JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech. for Working Professionals ELECTRICAL AND ELECTRONICS ENGINEERING COURSE STRUCTURE & SYLLABUS (WP24 Regulations) Applicable from AY 2024-25 Batch

I SEMESTER

S. No.	Course Code	Course Title	L	т	Р	Credits
1.	MA101BS	Numerical Methods and Complex variables	4	0	0	4
2.	EE102PC	Electrical Machines-I	3	0	0	3
3.	EE103PC	Analog Electronic Circuits	3	0	0	3
4.	EE104PC	Electro Magnetic Fields	3	0	0	3
5.	EE105PC	Electrical Machines Laboratory-I	0	0	2	1
6.	EE106PC	Analog Electronic Circuits Laboratory	0	0	2	1
7.	EE107PC	Electrical Simulation tools Laboratory	0	0	2	1
		Total Credits	13	0	06	16

II SEMESTER

S. No.	Course Code	Course Title	L	т	Р	Credits
1.	EE201PC	Power System-I	3	0	0	3
2.	EE202PC	Solid Mechanics & Hydraulic Machines	3	0	0	3
3.	EE203PC	Electrical Machines–II	3	0	0	3
4.	EE204PC	Digital Electronics	3	0	0	3
5.	EE205PC	Digital Electronics Laboratory	0	0	2	1
6.	EE206PC	Electrical Machines Laboratory-II	0	0	2	1
7.	EE409PC	Real-time Research Project/ Field Based Project	0	0	4	2
		Total Credits	12	0	08	16

III SEMESTER

S. No.	Course	Course Title	L	т	Р	Credits
	Code			-	-	
1.	EE301PC	Measurements and Instrumentation	3	0	0	3
2.	EE302PC	Power System-II	3	0	0	3
3.	EE303PC	Power Electronics	4	0	0	4
4.	EE304PC	Control Systems	3	0	0	3
5.	EE305PC	Control Systems Laboratory	0	0	2	1
6.	EE306PC	Power Electronics Laboratory	0	0	2	1
7.	EE307PC	Measurements and Instrumentation Laboratory	0	0	2	1
		Total Credits	13	0	6	16

IV SEMESTER

S. No	Course Code	Course Title	L	Т	Р	Credits
1.	EE401PC	Microprocessors & Microcontrollers	3	0	0	3
2.	SM402MS	Business Economics and Financial Analysis	3	0	0	3
3.		Professional Elective-I	3	0	0	3
4.		Open Elective-I	3	0	0	3
5.	EE403PC	Microprocessors & Microcontrollers Laboratory	0	0	2	1

6.	EN404HS	Advanced English Communication Skills Laboratory	0	0	2	1
7.	EE405PC	Industry Oriented Mini Project/ Internship	0	0	4	2
		Total Credits	12	0	08	16

V SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1.		Open Elective-II	3	0	0	3
2.		Professional Elective-II	3	0	0	3
3.	EE501PC	Digital Signal Processing	3	0	0	3
4.	EE502PC	Power System Protection	3	0	0	3
5.	EE503PC	Power System Operation and Control	3	0	0	3
6.	EE504PC	Digital Signal Processing Lab	0	0	2	1
		Total Credits	15	0	02	16

VI SEMESTER

S. No.	Course Code	Course Title	L	т	Р	Credits
1.	EE601PC	Fundamentals of Management for Engineers	3	0	0	3
2.		Professional Elective-III	3	0	0	3
3.		Professional Elective-IV	3	0	0	3
4.		Open Elective-III	3	0	0	3
5.	EE602PC	Power System Laboratory	0	0	2	1
6.	EE603PC	Project Stage - I	0	0	6	3
		Total Credits	12	0	08	16

VII SEMESTER

S. No.	Course Code	Course Title	L	т	Р	Credits
1.		Professional Elective-V	4	0	0	4
2.		Professional Elective-VI	4	0	0	4
3.	EE701PC	Power Electronic Applications to Renewable Energy Systems	4	0	0	4
4.	EE702PC	Simulation of Renewable Energy Systems Laboratory	0	0	2	1
5.	EE703PC	Project Stage – II including Seminar	0	0	22	11
		Total Credits	12	0	24	24

