JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech. in ARTIFICIAL INTELLIGENCE COURSE STRUCTURE AND SYLLABUS(R25)

EFFECTIVE FROM ACADEMIC YEAR 2025 - 26 ADMITTED BATCH

I YEAR I SEMESTER

Course Code	Course Title	L	Т	Р	Credits
Professional Core – I	Artificial Intelligence and Intelligent Systems	3	0	0	3
Professional Core – II	Statistical Foundations for Artificial Intelligence	3	0	0	3
Professional Elective – I	 Advanced Data Structures Database Programming with PL/SQL Large Language Models 	3	0	0	3
Professional Elective – II	Cognitive Systems Game Theory and Applications Computer Vision and Robotics	3	0	0	3
Lab – I	Artificial Intelligence and Intelligent Systems Lab	0	0	4	2
Lab – II	*Professional Elective- I Lab	0	0	4	2
	Research Methodology & IPR	2	0	0	2
Audit – I	Audit Course – I	2	0	0	0
	Total	16	0	8	18

Professional Elective- I and Professional Elective- I Lab must be of same course.

I YEAR IISEMESTER

Course Code	Course Title	L	Т	Р	Credits
Professional Core – III	Deep Learning	3	0	0	3
Professional Core – IV	Active speech Recognition	3	0	0	3
Professional Elective – III	 Big Data Technologies Enterprise Cloud Concepts Generative AI 	3	0	0	3
Professional Elective – IV	Reinforcement Learning Machine Translation Federated AI	3	0	0	3
Lab – III	Deep Learning Lab	0	0	4	2
Lab – IV	*Professional Elective-III Lab	0	0	4	2
	Mini Project with Seminar	0	0	4	2
Audit – II	Audit Course – II	2	0	0	0
	Total	14	0	12	18

Professional Elective- III and Professional Elective- III Lab must be of same course.

II YEAR I SEMESTER

Course Code	Course Title	L	Т	Р	Credits
Professional Elective – V	 Block chain Technology Nature Inspired Computing Conversational AI Prompt Engineering 	3	0	0	3
Open Elective	Open Elective	3	0	0	3
Dissertation	Dissertation Work Review – II	0	0	18	6
	Total	6	0	18	12

II YEAR II SEMESTER

Course Code	Course Title	L	Т	Р	Credits
Dissertation	Dissertation Work Review – III	0	0	18	6
Dissertation	Dissertation Viva-Voce	0	0	42	14
	Total	0	0	60	20

Note: For Dissertation Work Review - I, Please refer R25 Academic Regulations.

Audit Course I & II:

- English for Research Paper Writing
- Disaster Management
 Sanskrit for Technical Knowledge
 Value Education

- 5. Constitution of India6. Pedagogy Studies
- 7. Stress Management by yoga
- 8. Personality Development Through Life Enlightenment Skills

Open Electives for other Departments:

- 1. Fundamentals of Al
- 2. Big data Technologies
- 3. Large Language Models

ARTIFICIAL INTELLIGENCE AND INTELLIGENT SYSTEMS (PC - I)

M.Tech All Year I Sem.

L T P C
3 0 0 3

Pre-Requisites: UG level course in Mathematics, Data Structures

Course Objectives:

- To impart knowledge about Artificial Intelligence.
- To give understanding of the main abstractions and reasoning for intelligent systems.
- To enable the students to understand the basic principles of Artificial Intelligence in various applications.

Course Outcomes: After completion of course, students would be able to:

- Solve basic Al based problems.
- Define the concept of Artificial Intelligence.
- Apply AI techniques to real-world problems to develop intelligent systems.
- Select appropriately from a range of techniques when implementing intelligent systems.

UNIT - I

Introduction: Overview of AI problems, AI problems as NP, NP-Complete and NP Hard problems. Strong and weak, neat and scruffy, symbolic and sub-symbolic, knowledge-based and data-driven AI.

UNIT -II

Search Strategies: Problem spaces (states, goals and operators), problem solving by search, Heuristics and informed search, Min-max Search, Alpha-beta pruning. Constraint satisfaction (backtracking and local search methods).

UNIT - III

Knowledge representation and reasoning: propositional and predicate logic, Resolution and theorem proving, Temporal and spatial reasoning. Probabilistic reasoning, Bayes theorem. Totally-ordered and partially-ordered Planning. Goal stack planning, Nonlinear planning, Hierarchical planning.

UNIT - IV

Learning: Learning from example, Learning by advice, Explanation based learning, Learning in problem solving, Classification, Inductive learning, Naive Bayesian Classifier, decision trees.

Natural Language Processing: Language models, n-grams, Vector space models, Bag of words, Text classification. Information retrieval.

UNIT - V

Agents: Definition of agents, Agent architectures (e.g., reactive, layered, cognitive), Multi-agent systems- Collaborating agents, Competitive agents, Swarm systems and biologically inspired models. **Intelligent Systems:** Representing and Using Domain Knowledge, Expert System Shells, Explanation, Knowledge Acquisition.

Key Application Areas: Expert system, decision support systems, Speech and vision, Natural language processing, Information Retrieval, Semantic Web.

TEXT BOOKS:

1. Artificial Intelligence: A Modern Approach by S. Russell and P. Norvig, Prentice Hall

REFERENCE BOOKS:

- 1. Artificial Intelligence by Elaine Rich, Kevin Knight and Shivashankar B Nair, Tata McGraw Hill.
- 2. Introduction to Artificial Intelligence and Expert Systems by Dan W. Patterson, Pearson Education.

STATISTICAL FOUNDATIONS FOR ARTIFICIAL INTELLIGENCE (PC - II)

M.Tech All Year I Sem.

L T P C
3 0 0 3

Pre-Requisites: UG level course in Mathematics, Probability and Statistics

Course Objectives:

• The course provides comprehensive introduction to probabilistic graphical models.

Course Outcomes: After completion of course, students would be able to:

- To model problems using graphical models
- Design inference algorithms
- Learn the structure of the graphical model from data.

UNIT - I

Fundamentals: Introduction to regression and classification, Formalizing a learning task, experience, reward, Gaussian noise and linear least-square fit, A taste of Bayesian learning, Hypothesis, prior and posterior distributions, Posterior distribution and prediction, Point estimates of posterior e.g. MAP Minimum description length and MAP, Back to regression: linear least-square with square regularizer.

UNIT - II

Linear least square demo, Ridge penalty, Lasso and its quadratic program, Contrast between Ridge and Lasso, model sparsity, From regression to classification, Loss functions for classification and regression

"True loss" and various approximations, Square loss and its limitations, Choice of discriminant functions

Class density and class discrimination, Discriminants for multivariate Gaussian densities

UNIT - III

Eigen-SVD connection, SVD demo with low-rank plus noise matrix, Connection between SVD and (regularized) least square, Principal Component Analysis, Linear discriminants and fitting criteria Hill-climbing, step size, and Newton method, Derivation of the Perceptron from gradient descent considerations, Kernel regression and kernel density estimation

UNIT - IV

Basic SVM QP for separable problems, scilab, Inseparable problems and hinge loss, Smooth approximations to hinge loss, direct primal optimization, Primal-dual, Gordan's theorem, KKT necessary conditions, Lagrangian saddlepoint, Dual and Lagrangian, dualizing basic SVM

UNIT - V

Dual QP optimization, Using non-linear kernels with the dual formulation, Dual with kernels, scilab demo

Lagrangian support vector machines, Lagrangian and proximal support vector machines, Finite Newton optimization

TEXT BOOKS:

- 1. The Elements of Statistical Learning, Hastie, Tibshirani, Friedman
- 2. Pattern Classification, 2nd Edition, Duda, Hart and Stork, Wiley-Interscience

ADVANCED DATA STRUCTURES (PROFESSIONAL ELECTIVE - I)

M.Tech Al I Year I Sem.

L T P C 3 0 0 3

Prerequisites

1. A course on "Data Structures".

Course Objectives

- 1. Introduces the heap data structures such as leftist trees, binomial heaps, Fibonacci and minmax heaps.
- 2. Introduces a variety of data structures such as disjoint sets, hash tables, search structures and digital search structures.

Course Outcomes

- 1. Ability to select the data structures that efficiently model the information in a problem.
- 2. Ability to understand how the choice of data structures impact the performance of programs.
- 3. Design programs using a variety of data structures, including hash tables, search structures and digital search structures.

UNIT - I

Heap Structures

Introduction, Min-Max Heaps, Leftist trees, Binomial Heaps, Fibonacci heaps.

UNIT - II

Hashing and Collisions

Introduction, Hash Tables, Hash Functions, different Hash Functions:- Division Method, Multiplication Method, Mid-Square Method, Folding Method, Collisions

UNIT - III

Search Structures

OBST, AVL trees, Red-Black trees, Splay trees,

Multiway Search Trees

B-trees, 2-3 trees

UNIT - IV

Digital Search Structures

Digital Search trees, Binary tries and Patricia, Multiway Tries, Suffix trees, Standard Tries, Compressed Tries

UNIT - V

Pattern matching

Introduction, Brute force, the Boyer –Moore algorithm, Knuth-Morris-Pratt algorithm, Naïve String, Harspool, Rabin Karp

TEXT BOOKS:

- 1. Fundamentals of data structures in C++ Sahni, Horowitz, Mehatha, Universities Press.
- 2. Introduction to Algorithms, TH Cormen, PHI

- 1. Design methods and analysis of Algorithms, SK Basu, PHI.
- 2. Data Structures & Algorithm Analysis in C++, Mark Allen Weiss, Pearson Education.
- 3. Fundamentals of Computer Algorithms, 2nd Edition, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Universities Press.

