning and its types.
4. Explore the concepts of applications of deep learning.

Course Outcomes: Upon completing this course students will be able to:
1. Analyze and apply the basic concepts of neural networks
2. Analyze various types of neural networks and use various activation functions to solve complex problems.
3. Relate the concept of deep learning and its architecture.
4. Design and carry out empirical analysis for various types of applications of deep learning systems.

UNIT-I

UNIT – II

UNIT-III

UNIT-IV
Convolution Neural Networks: The convolution operation, motivation, pooling, Convolution and Pooling as an Infinitely Strong Prior, Applications of deep learning: Large scale deep learning, Computer vision, Speech Recognition, Natural Processing, other applications.

UNIT- V
TEXT BOOKS:
1. Artificial Neural Networks B. Yagna Narayana, PHI (Chapter 1, 2 and 3)
2. Deep Learning: A Practitioner’s Approach by Josh Patterson, Adam Gibson.

REFERENCES:
1. Neural Networks by Simon Haykin PHI
ENGLISH FOR RESEARCH PAPER WRITING (Audit Course - I & II)

Prerequisite: None

Course objectives: Students will be able to:
- Understand that how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission

UNIT-I:
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

UNIT-III:
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:
key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT-V:
skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

TEXT BOOKS/ REFERENCES:
DISASTER MANAGEMENT (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to
- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches,
- planning and programming in different countries, particularly their home country or the countries they work in.

UNIT-I:
Introduction:
Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Disaster Prone Areas in India:
Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT-II:
Repercussions of Disasters and Hazards:

UNIT-III:
Disaster Preparedness and Management:
Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT-IV:
Risk Assessment Disaster Risk:

UNIT-V:
Disaster Mitigation:
Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.
TEXT BOOKS/ REFERENCES:
2. Sahni, Pardeep Et. Al. (Eds.),” Disaster Mitigation Experiences and Reflections”, Prentice Hall of India, New Delhi.
Prerequisite: None

Course Objectives:
- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Course Outcomes: Students will be able to
- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT-I:
Alphabets in Sanskrit,

UNIT-II:
Past/Present/Future Tense, Simple Sentences

UNIT-III:
Order, Introduction of roots,

UNIT-IV:
Technical information about Sanskrit Literature

UNIT-V:
Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TEXT BOOKS/ REFERENCES:
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
VALUE EDUCATION (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to
- Understand value of education and self-development
- Imbibe good values in students
- Let the student know about the importance of character

Course outcomes: Students will be able to
- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT-I:

UNIT-II:

UNIT-III:
Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline, Punctuality, Love and Kindness.

UNIT-IV:

UNIT-V:

TEXT BOOKS/ REFERENCES:
CONSTITUTION OF INDIA (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:

UNIT-II:

UNIT-III:
Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualification, Powers and Functions.

UNIT-IV:

UNIT-V:
TEXT BOOKS/ REFERENCES:
1. The Constitution of India, 1950 (Bare Act), Government Publication.
PEDAGOGY STUDIES (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:
- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DFID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: Students will be able to understand:
- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT-I:

UNIT-II:
Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT-III:
Evidence on the effectiveness of pedagogical practices, Methodology for the indepth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers’ attitudes and beliefs and Pedagogic strategies.

UNIT-IV:
Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes

UNIT-V:
Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

TEXT BOOKS/ REFERENCES:

STRESS MANAGEMENT BY YOGA (Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To achieve overall health of body and mind
- To overcome stress

Course Outcomes: Students will be able to:
- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

UNIT-I:
Definitions of Eight parts of yog. (Ashtanga)

UNIT-II:
Yam and Niyam.

UNIT-III:
Do’s and Don’t’s in life.
i) Ahinsa, satya, astheya, bramhacharya and aparigraha
ii) Shaucha, santosh, tapa, swadhyay, ishwarpriyadhan

UNIT-IV:
Asan and Pranayam

UNIT-V:
i) Various yog poses and their benefits for mind & body
ii) Regularization of breathing techniques and its effects-Types of pranayam

TEXT BOOKS/ REFERENCES:
1. "Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur
2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama
 (Publication Department), Kolkata
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech. (DECE/DECS)

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS
(Audit Course - I & II)

Prerequisite: None

Course Objectives:
- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes: Students will be able to
- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students

UNIT-I:
Neetisatakam-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)

UNIT-II:
Neetisatakam-Holistic development of personality
- Verses- 52,53,59 (don’ts)
- Verses- 71,73,75,78 (do’s)

UNIT-III:
Approach to day to day work and duties.
- Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT-IV:
Statements of basic knowledge.
- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta:

UNIT-V:
- Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 – Verses 37,38,63

TEXT BOOKS/ REFERENCES:
1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.