Professional Elective - I

EE411PE	IoT Applications in Electrical Engineering
EE412PE	High Voltage Engineering
EE413PE	Computer Aided Electrical Machine Design

Professional Elective - II

EE521PE	Cyber-Physical Systems
EE522PE	Power Semiconductor Drives
EE523PE	Wind and Solar Energy systems

Professional Elective-III

EE631PE	Mobile Application Development
EE632PE	Signals and Systems
EE633PE	Electric and Hybrid Vehicles

Professional Elective-IV

EE641PE	HVDC Transmission
EE642PE	Power System Reliability
EE643PE	Embedded Systems Applications

Professional Elective-V

EE751PE	Power Quality & FACTS
EE752PE	Solar Power Batteries
EE753PE	AI Techniques in Electrical Engineering

Professional Elective-VI

EE761PE	Smart Grid Technologies
EE762PE	Electrical Distribution Systems
EE763PE	Machine Learning Applications to Electrical Engineering

OPEN ELECTIVES

Open Elective-I:

EE411OE	Renewable Energy Sources
EE412OE	Fundamental of Electric Vehicles

Open Elective-II:

EE521OE	Utilization of Electric Energy
EE522OE	Energy Storage Systems

Open Elective-III:

EE631OE	Charging Infrastructure for Electric Vehicles
EE632OE	Reliability Engineering

MA101BS: NUMERICAL METHODS AND COMPLEX VARIABLES

B.Tech. I Sem.	L	т	Р	С
	4	0	0	4

Pre-requisites: Mathematics courses of first year of study.

Course Objectives: To learn

- Expressing periodic function by Fourier series and a non-periodic function by Fourier transforms
- Various numerical methods to find roots of polynomial and transcendental equations.
- Concept of finite differences and to estimate the value for the given data using interpolation.
- Evaluation of integrals using numerical techniques
- Solving ordinary differential equations of first order using numerical techniques.
- Differentiation and integration of complex valued functions.
- Evaluation of integrals using Cauchy's integral formula and Cauchy's residue theorem.
- Expansion of complex functions using Taylor's and Laurent's series.

Course outcomes: After learning the contents of this paper the student must be able to

- Express any periodic function in terms of sine and cosine
- Find the root of a given polynomial and transcendental equations.
- Estimate the value for the given data using interpolation
- Find the numerical solutions for a given first order ODE's
- Analyze the complex function with reference to their analyticity, integration using Cauchy's integral and residue theorems
- Taylor's and Laurent's series expansions in complex function

UNIT-I: Fourier Series & Fourier Transforms:

Fourier series - Dirichlet's Conditions - Half-range Fourier series - Fourier Transforms: Fourier Sine and cosine transforms - Inverse Fourier transforms.

UNIT-II: Numerical Methods-I

Solution of polynomial and transcendental equations: Bisection method, Iteration Method, Newton-Raphson method and Regula-Falsi method. Jacobi and Gauss-Seidal iteration methods for solving linear systems of equations.

Finite differences: forward differences, backward differences, central differences, symbolic relations and separation of symbols, Interpolation using Newton's forward and backward difference formulae. Central difference interpolation: Gauss's forward and backward formulae, Lagrange's method of interpolation.

UNIT-III: Numerical Methods-II

Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8th rules.

Ordinary differential equations: Taylor's series, Picard's method, Euler and modified Euler's methods, Runge-Kutta method of fourth order for first order ODE

UNIT-IV: Complex Differentiation

Limit, Continuity and Differentiation of Complex functions. Cauchy-Riemann equations (without proof), Milne- Thomson methods, analytic functions, harmonic functions, finding harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithm) and their properties. (All theorems without Proofs), Conformal mappings, Mobius transformations.

UNIT-V: Complex Integration:

Line integrals, Cauchy's theorem, Cauchy's Integral formula, zeros of analytic functions, singularities, Taylor's series, Laurent's series, Residues, Cauchy Residue theorem. and their properties. (All theorems without Proofs)

Page **4** of **94**

10 L

10 L

8 L

10 L

10 L

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 2. S.S. Sastry, Introductory methods of numerical analysis, PHI, 4th Edition, 2005.