DATABASE PROGRAMMING WITH PL/SQL (PROFESSIONAL ELECTIVE - I)

M.Tech All Year I Sem. L T P C 3 0 0 3

Course Objectives:

- 1. Knowledge on significance of SQL fundamentals.
- 2. Evaluate functions and triggers of PL/SQL
- 3. Knowledge on control structures, packages in PL/SQL and its applications

Course Outcomes:

- 1. Understand importance of PL/SQL basics
- 2. Implement functions and procedures using PL/SQL
- 3. Understand the importance of triggers in database

Unit I

PL/SQL Basics

Block Structure, Behavior of Variables in Blocks, Basic Scalar and Composite Data Types, Control Structures, Exceptions, Bulk Operations, Functions, Procedures, and Packages, Transaction Scope

Unit II

Language Fundamentals & Control Structures

Lexical Units, Variables and Data Types, Conditional Statements, Iterative Statements, Cursor Structures, Bulk Statements, Introduction to Collections, Object Types: Varray and Table Collections, Associative Arrays, Oracle Collection API

Unit III

Functions and Procedures

Function and Procedure Architecture, Transaction Scope, Calling Subroutines, Positional Notation, Named Notation, Mixed Notation, Exclusionary Notation, SQL Call Notation, Functions, Model Choices, Creation Options, Pass-by-Value Functions, Pass-by-Reference Functions, Procedures, Pass-by-Value Procedures, Pass-by-Reference Procedures, Supporting Scripts.

Unit IV

Packages

Package Architecture, Package Specification, Prototype Features, Serially Reusable Precompiler Directive, Variables, Types, Components: Functions and Procedures, Package Body, Prototype Features, Variables, Types, Components: Functions and Procedures, Definer vs. Invoker Rights Mechanics, Managing Packages in the Database Catalog, Finding, Validating, and Describing Packages, Checking Dependencies, Comparing Validation Methods: Timestamp vs. Signature.

Unit V

Triggers

Introduction to Triggers, Database Trigger Architecture, Data Definition Language Triggers, Event Attribute Functions, Building DDL Triggers, Data Manipulation Language Triggers, Statement-Level Triggers, Row-Level Triggers, Compound Triggers, INSTEAD OF Triggers, System and Database Event Triggers, Trigger Restrictions, Maximum Trigger Size, SQL Statements, LONG and LONG RAW Data Types.

TEXT BOOKS:

1. Oracle Database 12c PL/SQL Programming Michael McLaughlin, McGraw Hill Education.

- 1. Benjamin Rosenzweig, Elena Silvestrova Rakhimov, Oracle PL/SQL by example Fifth Edition.
- 2. Dr. P. S. Deshpande, SQL & PL / SQL for Oracle 11g Black Book.

LARGE LANGUAGE MODELS (PROFESSIONAL ELECTIVE - I)

M.Tech Al I Year I Sem.

L T P C 3 0 0 3

Course Objectives

- 1. To introduce the foundations of transformer architectures and their evolution into LLMs.
- 2. To equip students with skills to train, fine-tune, and deploy LLMs for various tasks.
- 3. To explore ethical, legal, and societal implications of LLMs in real-world applications.
- 4. To expose students to state-of-the-art LLM frameworks, evaluation techniques, and research trends.

Course Outcomes (COs)

- 1. Understand the architecture and inner workings of transformer-based LLMs.
- 2. Apply prompt engineering and fine-tuning techniques for domain-specific tasks.
- 3. Evaluate LLM performance using standard metrics and benchmarks.
- 4. Identify challenges in LLM training, deployment, and scaling.
- 5. Analyze ethical, legal, and societal implications of LLM usage.

UNIT 1 – Foundations of Large Language Models

Introduction to LLMs: Definition, scope, and historical evolution from statistical NLP to transformers. The Transformer architecture: Attention mechanisms, self-attention, multi-head attention. Pretraining objectives: Masked language modeling (MLM), Causal language modeling (CLM). Evolution of LLMs: BERT, GPT series, T5, LLaMA, Mistral.

UNIT 2 – Training and Fine-Tuning LLMs

Pretraining datasets and tokenization: BPE, SentencePiece, WordPiece. Fine-tuning approaches: Full fine-tuning, LoRA, adapters, instruction tuning. Domain adaptation and few-shot/zero-shot learning. Data augmentation for LLMs and prompt-based tuning.

UNIT 3 – Prompt Engineering and Applications

Principles of prompt design: Zero-shot, few-shot, and chain-of-thought prompting. System prompts, role prompting, and context length optimization.

Use cases: Text generation, summarization, code generation, question answering, chatbots. Tools & frameworks: Lang Chain, Llama Index, Hugging Face Transformers.

UNIT 4 – Evaluation and Deployment of LLMs

Evaluation metrics: Perplexity, BLEU, ROUGE, METEOR, human evaluation.

Benchmark datasets: GLUE, SuperGLUE, HELM, BIG-bench.

Deployment strategies: API-based deployment, on-prem deployment, inference optimization.

Scaling and latency considerations; quantization and pruning for LLMs.

UNIT 5 – Ethics, Safety, and Future Directions

Bias, fairness, and toxicity in LLMs. Hallucination problem and mitigation techniques. Legal and regulatory issues: Copyright, data privacy, Al Act. Trends in LLM research: Multimodal LLMs, retrieval-augmented generation (RAG), open-source LLM ecosystems.

TEXT BOOKS:

- 1. Vaswani, A. et al. (2017) Attention Is All You Need NIPS Conference Paper.
- 2. Lewis, P. et al. (2021) Language Models are Few-Shot Learners OpenAl Research Paper.
- 3. Tunstall, L., von Werra, L., & Wolf, T. (2022) *Natural Language Processing with Transformers* O'Reilly Media.

REFERENCE BOOKS:

- 1. Bommasani, R. et al. (2021) On the Opportunities and Risks of Foundation Models Stanford CREM
- 2. Jurafsky, D., & Martin, J. H. (2023) Speech and Language Processing (3rd Edition draft) Pearson.
- 3. Mollick, E., & Mollick, L. (2024) *Co-Intelligence: Living and Working with AI* Little, Brown Spark.
- **4.** Hugging Face Documentation https://huggingface.co/docs/

COGNITIVE SYSTEMS (PROFESSIONAL ELECTIVE - II)

M.Tech All Year I Sem.

L T P C
3 0 0 3

Prerequisites: Probability theory

Course Objectives:

1. To provide an understanding of the central challenges in realizing aspects of human cognition.

- 2. To provide a basic exposition to the goals and methods of human cognition.
- 3. To develop algorithms that use Al and machine learning along with human interaction and feedback to help humans make choices/decisions.
- 4. To support human reasoning by evaluating data in context and presenting relevant findings along with the evidence that justifies the answers.

Course Outcomes:

- 1. Understand the basics of cognitive computing and comparisons with traditional approaches.
- 2. Plan and use the primary tools associated with cognitive computing.
- 3. Plan and execute a project that leverages cognitive computing.
- 4. Understand and develop the business implications of cognitive computing.

UNIT - I

Introduction to Cognitive Science: Understanding Cognition, Design for Human Cognition, Augmented Intelligence, Cognition Modeling Paradigms: Declarative/ logic-based computational cognitive modeling, connectionist models of cognition, Bayesian models of cognition, a dynamical systems approach to cognition

UNIT - II

Cognitive Models of memory and language, computational models of episodic and semantic memory, modeling psycholinguistics

UNIT - III

Cognitive Modeling: modeling the interaction of language, memory and learning, Modeling select aspects of cognition classical models of rationality, symbolic reasoning and decision making

UNIT - IV

Formal models of inductive generalization, causality, categorization and similarity, the role of analogy in problem solving, Cognitive Development Child concept acquisition. Cognition and Artificial cognitive architectures such as ACT-R, SOAR, OpenCog, CopyCat, Memory Networks

UNIT-V

DeepQA Architecture, Unstructured Information Management Architecture (UIMA), Structured Knowledge, Business Implications, Building Cognitive Applications, Application of Cognitive Computing and Systems

Case study: IBM Watson

TEXT BOOKS:

- 1. The Cambridge Handbook of Computational Psychology by Ron Sun (ed.), Cambridge University Press.
- 2. Learning IBM Watson Analytics, James D Miller, Packt Publications

- 1. Formal Approaches in Categorization by Emmanuel M. Pothos, Andy J. Wills, Cambridge University Press.
- 2. Cognition, Brain and Consciousness: Introduction to Cognitive Neuroscience by Bernard J. Bears, Nicole M. Gage, Academic Press.
- 3. Cognitive Computing and Big Data Analytics by Hurwitz, Kaufman, and Bowles, Wiley.

GAME THEORY AND APPLICATIONS (PROFESSIONAL ELECTIVE - II)

M.Tech Al I Year I Sem.

L T P C
3 0 0 3

Prerequisites: Graph Theory

Course Objectives:

1. To teach students some strategic considerations to take into account making their choices.

- 2. To learn basic concepts of game theory.
- 3. To apply game theoretic models to real world problems

Course Outcomes:

- 1. Solve strategic games between two and more agents in non-cooperative scenario.
- 2. Analyze and solve both simultaneous-moves and sequential-moves games.
- 3. Learn different methods to solve games.

UNIT - I

Introduction: games and decisions, Games Strategies, Costs and Payoff, Basic Solution Concepts, Finding equilibria and Learning in Games

UNIT - II

Zero-Sum Games: secure strategy, Maximin, Maximax, and Minimax Regret Solvability, value of a game. Normal form games: dominance, iterated dominance, Nash equilibrium. N-player games, mixed strategy nash equilibria.

UNIT - III

Graphical Games: Computing Nash, equilibria in Tree Graphical Games, Graphical Games and correlated Equilibria. Extensive form games: subgame perfection, sequential equilibrium, Stackelberg Model of Duopoly, Buying Votes, Committee Decision-Making. Bargaining: Rubinstein bargaining, Nash bargaining.

UNIT - IV

Repeated Games: Folk theorem and repeated prisoner's dilemma. Tacit collusion. Incomplete information games: Bayesian equilibrium, higher order beliefs.

UNIT - V

Auctions and Mechanism Design: Basic auctions, voting, Vickrey-Clarke-Groves Auction. Cryptography and Game theory: cryptographic influence on game theory and Game theoretic influence on cryptography

TEXT BOOKS:

1. A Course in Game Theory by M. J. Osborne & A. Rubinstein, MIT Press.

- 1. Algorithmic Game Theory by N. Nisan, T. Rougharden, E. Tardos and V. V. Vazirani, Cambridge University Press.
- 2. Game Theory and Applications by Tatsurolchiishi, Abraham Neyman and YairTauman, Elsevier.
- 3. Essentials of Game Theory: A Concise, Multidisciplinary Introduction by K. Leyton-Brown and Y.Shoham, Morgan & Claypool Publishers.

COMPUTER VISION AND ROBOTICS (PROFESSIONAL ELECTIVE - II)

M.Tech Al I Year I Sem.

L T P C
3 0 0 3

Pre-Requisites: UG level Course in Linear Algebra and Probability.

Course Objectives:

1. To understand the Fundamental Concepts Related To sources, shadows and shading

2. To understand the The Geometry of Multiple Views

Course Outcomes:

- 1. Implement fundamental image processing techniques required for computer vision
- 2. Implement boundary tracking techniques
- Apply chain codes and other region descriptors, Hough Transform for line, circle, and ellipse detections.
- 4. Apply 3D vision techniques and Implement motion related techniques.
- 5. Develop applications using computer vision techniques.

UNIT -I

CAMERAS: Pinhole Cameras

Radiometry - Measuring Light: Light in Space, Light Surfaces, Important Special Cases

Sources, Shadows, And Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric Stereo, Interreflections: Global Shading Models

Color: The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color.

UNIT-II

Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates,

Edge Detection: Noise, Estimating Derivatives, Detecting Edges

Texture: Representing Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture.

UNIT-III

The Geometry of Multiple Views: Two Views

Stereopsis: Reconstruction, Human Stereopsis, Binocular Fusion, Using More Cameras

Segmentation by Clustering: What Is Segmentation?, Human Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering,

UNIT-IV

Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness

Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice,

Tracking With Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples

UNIT-V

Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations

Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, Case study: Mobile Robot Localization

Model- Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Case study: Registration In Medical Imaging Systems, Curved Surfaces and Alignment.

TEXT BOOKS:

1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning

(Indian Edition), 2009.

REFERENCES:

1. E. R. Davies: Computer and Machine Vision – Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.
2. R. C. Gonzalez and R. E. Woods "Digital Image Processing" Addison Wesley 2008.

- 3. Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London Limited 2011.

ARTIFICIAL INTELLIGENCE AND INTELLIGENT SYSTEMS LAB (LAB - I)

M.Tech Al I Year I Sem.

L T P C 0 0 4 2

Course Objectives:

- 1. To provide skills for designing and analyzing Al based algorithms.
- 2. To enable students to work on various Al tools.
- 3. To provide skills to work towards solution of real-life problems

Course Outcomes:

- 1. Elicit, analyze and specify software requirements.
- 2. Simulate a given problem scenario and analyze its performance.
- 3. Develop programming solutions for given problem scenario.

List of Programs

- 1. Installation and working on various AI tools viz. Python, R tool, GATE, NLTK, MATLAB, etc.
- 2. Data preprocessing and annotation and creation of datasets.
- 3. Learn existing datasets and Treebanks
- 4. Implementation of searching techniques in Al.
- 5. Implementation of Knowledge representation schemes.
- 6. Natural language processing tool development.
- 7. Application of Machine learning algorithms.
- 8. Application of Classification and clustering problem.
- 9. Working on parallel algorithms.
- 10. Scientific distributions used in python for Data Science Numpy, scifi, pandas, scikit learn, statsmodels, nltk.

ADVANCED DATA STRUCTURES LAB (LAB - II)

M.Tech Al I Year I Sem.

L T P C 0 0 4 2

Prerequisites: A course on Computer Programming & Data Structures

Course Objectives:

- 1. Introduces the basic concepts of Abstract Data Types.
- 2. Reviews basic data structures such as stacks and queues.
- 3. Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs,
- 4. and B-trees.
- 5. Introduces sorting and pattern matching algorithms.

Course Outcomes:

- 1. Ability to select the data structures that efficiently model the information in a problem.
- 2. Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- 3. Implement and know the application of algorithms for sorting and pattern matching.
- 4. Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and B-trees.

List of Programs

- 1. Write a program to perform the following operations:
 - a) Insert an element into a binary search tree.
 - b) Delete an element from a binary search tree.
 - c) Search for a key element in a binary search tree.
- 2. Write a program for implementing the following sorting methods:
 - a) Merge sort b) Heap sort c) Quick sort
- 3. Write a program to perform the following operations:
 - a) Insert an element into a B- tree.
 - b) Delete an element from a B- tree.
 - c) Search for a key element in a B- tree.
- 4. Write a program to perform the following operations:
 - a) Insert an element into a Min-Max heap
 - b) Delete an element from a Min-Max heap
 - c) Search for a key element in a Min-Max heap
- 5. Write a program to perform the following operations:
 - a) Insert an element into a Lefiist tree
 - b) Delete an element from a Leftist tree
 - c) Search for a key element in a Leftist tree
- 6. Write a program to perform the following operations:
 - a) Insert an element into a binomial heap
 - b) Delete an element from a binomial heap.
 - c) Search for a key element in a binomial heap
- 7. Write a program to perform the following operations:
 - a) Insert an element into a AVL tree.
 - b) Delete an element from a AVL search tree.
 - c) Search for a key element in a AVL search tree.
- 8. Write a program to perform the following operations:
 - a) Insert an element into a Red-Black tree.
 - b) Delete an element from a Red-Black tree.
 - c) Search for a key element in a Red-Black tree.
- 9. Write a program to implement all the functions of a dictionary using hashing.

- 10. Write a program for implementing Knuth-Morris-Pratt pattern matching algorithm.
- 11. Write a program for implementing Brute Force pattern matching algorithm.
- 12. Write a program for implementing Boyer pattern matching algorithm.

TEXT BOOKS:

- 1. Fundamentals of Data structures in C, E. Horowitz, S. Sahni and Susan Anderson Freed, 2nd Edition, Universities Press
- 2. Data Structures Using C A.S. Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson education.
- 3. Introduction to Data Structures in C, Ashok Kamthane, 1st Edition, Pearson.

- 1. The C Programming Language, B.W. Kernighan, Dennis M.Ritchie, PHI/Pearson Education
- 2. C Programming with problem solving, J.A. Jones & K. Harrow, Dreamtech Press
- 3. Data structures: A Pseudocode Approach with C, R.F. Gilberg And B.A. Forouzan, 2nd Edition, Cengage Learning

DATABASE PROGRAMMING WITH PL/SQL LAB (LAB - II)

M.Tech Al I Year I Sem. P C

Course Objectives:

- 1. Knowledge on significance of SQL fundamentals.
- 2. Evaluate functions and triggers of PL/SQL
- 3. Knowledge on control structures, packages in PL/SQL and its applications

Course Outcomes:

- 1. Understand importance of PL/SQL basics
- 2. Implement functions and procedures using PL/SQL
- 3. Understand the importance of triggers in database

List of Experiments:

- 1. Write a PI/SQL program using FOR loop to insert ten rows into a database table.
- 2. Given the table EMPLOYEE (EmpNo, Name, Salary, Designation, DeptID), write a cursor to select the five highest paid employees from the table.
- 3. Illustrate how you can embed PL/SQL in a high-level host language such as C/Java And demonstrates how a banking debit transaction might be done.
- 4. Given an integer i, write a PL/SQL procedure to insert the tuple (i, 'xxx') into a given relation.
- 5. Write a PL/SQL program to demonstrate Exceptions.
- 6. Write a PL/SQL program to demonstrate Cursors.
- 7. Write a PL/SQL program to demonstrate Functions.8. Write a PL/SQL program to demonstrate Packages.
- 9. Write PL/SQL queries to create Procedures.
- 10. Write PL/SQL queries to create Triggers.

RESEARCH METHODOLOGY & IPR

M.Tech Al I Year I Sem.

L T P C
0 0 4 2

Prerequisite: None

Course Objectives:

- 1. To understand the research problem
- 2. To know the literature studies, plagiarism and ethics
- 3. To get the knowledge about technical writing
- 4. To analyze the nature of intellectual property rights and new developments
- 5. To know the patent rights

Course Outcomes: At the end of this course, students will be able to

- 1. Understand research problem formulation.
- 2. Analyze research related information
- 3. Follow research ethics
- 4. Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- 6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT-II

Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT-III

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-IV

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT-V

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

TEXT BOOKS:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- 2. C.R. Kothari, Research Methodology, methods & techniques, 2nd edition, New age International publishers

- 1. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 2. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 3. Mayall, "Industrial Design", McGraw Hill, 1992.