- 1. M. K. Jain, S.R.K. Iyengar, R.K. Jain, Numerical methods for Scientific and Engineering Computations, New Age International publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 3. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Edition, Mc-Graw Hill, 2004.

EE102PC: ELECTRICAL MACHINES - I

B.Tech. I Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisites: Electrical Circuit Analysis-1 & Electrical Circuit Analysis-2 **Course Objectives:**

- To study and understand different types of DC machines and their performance evaluation through various testing methods.
- To understand the operation of single and ploy-phase Transformers
- To analyze the performance of transformers through various testing methods.

Course Outcomes: After learning the contents of this paper the student must be able to

- Identify different parts of a DC machines & understand their operation.
- Carry out different excitation, starting, speed control methods and testing of DC machines.
- Analyze single & three phase transformers and their performance through testing.

Course Objectives					F	rogram	o Outco	mes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To study and understand different types of DC machines and their performance evaluation through various testing methods.	3	2	3	1	1	1	3	1	2	1	2	3
To understand the operation of single and ploy-phase Transformers	3	3	3	2	2	1	3	1	2	2	2	3
To analyse the performance of transformers through various testing methods	3	2	3	2	2	2	3	1	2	1	3	3

Course Outcomes		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Identify different parts of a DC machines & understand their operation	2	2	2	3	3	2	1	1	3	3	3	3
Carry out different excitation, starting, speed control methods and testing of DC machines	2	1	3	1	2	3	3	1	3	2	2	3
Analyse single & three phase transformers and their performance through testing	1	1	2	1	1	3	3	1	3	3	3	3

UNIT-I:

D.C. GENERATORS: Principle of operation – Action of commutator – constructional features – armature windings – lap and wave windings – simplex and multiplex windings – use of laminated armature – E. M.F Equation.

Armature reaction – Cross magnetizing and de-magnetizing AT/pole – compensating winding – commutation – reactance voltage – methods of improving commutation.

Methods of Excitation – separately excited and self-excited generators – build-up of E.M.F - critical field resistance and critical speed - causes for failure to self-excited and remedial measures. Load characteristics and applications of shunt, series and compound generators.

UNIT-II:

D.C MOTORS: Principle of operation – Back E.M.F. - Torque equation – characteristics and application of shunt, series and compound motors – Armature reaction and commutation.

Speed control of D.C. Motors - Armature voltage and field flux control methods.

Motor starters (3-point and 4-point starters) Testing of D.C. machines - Losses - Constant & Variable losses -calculation of efficiency - condition for maximum efficiency.

UNIT-III:

TESTING OF DC MACHINES: Methods of Testing – direct, indirect, and regenerative testing – Brake test – Swinburne's test – Hopkinson's test – Field's test - separation of stray losses in a D.C. motor test.

UNIT-IV:

SINGLE PHASE TRANSFORMERS: Types - constructional details-minimization of hysteresis and eddy current losses- EMF equation - operation on no load and on load - phasor diagrams and Applications.

Equivalent circuit - losses and efficiency - regulation - All day efficiency - effect of variations of frequency & supply voltage on iron losses.

UNIT-V:

TESTING OF TRANSFORMERS AND POLY-PHASE TRANSFORMERS: Open Circuit and Short Circuit tests - Sumpner's test - predetermination of efficiency and regulation-separation of losses test-parallel operation with equal and unequal voltage ratios - auto transformers-equivalent circuit - comparison with two winding transformers.

Poly-phase transformers – Poly-phase connections - Y/Y, Y/ Δ , Δ /Y, Δ / Δ and open Δ , Scott connection and Applications.

TEXT BOOKS:

- 1. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.
- 2. I.J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

- 1. Prithwiraj Purkait, Indrayudh Bandyopadhyay, "Electrical Machines", Oxford, 2017.
- 2. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.
- 3. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.
- 4. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

ТРС

03

3 0

B.Tech. I Sem.

EE103PC: ANALOG ELECTRONIC CIRCUITS

Course Objectives:

- To introduce components such as diodes, BJTs and FETs their switching characteristics, applications
- Learn the concepts of high frequency analysis of transistors.
- To give understanding of various types of basic and feedback amplifier circuits such as small signal,cascaded, large signal and tuned amplifiers.
- To introduce the basic building blocks of linear integrated circuits.
- To introduce the concepts of waveform generation and introduce some special function ICs.