- Niebel, "Product Design", McGraw Hill, 1974.
 Asimov, "Introduction to Design", Prentice Hall, 1962.
 Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
 T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

DEEP LEARNING (PC - III)

M.Tech Al I Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- 1. To understand complexity of Deep Learning algorithms and their limitations
- 2. To be capable of performing experiments in Deep Learning using real-world data.

Course Outcomes:

- 1. Implement deep learning algorithms, understand neural networks and traverse the layers of data
- 2. Learn topics such as convolutional neural networks, recurrent neural networks, training deep networks and high-level interfaces
- 3. Understand applications of Deep Learning to Computer Vision
- 4. Understand and analyze Applications of Deep Learning to NLP

UNIT - I

Introduction: Feed forward Neural networks, Gradient descent and the back propagation algorithm, Unit saturation, the vanishing gradient problem, and ways to mitigate it. RelU Heuristics for avoiding bad local minima, Heuristics for faster training, Nestors accelerated gradient descent, Regularization, Dropout

UNIT - II

Convolutional Neural Networks: Architectures, convolution/pooling layers, Recurrent Neural Networks: LSTM, GRU, Encoder Decoder architectures. Deep Unsupervised Learning: Auto encoders, Variational Auto-encoders, Adversarial Generative Networks, Auto-encoder and DBM Attention and memory models, Dynamic Memory Models

UNIT - III

Applications of Deep Learning to Computer Vision: Image segmentation, object detection, automatic image captioning, Image generation with Generative adversarial networks, video to text with LSTM models, Attention Models for computer vision tasks

UNIT-IV

Applications of Deep Learning to NLP: Introduction to NLP and Vector Space Model of Semantics, Word Vector Representations: Continuous Skip-Gram Model, Continuous Bag-of-Words model (CBOW), Glove, Evaluations and Applications in word similarity

UNIT-V

Analogy reasoning: Named Entity Recognition, Opinion Mining using Recurrent Neural Networks: Parsing and Sentiment Analysis using Recursive Neural Networks: Sentence Classification using Convolutional Neural Networks, Dialogue Generation with LSTMs

TEXT BOOKS:

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.
- 3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

REFERENCES:

- 1. Bishop, C, M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

Extensive Reading:

- 1. http://www.deeplearning.net
- 2. https://www.deeplearningbook.org/
- 3. https://developers.google.com/machine-learning/crash-course/ml-intro
- 4. www.cs.toronto.edu/~fritz/absps/imagenet.pdf
- 5. http://neuralnetworksanddeeplearning.com/

BIG DATA TECHNOLOGIES (PROFESSIONAL ELECTIVE - III)

M.Tech Al I Year II Sem.

L T P C 3 0 0 3

Course Objectives

1. The purpose of this course is to provide the students with knowledge of Big data Analytics principles and techniques.

2. This course is also designed to give an exposure of the frontiers of Big data Analytics

Courses Outcomes

- 1. Ability to explain the foundations, definitions, and challenges of Big Data and various Analytical tools.
- 2. Ability to program using HADOOP and Map reduce, NOSQL
- 3. Ability to understand the importance of Big Data in Social Media and Mining.

Unit I

Getting an Overview of Big Data

Big Data, History of Data Management – Evolution of Big Data, Structuring Big Data, Elements of Big Data, Big Data Analytics, Careers in Big Data, Future of Big Data

Technologies for Handling Big Data

Distributed and Parallel Computing for Big Data, Introducing Hadoop, Cloud Computing and Big Data, In-Memory Computing Technology for Big Data.

Unit II

Understanding Hadoop Ecosystem

Hadoop Ecosystem, Hadoop Distributed File System, MapReduce, Hadoop YARN, Hbase, Hive, Pig and Pig Latin, Sqoop, ZooKeeper, Flume, Oozie

Understanding MapReduce Fundamentals and HBase

The MapReduce Framework, Techniques to Optimize MapReduce Jobs, Uses of MapReduce, Role of HBase in Big Data Processing

Unit III

Exploring Hive

Introducing Hive, Getting Started with Hive, Data Types in Hive, Built-In Functions in Hive, Hive DDL, Data Manipulation in Hive, Data Retrieval Queries, Using JOINS in Hive

Analyzing Data with Pig

Introducing Pig, Running Pig, Getting Started with Pig Latin, Working with Operators in Pig, Working with Functions in Pig

Unit IV

Using Oozie

Introducing Oozie, Installing and Configuring Oozie, Understanding the Oozie Workflow, Oozie Coordinator, Oozie Bundle, Oozie Parameterization with EL, Oozie Job Execution Model, Accessing Oozie, Oozie SLA

NoSQL Data Management

Introduction to NoSQL, Aggregate Data Models, Key Value Data Model, Document Databases, Relationships, Graph Databases, Schema-Less Databases, Materialized Views, Distribution Models, Sharding, MapReduce Partitioning and Combining, Composing MapReduce Calculations

Unit V

Zookeeper: Installing and Running ZooKeeper, An Example, Group Membership in ZooKeeper, Creating the Group, Joining a Group, Listing Members in a Group, The ZooKeeper Service, Data Model, Operations, Implementation, Consistency, Sessions, Building Applications with ZooKeeper, A Configuration, Service, The Resilient ZooKeeper Application, A Lock Service, More Distributed Data Structures and Protocols, ZooKeeper in Production

Sqoop: Getting Sqoop, Sqoop Connectors, A Sample Import, Generated Code, Imports: A Deeper Look, Working with Imported Data, Importing Large Objects, Performing an Export, Exports: A Deeper Look

TEXT BOOKS:

- 1. Big data, blackbook, Dream Tech Press, 2015
- 2. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O'Reilly Media, 2012.

- 1. Big Data Analytics, Seema Acharya, Subhashini Chellappan, Wiley 2015.
- 2. Simon Walkowiak, Big Data Analytics with R, Packt Publishing, ISBN: 9781786466457
- 3. Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiley CIO Series, 2013.
- 4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.

ENTERPRISE CLOUD CONCEPTS (PROFESSIONAL ELECTIVE - III)

M.Tech Al I Year II Sem.

L T P C 3 0 0 3

Course Objectives: Knowledge on significance of cloud computing and its fundamental concepts and models.

Course Outcomes:

- 1. Understand importance of cloud architecture
- 2. Illustrating the fundamental concepts of cloud security
- 3. Analyze various cloud computing mechanisms
- 4. Understanding the architecture and working of cloud computing.

Unit - I

Understanding Cloud Computing:

Origins and influences, Basic Concepts and Terminology, Goals and Benefits, Risks and Challenges.

Fundamental Concepts and Models:

Roles and Boundaries, Cloud Characteristics, Cloud Delivery Models, Cloud Deployment Models.

Unit - II

Cloud-Enabling Technology:

Broadband Networks and Internet Architecture, Data Center Technology, Virtualization Technology CLOUD COMPUTING MECHANISMS:

Cloud Infrastructure Mechanisms: Logical Network Perimeter, Virtual Server, Cloud Storage Device, Cloud Usage Monitor, Resource Replication

Unit - III

Cloud Management Mechanisms: Remote Administration System, Resource Management System, SLA Management System, Billing Management System, Case Study Example

Cloud Computing Architecture

Fundamental Cloud Architectures: Workload Distribution Architecture, Resource Pooling Architecture, Dynamic Scalability Architecture, Elastic Resource Capacity Architecture, Service Load Balancing Architecture, Cloud Bursting Architecture, Elastic Disk Provisioning Architecture, Redundant Storage Architecture, Case Study Example

Unit - IV

Cloud-Enabled Smart Enterprises

Introduction, Revisiting the Enterprise Journey, Service-Oriented Enterprises, Cloud Enterprises, Smart Enterprises, The Enabling Mechanisms of Smart Enterprises

Cloud-Inspired Enterprise Transformations

Introduction, The Cloud Scheme for Enterprise Success, Elucidating the Evolving Cloud Idea, Implications of the Cloud on Enterprise Strategy, Establishing a Cloud-Incorporated Business Strategy

UNIT-V Transitioning to Cloud-Centric Enterprises

The Tuning Methodology, Contract Management in the Cloud

Cloud-Instigated IT Transformations

Introduction, Explaining Cloud Infrastructures, A Briefing on Next-Generation Services, Service Infrastructures, Cloud Infrastructures Solutions, Clouds for Business Continuity, The Relevance of Private Clouds, The Emergence of Enterprise Clouds

TEXT BOOKS:

- Erl Thomas, Puttini Ricardo, Mahmood Zaigham, Cloud Computing: Concepts, Technology & Architecture 1st Edition,
- 2. Pethuru Raj, Cloud Enterprise Architecture, CRC Press

REFERENCE:

1. James Bond, The Enterprise Cloud, O'Reilly Media, Inc.

GENERATIVE AI (PROFESSIONAL ELECTIVE - III)

M.Tech Al I Year II Sem.

L T P C 3 0 0 3

Course Objectives

1. To introduce the foundations, evolution, and core concepts of AI, ML, DL, NLP, and Generative AI.

- 2. To develop understanding of advanced neural architectures and generative models such as GANs, VAEs, and Transformers.
- 3. To explore Large Language Models, prompt engineering, and their real-world applications.
- 4. To familiarize learners with frameworks, multimodal applications, and ethical considerations in Generative AI.

Course Outcomes

- 1. Demonstrate knowledge of Al foundations, generative models, and advanced neural architectures.
- 2. Apply generative AI techniques to create solutions for text, image, video, and multimodal tasks
- 3. Design, fine-tune, and optimize Large Language Models for specific applications.
- 4. Evaluate ethical, social, and legal implications of Generative Al deployments and propose mitigation strategies.

UNIT 1

Foundations of AI and Generative Models

Introduction and historical evolution to Artificial Intelligence (AI), Machine Learning (ML), Natural Language Processing (NLP) and Deep Learning (DL), Structure of Artificial Neural Networks (ANNs), Mathematical and computational foundations of generative modeling, Overview of generative models and their applications across various domains; Importance of Generative AI in modern applications, Transfer learning and in advancing Generative AI

UNIT 2

Advanced Neural Architectures for Generative Al

Variational Autoencoders (VAEs): principles and applications, Generative Adversarial Networks (GANs): architecture and working principles; Transformer architecture and attention mechanisms (in detail); Long Short-Term Memory Networks (LSTMs) and the limitations of traditional RNNs/LSTMs, Advanced Transformer architectures and techniques, Pre-training and transfer learning strategies for generative models

UNIT 3

Large Language Models and Prompt Engineering

Overview of Large Language Models (LLMs), GPT architecture, variants, and working principles, Prétraining and fine-tuning GPT models for applications (e.g., chatbots, text generation), Case study: GPT-based customer support chatbot, BERT architecture, pre-training objectives, and fine-tuning, Prompt Engineering: Designing effective prompts, controlling model behavior, and improving output quality, Fine-tuning language models for creative writing and chatbot development

UNIT 4

Multi-Agent Systems and Generative Al Applications

Introduction to Multi-Agent Systems (MAS), Types of agents: reactive, deliberative, hybrid, and learning agents, Multi-agent collaboration and orchestration for generative tasks, Use cases: autonomous research assistants, cooperative creative generation, distributed problem-solving, Frameworks and tools: AutoGen, CrewAI, Hugging GPT for LLM-powered multi-agent systems, Generative AI applications: Art, Creativity, Image/Video generation, Music composition, Healthcare, Finance, Real-world case studies and deployment challenges

UNIT 5

Frameworks, Multimodal Applications, and Ethics

LangChain framework: components and LLM application development, Retrieval-Augmented Generation (RAG), Embeddings, Indexing networks, and Vector databases, Generative AI across modalities: Text, Code, Image, and Video generation, Image and Video generation using GANs and VAEs, Multimodal Generative AI: integration and training strategies, Ethical considerations: bias,

fairness, trust, and responsible Al deployment, Social and legal implications of Generative Al, Risk mitigation strategies and real-world ethical case studies

TEXT BOOKS

- 1. Altaf Rehmani, Generative Al for Everyone: Understanding the Essentials and Applications of This Breakthrough Technology.
- 2. Charu C. Aggarwal, Neural Networks and Deep Learning: A Textbook. Joseph Babcock, Raghav Bali, Generative Al with Python and TensorFlow 2, 2024.

REFERENCE BOOKS

- 1. Josh Kalin, Generative Adversarial Networks Cookbook.
- 2. Jesse Sprinter, Generative AI in Software Development: Beyond the Limitations of Traditional Coding, 2024.

ONLINE REFERENCES

1. Fabian Gloeckle et al., Better & Faster Large Language Models via Multi-token Prediction, arXiv:2404.19737v1, 2024.Vaswani et al., Attention Is All You Need, NeurIPS 2017.

REINFORCEMENT LEARNING (PROFESSIONAL ELECTIVE - IV)

M.Tech Al I Year II Sem.

L T P C 3 0 0 3

Course Objectives

Knowledge on fundamentals of reinforcement learning and the methods used to create agents that can solve a variety of complex tasks.

Course Outcomes

- 1. Understand basics of RL
- 2. Understand RL Framework and Markov Decision Process
- 3. Analyzing ning through the use of Dynamic Programming and Monte Carlo
- 4. Understand TD(0) algorithm, TD(λ) algorithm

Unit I

Basics of probability and linear algebra, Definition of a stochastic multi-armed bandit, Definition of regret, Achieving sublinear regret, UCB algorithm, KL-UCB, Thompson Sampling.

Unit II

Markov Decision Problem, policy, and value function, Reward models (infinite discounted, total, finite horizon, and average), Episodic & continuing tasks, Bellman's optimality operator, and Value iteration & policy iteration

Unit III

The Reinforcement Learning problem, prediction and control problems, Model-based algorithm, Monte Carlo methods for prediction, and Online implementation of Monte Carlo policy evaluation

Unit IV

Bootstrapping; TD(0) algorithm; Convergence of Monte Carlo and batch TD(0) algorithms; Model-free control: Q-learning, Sarsa, Expected Sarsa.

Unit V

n-step returns; $TD(\lambda)$ algorithm; Need for generalization in practice; Linear function approximation and geometric view; Linear $TD(\lambda)$. Tile coding; Control with function approximation; Policy search; Policy gradient methods; Experience replay; Fitted Q Iteration; Case studies.

TEXT BOOKS:

- 1. "Reinforcement learning: An introduction," First Edition, Sutton, Richard S., and Andrew G. Barto, MIT press 2020
- 2. "Statistical reinforcement learning: modern machine learning approaches," First Edition, Sugiyama, Masashi. CRC Press 2015

- 1. "Bandit algorithms," First Edition, Lattimore, T. and C. Szepesvári. Cambridge University Press. 2020
- 2. "Reinforcement Learning Algorithms: Analysis and Applications," Boris Belousov, Hany Abdulsamad, Pascal Klink, Simone Parisi, and Jan Peters First Edition, Springer 2021
- 3. Alexander Zai and Brandon Brown "Deep Reinforcement Learning in Action," First Edition, Manning Publications 2020

MACHINE TRANSLATION (PROFESSIONAL ELECTIVE - IV)

M.Tech Al I Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- 1. To teach students machine translation approaches.
- 2. To evaluate the performance of machine translation Systems.
- 3. To develop translation models for Indian Languages.

Course Outcomes: Upon the Successful Completion of the Course, the Students would be able to:

- 1. Understand machine translation approaches.
- 2. Apply and assess manual and automatic evaluation methods for machine translation.
- 3. Build machine translation model using existing tools for machine translation.

Unit I

Introduction to Machine Translation, MT Approaches: vauquois Triangle, Three major paradigms of Machine Translation, MT Evaluation

Unit II Learning Bilingual word Mappings

A Combinatorial Argument, Deeper look at one- one alignment, Heuristic based Computation of the $V_E *V_F$ Table, Iterative Computation of the $V_E *V_F$ Table, EM: Study of progress in Parameter values

Unit III Phrase based Machine Translation

Need for phrase alignment, An example to illustrate phrase alignment technique, Phrase table, Mathematics of Phrase based SMT, Decoding, Moses.

Unit IV Rule based Machine Translation (RBMT)

Two kinds of RBMT: Interlingua and Transfer, Universal networking Language (UNL), UNL expressions as binary predicates, Interlingua and Word Knowledge, Translation using Interlingua, Details of english to UNL Conversion: with illustration, Transfer based MT.

Unit V Example based Machine Translation

Essential steps of EBMT, EBMTs working, EBMT and case-based reasoning, Text similarity computation, EBMT and Translation Memory, EBMT and SMT.

TEXT BOOKS:

1. Pushpak Bhattacharyya, Machine Translation, CRC Press.

- 1. Statistical Machine Translation by Philipp Koehn, Cambridge University Press.
- 2. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 3. Linguistic Fundamentals for Natural Language Processing by Emily Bender, Morgan & Claypool.

FEDERATED AI (PROFESSIONAL ELECTIVE - IV)

M.Tech Al I Year II Sem.

L T P C 3 0 0 3

Course Outcomes:

1. To understand the fundamental concepts, architecture, and workflow of Federated AI and distributed machine learning systems.

- 2. To analyze and implement core algorithms and privacy-preserving techniques used in Federated Learning.
- 3. To evaluate various applications of Federated AI across industries such as healthcare, finance, IoT, and mobile devices.
- 4. To identify and address security, privacy, and ethical challenges associated with federated systems, including compliance with regulatory frameworks.
- 5. To explore emerging trends, tools, and real-world case studies to assess future directions and industry practices in Federated AI.

Unit I

Introduction to Federated AI and Distributed Machine Learning Overview of Federated AI, Need and Motivation for Federated Learning, Differences between Centralized, Distributed, and Federated Learning.

Types of Federated Learning: Horizontal, Vertical, and Federated Transfer Learning, Architecture and Workflow of Federated Al Systems, Challenges: Data Privacy, Communication Efficiency, System Heterogeneity.

Unit II: Foundations and Algorithms of Federated Learning

Mathematical Foundations of Federated Learning, Federated Averaging (FedAvg) Algorithm, Privacy-preserving Techniques: Differential Privacy, Secure Multiparty Computation, Homomorphic Encryption, Model Personalization and Fine-tuning in Federated Settings, Handling Non-IID Data and Stragglers.

Unit III: Applications of Federated Al

Healthcare: Privacy-sensitive Medical Data Analysis, IoT and Edge Devices: Smart Devices, Autonomous Vehicles.

Finance: Privacy-preserving Fraud Detection, Mobile Devices: Personal Assistants, Keyboard Suggestions, Ethical and Legal Considerations in Federated Al Deployments

Unit IV: Security, Privacy, and Ethical Challenges

Privacy Leakage Risks, Data Poisoning and Model Poisoning Attacks, Robust Federated Learning Approaches

Ethical Implications: Consent, Bias, Fairness, Regulatory Frameworks and Compliance (GDPR, CCPA)

Unit V: Future Trends, Tools, and Case Studies

Federated Learning Frameworks: TensorFlow Federated, PySyft, Flower, Multi-modal Federated AI, Federated Learning in Privacy-Preserving AI Ecosystems,

Industry Case Studies: Google Gboard, Apple, Medical Research

Future Directions: Federated Meta-Learning, Cross-silo Federated Learning

TEXT BOOKS:

- 1. Peter Kairouz, H. Brendan McMahan, et al., " Advances and Open Problems in Federated Learning, & quot; Foundations and Trends® in Machine Learning, 2021.
- 2. Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. (for foundational ML concepts)
- 3. Qiang Yang, Yang Liu, Tianjian Chen, et al., Federated Learning: Challenges, Methods, and Future Directions, Springer, 2020.