Course Outcomes: At the end of this course, students will be able to

- Know the characteristics, utilization of various components.
- Understand the biasing techniques
- Design and analyze various rectifiers, small signal amplifier circuits.
- Design sinusoidal and non-sinusoidal oscillators.
- Designs OP-AMP based circuits with linear integrated circuits.

UNIT-I:

Diode and Bipolar Transistor Circuits: P-N junction diode, I-V characteristics of a diode; review of half-wave and full-wave rectifiers, clamping and clipping circuits. Input output characteristics of BJT in CB, CE, CC configurations, biasing circuits, Load line analysis, common-emitter, common-base and common collector amplifiers;Small signal equivalent circuits,

UNIT-II:

FET Circuits: FET Structure and VI Characteristics, MOSFET structure and I-V characteristics. MOSFET as a switch. small signal equivalent circuits - gain, input and output impedances, small-signal model and common-source, common-gate and common-drain amplifiers, trans conductance, high frequencyequivalent circuit.

UNIT-III:

Multi-Stage and Power Amplifiers: Direct coupled and RC Coupled multi-stage amplifiers; Differential Amplifiers, Power amplifiers - Class A, Class B, Class C

UNIT-IV:

Feedback Amplifiers: Concepts of feedback – Classification of feedback amplifiers – General characteristics of Negative feedback amplifiers – Effect of Feedback on Amplifier characteristics – Voltage series, Voltage shunt, Current series and Current shunt Feedback configurations – Simple problems.

Oscillators: Condition for Oscillations, RC type Oscillators-RC phase shift and Wien-bridge Oscillators, LC type Oscillators –Generalized analysis of LC Oscillators, Hartley and Colpitts Oscillators.

UNIT-V:

Operational Amplifiers: Ideal op-amp, Output offset voltage, input bias current, input offset current, slew rate, gain bandwidth product, Inverting and non-inverting amplifier, Differentiator, integrator, Square-wave and triangular- wave generators.

TEXT BOOKS:

- Integrated Electronics, Jacob Millman, Christos C Halkias, McGraw Hill Education, 2ndedition 2010
- 2. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI, 2003.

- 1. Electronic Devices Conventional and current version -Thomas L. Floyd 2015, pearson.
- 2. J. Millman and A. Grabel, "Microelectronics", McGraw Hill Education, 1988.
- 3. P. Horowitz and W. Hill, "The Art of Electronics", Cambridge University Press, 1989.
- 4. P. R. Gray, R. G. Meyer and S. Lewis, "Analysis and Design of Analog IntegratedCircuits", John Wiley & Sons, 2001.

EE104PC: ELECTROMAGNETIC FIELDS

B.Tech. I Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisites: Mathematics & Applied Physics **Course Objectives**:

- To introduce the concepts of electric field and magnetic field.
- To know Applications of electric and magnetic fields in the development of the theory for power transmission lines and electrical machines.
- To study about electromagnetic waves.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand the basic laws of electromagnetism and their applications.
- Analyze time varying electric and magnetic fields.
- Understand the propagation of EM waves.

Course Objectives		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To introduce the concepts of electric field and magnetic field	3	1	1	1	3	3	3	1	1	1	0	3
To know Applications of electric and magnetic fields in the development of the theory for power transmission linesand electrical machines.	3	3	2	2	2	3	0	1	1	1	0	2
To study about electromagnetic waves	3	3	1	2	2	2	0	1	1	1	1	2

Course Outcomes	Program Outcomes											
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12
Understand the basic laws of electromagnetism and their applications	3	3	3	3	3	3	3	3	1	1	1	2
Analyze time varying electric and magnetic fields.	3	3	3	1	1	3	2	3	1	1	3	0
Understand the propagation of EM waves	3	2	2	2	3	3	3	2	1	3	3	1

UNIT-I:

STATIC ELECTRIC FIELD: Review of conversion of a vector from one coordinate system to another coordinate system, Coulomb's law, Electricfield intensity, Electrical field due to point charges. Line, Surface and Volume charge distributions. Gauss law andits applications. Absolute Electric potential, potential difference, Calculation of potential differences for different configurations. Electric dipole, Electrostatic Energy and Energy density.