REFERENCE BOOKS:

- 1. Peter Kairouz, et al., Federated Learning: Fundamentals and Applications, CRC Press, 2023.
- 2. H. Brendan McMahan, Daniel Ramage, et al., Practical Federated Learning, Google Al Blog Publications.
- 3. Yiheng Wang, & Dun Liu, Privacy-Preserving Machine Learning: Threats and Defense Mechanisms, Springer, 2022.

DEEP LEARNING LAB (Lab - III)

M.Tech Al I Year II Sem.

L T P C 0 4 2

Course Objectives:

- 1. To Build the Foundation of Deep Learning.
- 2. To Understand How to Build the Neural Network.
- 3. To enable students to develop successful machine learning concepts.

Course Outcomes:

- 1. Upon the Successful Completion of the Course, the Students would be able to:
- 2. Learn the Fundamental Principles of Deep Learning.
- 3. Identify the Deep Learning Algorithms for Various Types of Learning Tasks in various domains.
- 4. Implement Deep Learning Algorithms and Solve Real-world problems.

LIST OF EXPERIMENTS:

- 1. Setting up the Spyder IDE Environment and Executing a Python Program
- 2. Installing Keras, Tensorflow and Pytorch libraries and making use of them
- 3. Applying the Convolution Neural Network on computer vision problems
- 4. Image classification on MNIST dataset (CNN model with Fully connected layer)
- 5. Applying the Deep Learning Models in the field of Natural Language Processing
- 6. Train a sentiment analysis model on IMDB dataset, use RNN layers with LSTM/GRU notes
- 7. Applying the Autoencoder algorithms for encoding the real-world data
- 8. Applying Generative Adversial Networks for image generation and unsupervised tasks.

TEXT BOOKS:

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.
- 3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

REFERENCES:

- 1. Bishop, C, M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

Extensive Reading:

- 1. http://www.deeplearning.net
- 2. https://www.deeplearningbook.org/
- 3. https://developers.google.com/machine-learning/crash-course/ml-intro
- 4. www.cs.toronto.edu/~fritz/absps/imagenet.pdf
- 5. http://neuralnetworksanddeeplearning.com/

BIG DATA TECHNOLOGIES LAB (LAB - IV)

M.Tech Al I Year II Sem.

Т P C 4

Course Objectives

The purpose of this course is to provide the students with the knowledge of Big data Analytics principles and techniques.

This course is also designed to give an exposure of the frontiers of Big data Analytics

Course Outcomes

- 1. Use Excel as an Analytical tool and visualization tool.
- 2. program using HADOOP and Map reduce
- 3. perform data analytics using ML in R.
- 4. Use cassandra to perform social media analytics

List of Experiments

- 1. Implement a simple map-reduce job that builds an inverted index on the set of input documents (Hadoop)
- 2. Process big data in HBase
- 3. Store and retrieve data in Pig4. Perform Social media analysis using cassandra
- 5. Buyer event analytics using Cassandra on suitable product sales data.
- 6. Using Power Pivot (Excel) Perform the following on any dataset
 - a. Big Data Analytics
 - b. Big Data Charting
- 7. Use R-Project to carry out statistical analysis of big data
- 8. Use R-Project for data visualization of social media data

Textbooks:

- 1. Big Data Analytics, SeemaAcharva, Subhashini Chellappan, Wiley 2015.
- 2. Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, AmbigaDhiraj, Wiely CIO Series, 2013.
- 3. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O"Reilly Media, 2012.
- Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.

References:

- 1. Big Data and Business Analytics, Jay Liebowitz, Auerbach Publications, CRC press (2013)
- 2. Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop, Tom Plunkett, Mark Hornick, McGraw-Hill/Osborne Media (2013), Oracle press.
- 3. Professional Hadoop Solutions, Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, Wiley, ISBN: 9788126551071, 2015.
- 4. Understanding Big data, Chris Eaton, Dirk deroos et al., McGraw Hill, 2012.
- 5. Intelligent Data Analysis, Michael Berthold, David J. Hand, Springer, 2007.
- 6. Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, Bill Franks, 1st Edition, Wiley and SAS Business Series, 2012.

ENTERPRISE CLOUD CONCEPTS LAB (LAB - IV)

M.Tech Al I Year II Sem.

L T P C 0 0 4 2

Course Objectives:

Knowledge on significance of cloud computing and its fundamental concepts and models.

Course Outcomes:

- 1. Understand importance of cloud architecture
- 2. Illustrating the fundamental concepts of cloud security
- 3. Analyze various cloud computing mechanisms
- 4. Understanding the architecture and working of cloud computing.

List of Experiments:

- Install Virtualbox/VMware Workstation with different flavors of linux or windows OS on top of windows7 or 8.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
- 3. Install Google App Engine. Create a hello world app and other simple web applications using python/java..
- 4. Find a procedure to transfer the files from one virtual machine to another virtual machine.
- 5. Find a procedure to launch virtual machine using trystack (Online Openstack Demo Version)
- 6. Install Hadoop single node cluster and run simple applications like word count.

E-Resources:

- 1. https://www.iitk.ac.in/nt/fag/vbox.htm
- 2.https://www.google.com/urlsa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjqrNG0za73AhXZt1YBHZ21DWEQFnoECAMQAQ&url=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2015%2F1102-fall%2Flinuxvm.pdf&usg=AOvVaw3xZPuF5xVgk-AQnBRsTtHz
- 3. https://www.cloudsimtutorials.online/cloudsim/
- 4.https://edwardsamuel.wordpress.com/2014/10/25/tutorial-creating-openstack-instance-in-trystack/
- 5. https://www.edureka.co/blog/install-hadoop-single-node-hadoop-cluster

BLOCKCHAIN TECHNOLOGY (PROFESSIONAL ELECTIVE - V)

M.Tech Al II Year I Sem.

L T P C 3 0 0 3

Prerequisites:

- 1. Knowledge in information security and applied cryptography.
- 2. Knowledge in Computer Networks

Course Objectives:

- To learn the fundamentals of Blockchain and various types of block chain and consensus mechanisms.
- 2. To understand the public block chain system, Private block chain system and consortium blockchain.
- 3. Able to know the security issues of blockchain technology.

Course Outcomes:

- 1. Understanding concepts behind crypto currency
- 2. Applications of smart contracts in decentralized application development
- 3. Understand frameworks related to public, private and hybrid blockchain
- 4. Create blockchain for different application case studies

UNIT-I

Fundamentals of Blockchain: Introduction, Origin of Blockchain, Blockchain Solution, Components of Blockchain, Block in a Blockchain, The Technology and the Future.

Blockchain Types and Consensus Mechanism: Introduction, Decentralization and Distribution, Types of Blockchain, Consensus Protocol.

Cryptocurrency – Bitcoin, Altcoin and Token: Introduction, Bitcoin and the Cryptocurrency, Cryptocurrency Basics, Types of Cryptocurrencies, Cryptocurrency Usage.

UNIT-II

Public Blockchain System: Introduction, Public Blockchain, Popular Public Blockchains, The Bitcoin Blockchain. Ethereum Blockchain.

Smart Contracts: Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry.

UNIT-III

Private Blockchain System: Introduction, Key Characteristics of Private Blockchain, Why We Need Private Blockchain, Private Blockchain Examples, Private Blockchain and Open Source, E- commerce Site Example, Various Commands (Instructions) in E-commerce Blockchain, Smart Contract in Private Environment, State Machine, Different Algorithms of Permissioned Blockchain, Byzantine Fault, Multichain.

Consortium Blockchain: Introduction, Key Characteristics of Consortium Blockchain, Why We Need Consortium Blockchain, Hyperledger Platform, Overview of Ripple, Overview of Corda.

Initial Coin Offering: Introduction, Blockchain Fundraising Methods, Launching an ICO, Investing in an ICO, Pros and Cons of Initial Coin Offering, Successful Initial Coin Offerings, Evolution of ICO, ICO Platforms.

UNIT-IV

Security in Blockchain: Introduction, Security Aspects in Bitcoin, Security and Privacy Challenges of Blockchain in General, Performance and Scalability, Identity Management and Authentication, Regulatory Compliance and Assurance, Safeguarding Blockchain Smart Contract (DApp), Security Aspects in Hyperledger Fabric.

Applications of Blockchain: Introduction, Blockchain in Banking and Finance, Blockchain in Education, Blockchain in Energy, Blockchain in Healthcare, Blockchain in Real-estate, Blockchain In Supply Chain, The Blockchain and IoT. Limitations and Challenges of Blockchain.

UNIT-V

Blockchain Case Studies: Case Study 1 – Retail, Case Study 2 – Banking and Financial Services, Case Study 3 – Healthcare, Case Study 4 – Energy and Utilities.

Blockchain Platform using Python: Introduction, Learn How to Use Python Online Editor, Basic Programming Using Python, Python Packages for Blockchain.

Blockchain platform using Hyperledger Fabric: Introduction, Components of Hyperledger Fabric Network, Chain codes from Developer.ibm.com, Blockchain Application Using Fabric Java SDK.

TEXT BOOK:

1. "Blockchain Technology", Chandramouli Subramanian, Asha A.George, Abhilasj K A and Meena Karthikeyan , Universities Press.

- 1. Michael Juntao Yuan, Building Blockchain Apps, Pearson, India.
- 2. Blockchain Blueprint for Economy, Melanie Swan, SPD O'reilly.
- 3. Blockchain for Business, Jai Singh Arun, Jerry Cuomo, Nitin Gaur, Pearson.

NATURE INSPIRED COMPUTING (PROFESSIONAL ELECTIVE - V)

M.Tech Al II Year I Sem.

L T P C 3 0 0 3

Course Objectives:

Knowledge on significance of intelligence, genetic algorithms Ant Colony algorithms

Course Outcomes:

- 1. Familiar with Genetic algorithm and its applications.
- 2. Compare different Ant Colony Optimization algorithmic models.
- 3. Compare different Artificial Bee Colony Optimization algorithmic models.
- 4. Illustrate Particle swam optimization algorithm with an example.

Unit I: Models of Life and Intelligence - Fundamentals of bio-inspired models and bio-inspired computing. Evolutionary models and techniques, Swarm models and its self-organization, swarm and evolutionary algorithms. Optimization problems – single and multi-objective optimization, heuristic, meta-heuristic and hyper heuristic functions.

Unit II: Genetic algorithms - Mathematical foundation, Genetic problem solving, crossover and mutation. genetic algorithms and Markov process, applications of genetic algorithms

Unit III: Ant Colony Algorithms - Ant colony basics, hybrid ant system, ACO in combinatorial optimization, variations of ACO, case studies.

Unit IV: Particle Swarm algorithms - particles moves, particle swarm optimization, variable length PSO, applications of PSO, case studies. Artificial Bee Colony algorithms - ABC basics, ABC in optimization, multi-dimensional bee colony algorithms, applications of bee algorithms, case studies.

Unit V: Selected nature inspired techniques - Hill climbing, simulated annealing, Gaussian adaptation, Cuckoo search, Firey algorithm, SDA algorithm, bat algorithm, case studies. Other nature inspired techniques - Social spider algorithm, Cultural algorithms, Harmony search algorithm, Intelligent water drops algorithm, Artificial immune system, Flower pollination algorithm, case studies.

TEXT BOOKS:

- 1. Albert Y. Zomaya "Handbook of Nature-Inspired and Innovative Computing", Springer, 2006
- 2. Floreano, D. and C. Mattiussi -"Bio-Inspired Artificial Intelligence: Theories methods, and Technologies" IT Press, 2008.

- 1. Leandro Nunes de Castro "Fundamentals of Natural Computing, Basic Concepts, Algorithms and Applications", Chapman & Hall/ CRC, Taylor and Francis Group, 2007
- 2. Marco Dorrigo, Thomas Stutzle -" Ant Colony Optimization", Prentice Hall of India, New Delhi, 2005
- 3. Vinod Chandra S S, Anand H S "Machine Learning: A Practitioner's Approach", Prentice Hall of India, New Delhi, 2020

CONVERSATIONAL AI (PROFESSIONAL ELECTIVE - V)

M.Tech Al II Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- 1. To be familiar with the basic knowledge about conversational systems.
- 2. To understand the different techniques of natural language processing
- 3. Study the fundamental role of machine learning in building conversational systems.
- 4. To know the various applications of conversational systems and its future development

Course Outcomes:

- 1. Understand the basic technologies required for building a conversational system.
- 2. Learn the rule-based dialogue system
- 3. Involve AI in building conversational system and build advanced systems that are cognitively inclined towards human behaviour.
- 4. Develop a real time working conversational system for social domain that can intelligently process inputs and generate relevant replies.

UNIT-I Introducing Dialogue Systems

What's a Dialogue System? A Brief History Of Dialogue Systems, Present-Day Dialogue Systems, Modeling Conversation Dialogue Systems, Designing and Developing Dialogue Systems

UNIT-II Rule-Based Dialogue Systems: Architecture, Methods, and Tools

A Typical Dialogue Systems Architecture, Designing a Dialogue System, Tools for Developing Dialogue Systems, Rule-Based Techniques in Dialogue Systems Participating in the Alexa Prize

UNIT-III Statistical Data-Driven Dialogue Systems

Motivating the Statistical Data-Driven Approach, Dialogue Components in the Statistical Data-Driven Approach, Reinforcement Learning (RL), Representing Dialogue as a Markov Decision Process, From MDPs to POMDPs, Dialogue State Tracking, Dialogue Policy, Problems and Issues with Reinforcement Learning in POMDPs

UNIT-IV Evaluating Dialogue Systems

How to Conduct the Evaluation, Evaluating Task-Oriented Dialogue Systems, Evaluating Open-Domain Dialogue Systems, Evaluation Frameworks- PARADISE, Quality of Experience (QoE), Interaction Quality, Best Way to Evaluate Dialogue Systems.

UNIT-V End-to-End Neural Dialogue Systems

Neural Network Approaches to Dialogue Modeling, A Neural Conversational Model, Introduction to the Technology of Neural Dialogue, Retrieval-Based Response Generation, Task-Oriented Neural Dialogue Systems, Open-Domain Neural Dialogue Systems, Some Issues and Current Solutions, Dialogue Systems: Datasets, Competitions, Tasks, and Challenges.

TEXT BOOKS:

1. Michael McTear, "Conversational AI: Dialogue Systems, Conversational Agents, and Chatbots", Second Edition, Moran and Claypool Publishers, 2020.

REFERENCE BOOKS

- Cathy Pearl, "Designing Voice User Interfaces: Principles of Conversational Experiences", O'REILLY. 2016.
- 2. Web Services, G. Alonso, F. Casati and others, Springer.

PROMPT ENGINEERING (PROFESSIONAL ELECTIVE - V)

M.Tech Al II Year I Sem.

L T P C 3 0 0 3

Course Objectives:

To introduce the principles and techniques of effective prompt engineering for generative AI
models.

- 2. To understand the architecture, capabilities, and evolution of large language models such as GPT-3.5, GPT-4, Gemini, and LLaMA.
- 3. To explore standard practices in structured and unstructured text generation using tools like ChatGPT.
- 4. To apply chunking, tokenization, and formatting techniques for improving text generation and manipulation.
- 5. To understand the role of embeddings, vector databases (FAISS, Pinecone), and Retrieval-Augmented Generation (RAG) in modern NLP systems.

Course Outcomes:

- 1. Explain and apply the core principles of prompt engineering for guiding generative Al outputs effectively.
- 2. Describe the underlying architecture and functionality of state-of-the-art large language models (LLMs).
- 3. Generate and manipulate structured outputs (JSON, YAML, CSV) using ChatGPT with advanced prompting techniques.
- 4. Implement text chunking, tokenization, and format control using tools like SpaCy, Tiktoken, and Python.
- 5. Utilize vector databases such as FAISS and Pinecone in Retrieval-Augmented Generation (RAG) pipelines for efficient information retrieval.

IINIT - I

Fundamentals and Principles of Prompting

Overview of the Five Principles of Prompting: Give Direction, Specify Format, Provide Examples, Evaluate Quality, Divide Labor.

UNIT - II

Introduction to Large Language Models for Text Generation

What Are Text Generation Models, Vector Representations: The Numerical Essence of Language, Transformer Architecture: Orchestrating Contextual Relationships, Probabilistic Text Generation: The Decision Mechanism, Historical Underpinnings: The Rise of Transformer Architectures, OpenAl's Generative Pretrained Transformers, GPT-3.5-turbo and ChatGPT, GPT-4, Google's Gemini, Meta's Llama and Open Source.

UNIT - III

Standard Practices for Text Generation with ChatGPT- Part-A

Generating Lists, Hierarchical List Generation, When to Avoid Using Regular Expressions, Generating JSON, YAML Filtering YAML Payloads, Handling Invalid Payloads in YAML, Diverse Format Generation with ChatGPT, Mock CSV Data, Universal Translation Through LLMs, Ask for Context, Text Style Unbundling, Identifying the Desired Textual Features, Generating New Content with the Extracted Features, Extracting Specific Textual Features with LLMs.

UNIT - IV

Standard Practices for Text Generation with ChatGPT- Part-B

Chunking Text, Benefits of Chunking Text, Scenarios for Chunking Text, Poor Chunking Example, Chunking Strategies, Sentence Detection Using SpaCy, building a Simple Chunking Algorithm in Python, Sliding Window Chunking, Text Chunking Packages, Text Chunking with Tiktoken, Encodings, Understanding the Tokenization of Strings.

UNIT - V

Vector Databases with FAISS and Pinecone

Retrieval Augmented Generation (RAG), Introducing Embeddings, Document Loading

Memory Retrieval with FAISS, RAG with Lang Chain, Hosted Vector Databases with Pinecone, Self-Querying, Alternative Retrieval Mechanisms.

TEXTBOOK:

1. Phoenix J, Taylor M. Prompt engineering for generative Al. " O'Reilly Media, Inc."; 2024 May 16.

- 1. Tunstall L, Von Werra L, Wolf T. Natural language processing with transformers. " O'Reilly Media, Inc."; 2022 Jan 26.
- 2. Foster D. Generative deep learning. "O'Reilly Media, Inc."; 2022 Jun 28.

FUNDAMENTALS OF AI (OPEN ELECTIVE)

M.Tech Al II Year I Sem.

L T P C 3 0 0 3

Course Objective:

- 1. To learn the difference between optimal reasoning Vs human like reasoning
- 2. To understand the notions of state space representation, exhaustive search, heuristic search along with the time and space complexities
- 3. To learn different knowledge representation techniques
- 4. To understand the applications of Al namely, Game Playing, Theorem Proving, Expert Systems, Machine Learning and Natural Language Processing

Course Outcomes:

- 1. Gain the knowledge of what is AI, risks and benefits of AI, limits of AI and the ethics involved in building an AI application.
- 2. Understand the nature of environments and the structure of agents.
- 3. Possess the ability to select a search algorithm for a problem and characterize its time and space complexities.
- 4. Possess the skill for representing knowledge using the appropriate technique
- 5. Gain an understanding of the applications of Al

Unit - I

Foundations of AI: Introduction to AI, History of AI, Strong and Weak AI, The State of the Art, Risks and Benefits of AI

Philosophy, Ethics and Safety of AI: The Limits of AI, Machine thinking capability, The Ethics of AI **Intelligent Agents:** Agents and Environments, Good Behavior: The Concept of Rationality, The Nature of Environments, The Structure of Agents.

Unit - II

Solving Problems by Searching: Problem - Solving Agents

Uninformed Search Strategies: Best-First Search, Breadth-First Search, Uniform-Cost Search, Depth-First Search, Iterative Deepening Search and Bidirectional Search

Informed Search Strategies: Greedy Best-First Search, A* Search

Unit - III

Logical Agents: Knowledge-based agents, Propositional Logic, Propositional Theorem Proving

First-Order Logic: Syntax and Semantics of First-Order Logic

Inference in First-Order Logic: Propositional Vs. First-Order Inference, Unification and First-Order Inference, Forward Chaining, Backward Chaining

Knowledge Representation: Ontological Engineering, Categories and Objects, Events

Unit - IV

Quantifying Uncertainty: Basic Probability Notation, Inference Using Full-Joint Distributions, Independence, Bayes' Rule and its Use, Naive Bayes Models

Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The semantics of Bayesian Networks, Exact Inference in Bayesian Networks

Unit - V

Learning from Examples: Forms of Learning, Supervised Learning, Learning Decision Trees, Model Selection, Linear Regression and Classification, Ensemble Learning

Natural Language Processing: Language Models, Grammar, Parsing, Complications of Real Natural Language, Natural Language Tasks

Robotics: Robots, Robot Hardware, Kind of Problems solved, Application Domains

Computer Vision: Simple Image Features, Using Computer Vision

TEXT BOOKS:

 "Artificial Intelligence a Modern Approach", Fourth Edition, Stuart J. Russell & Peter Norvig – Pearson.

REFERENCE BOOKS:

1. "Artificial Intelligence", Elaine Rich, Kevin Knight & Shivashankar B Nair - McGraw Hill Education.

- Artificial Intelligence, 3rd Edn, E. Rich and K.Knight (TMH)
 Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
 Artificial Intelligence, Shivani Goel, Pearson Education.
 Artificial Intelligence and Expert systems Patterson, Pearson Education

BIG DATA TECHNOLOGIES (OPEN ELECTIVE)

M.Tech Al II Year I Sem.

L T P C 3 0 0 3

Course Objectives

3. The purpose of this course is to provide the students with knowledge of Big data Analytics principles and techniques.

4. This course is also designed to give an exposure of the frontiers of Big data Analytics

Courses Outcomes

- 4. Ability to explain the foundations, definitions, and challenges of Big Data and various Analytical tools.
- 5. Ability to program using HADOOP and Map reduce, NOSQL
- 6. Ability to understand the importance of Big Data in Social Media and Mining.

Unit I

Getting an Overview of Big Data

Big Data, History of Data Management – Evolution of Big Data, Structuring Big Data, Elements of Big Data, Big Data Analytics, Careers in Big Data, Future of Big Data

Technologies for Handling Big Data

Distributed and Parallel Computing for Big Data, Introducing Hadoop, Cloud Computing and Big Data, In-Memory Computing Technology for Big Data.

Unit II

Understanding Hadoop Ecosystem

Hadoop Ecosystem, Hadoop Distributed File System, MapReduce, Hadoop YARN, Hbase, Hive, Pig and Pig Latin, Sqoop, ZooKeeper, Flume, Oozie

Understanding MapReduce Fundamentals and HBase

The MapReduce Framework, Techniques to Optimize MapReduce Jobs, Uses of MapReduce, Role of HBase in Big Data Processing

Unit III

Exploring Hive

Introducing Hive, Getting Started with Hive, Data Types in Hive, Built-In Functions in Hive, Hive DDL, Data Manipulation in Hive, Data Retrieval Queries, Using JOINS in Hive

Analyzing Data with Pig

Introducing Pig, Running Pig, Getting Started with Pig Latin, Working with Operators in Pig, Working with Functions in Pig

Unit IV

Using Oozie

Introducing Oozie, Installing and Configuring Oozie, Understanding the Oozie Workflow, Oozie Coordinator, Oozie Bundle, Oozie Parameterization with EL, Oozie Job Execution Model, Accessing Oozie, Oozie SLA

NoSQL Data Management

Introduction to NoSQL, Aggregate Data Models, Key Value Data Model, Document Databases, Relationships, Graph Databases, Schema-Less Databases, Materialized Views, Distribution Models, Sharding, MapReduce Partitioning and Combining, Composing MapReduce Calculations

Unit V

Zookeeper: Installing and Running ZooKeeper, An Example, Group Membership in ZooKeeper, Creating the Group, Joining a Group, Listing Members in a Group, The ZooKeeper Service, Data Model, Operations, Implementation, Consistency, Sessions, Building Applications with ZooKeeper, A Configuration, Service, The Resilient ZooKeeper Application, A Lock Service, More Distributed Data Structures and Protocols, ZooKeeper in Production

Sqoop: Getting Sqoop, Sqoop Connectors, A Sample Import, Generated Code, Imports: A Deeper Look, Working with Imported Data, Importing Large Objects, Performing an Export, Exports: A Deeper Look

TEXT BOOKS:

3. Big data, blackbook, Dream Tech Press, 2015

4. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O'Reilly Media, 2012.

- 1. Big Data Analytics, Seema Acharya, Subhashini Chellappan, Wiley 2015.
- 2. Simon Walkowiak, Big Data Analytics with R, Packt Publishing, ISBN: 9781786466457
- 3. Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiley CIO Series, 2013.
- 4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.

LARGE LANGUAGE MODELS (OPEN ELECTIVE)

M.Tech Al II Year I Sem.

C 0 3

Course Objectives

- 5. To introduce the foundations of transformer architectures and their evolution into LLMs.
 6. To equip students with skills to train, fine-tune, and deploy LLMs for various tasks.
- 7. To explore ethical, legal, and societal implications of LLMs in real-world applications.
- 8. To expose students to state-of-the-art LLM frameworks, evaluation techniques, and research trends.

Course Outcomes (COs)

- 6. Understand the architecture and inner workings of transformer-based LLMs.
- 7. Apply prompt engineering and fine-tuning techniques for domain-specific tasks.
- 8. Evaluate LLM performance using standard metrics and benchmarks.
- 9. Identify challenges in LLM training, deployment, and scaling.
- 10. Analyze ethical, legal, and societal implications of LLM usage.

UNIT 1 – Foundations of Large Language Models

Introduction to LLMs: Definition, scope, and historical evolution from statistical NLP to transformers. The Transformer architecture: Attention mechanisms, self-attention, multi-head attention. Pretraining objectives: Masked language modeling (MLM), Causal language modeling (CLM). Evolution of LLMs: BERT, GPT series, T5, LLaMA, Mistral.

UNIT 2 – Training and Fine-Tuning LLMs

Pretraining datasets and tokenization: BPE, SentencePiece, WordPiece. Fine-tuning approaches: Full fine-tuning, LoRA, adapters, instruction tuning. Domain adaptation and few-shot/zero-shot learning. Data augmentation for LLMs and prompt-based tuning.

UNIT 3 – Prompt Engineering and Applications

Principles of prompt design: Zero-shot, few-shot, and chain-of-thought prompting. System prompts, role prompting, and context length optimization.

Use cases: Text generation, summarization, code generation, question answering, chatbots. Tools & frameworks: Lang Chain, Llama Index, Hugging Face Transformers.

UNIT 4 - Evaluation and Deployment of LLMs

Evaluation metrics: Perplexity, BLEU, ROUGE, METEOR, human evaluation.

Benchmark datasets: GLUE, SuperGLUE, HELM, BIG-bench.

Deployment strategies: API-based deployment, on-prem deployment, inference optimization.

Scaling and latency considerations; quantization and pruning for LLMs.

UNIT 5 - Ethics, Safety, and Future Directions

Bias, fairness, and toxicity in LLMs. Hallucination problem and mitigation techniques. Legal and regulatory issues: Copyright, data privacy, Al Act. Trends in LLM research: Multimodal LLMs, retrieval-augmented generation (RAG), open-source LLM ecosystems.

TEXT BOOKS:

- 4. Vaswani, A. et al. (2017) Attention Is All You Need NIPS Conference Paper.
- 5. Lewis, P. et al. (2021) Language Models are Few-Shot Learners OpenAl Research Paper.
- 6. Tunstall, L., von Werra, L., & Wolf, T. (2022) Natural Language Processing with Transformers - O'Reilly Media.

REFERENCE BOOKS:

- 5. Bommasani, R. et al. (2021) On the Opportunities and Risks of Foundation Models Stanford
- 6. Jurafsky, D., & Martin, J. H. (2023) Speech and Language Processing (3rd Edition draft) -
- 7. Mollick, E., & Mollick, L. (2024) Co-Intelligence: Living and Working with AI Little, Brown
- 8. Hugging Face Documentation https://huggingface.co/docs/