UNIT-II:

CONDUCTORS, DIELECTRICS AND CAPACITANCE: Current and current density, Ohms Law in Point form, Continuity equation, Boundary conditions of conductors and dielectric materials. Capacitance, Capacitance of a two-wire line, Poisson's equation, Laplace's equation, Solution of Laplace and Poisson's equation.

UNIT-III:

STATIC MAGNETIC FIELDS AND MAGNETIC FORCES: Biot-Savart Law, Ampere Law, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic potentials. Steady magnetic fields produced by current carrying conductors.

Force on a moving charge, Force on a differential current element, Force between differential current elements, Magnetic boundary conditions, Magnetic circuits, Self-inductances and mutual inductances.

UNIT-IV:

TIME VARYING FIELDS AND MAXWELL'S EQUATIONS: Faraday's law for Electromagnetic induction, Displacement current, Point form of Maxwell's equation, Integral form of Maxwell's equations, Motional Electromotive forces.

UNIT-V:

ELECTROMAGNETIC WAVES: Derivation of Wave Equation, Uniform Plane Waves, Maxwell's equation in Phasor form, Wave equation in Phasor form, Plane wave in free space and in a homogenous material. Wave equation for a conducting medium, Plane waves in lossy dielectrics, Propagation in good conductors. Poynting theorem.

TEXT BOOKS:

- 1. M. N. O. Sadiku, "Elements of Electromagnetics", Oxford University Publication, 2014.
- 2. W. Hayt, "Engineering Electromagnetics", McGraw Hill Education, 2012.

- 1. A. Pramanik, "Electromagnetism-Problems with solution", Prentice Hall India, 2012.
- 2. G. W. Carter, "The electromagnetic field in its engineering aspects", Longmans, 1954.
- 3. W. J. Duffin, "Electricity and Magnetism", McGraw Hill Publication, 1980.
- 4. W. J. Duffin, "Advanced Electricity and Magnetism", McGraw Hill, 1968.
- 5. E. G. Cullwick, "The Fundamentals of Electromagnetism", Cambridge University Press, 1966.
- 6. B. D. Popovic, "Introductory Engineering Electromagnetics", Addison-Wesley Educational Publishers, International Edition, 1971.
- 7. A. Pramanik, "Electromagnetism Theory and applications", PHI Learning Pvt. Ltd, New Delhi, 2009.

EE105PC: ELECTRICAL MACHINES LABORATORY - I

B.Tech. I Sem.

Prerequisites: Electrical Machines- I

Course Objectives:

- To expose the students to the operation of DC Generators.
- To know the operation of various types of DC Motors.
- To examine the performance of Single and Three Phase Transformers.

Course Outcomes: After learning the contents of this paper the student must be able to

- Start and control the Different DC Machines.
- Assess the performance of different machines using different testing methods
- Evaluate the performance of different Transformers using different testing methods

Course Objectives	Program Outcomes											
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To expose the students to the operation of DC Generators	3	3	3	3	3	3	1	1	2	2	1	3
To know the operation of various types of DC Motors.	3	2	3	2	3	3	2	2	2	3	2	3
To examine the performance of Single and Three Phase Transformers	3	2	3	1	3	3	1	1	2	2	2	3

Course Outcomes	Program Outcomes											
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Start and control theDifferentDCMachines	3	3	3	3	3	3	3	1	2	1	1	2
Assess the performance of different machines using different testing methods	3	3	3	3	3	3	3	3	3	3	2	3
Evaluate the performance of different Transformers using different testing methods	3	2	2	2	3	3	3	2	1	3	3	2

The following experiments are required to be conducted compulsory experiments:

- 1. Magnetization characteristics of DC shunt generator (Determination of critical field resistance and critical speed)
- 2. Load test on DC shunt generator (Determination of characteristics)
- 3. Load test on DC series generator (Determination of characteristics)
- 4. Hopkinson's test on DC shunt machines (Predetermination of efficiency)
- 5. Swinburne's test and speed control of DC shunt motor (Predetermination of efficiencies)
- 6. Brake test on DC compound motor (Determination of performance curves)
- 7. OC and SC Test on Single Phase Transformer
- **8.** Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star)

In addition to the above eight experiments, at least any two of the experiments from the following list arerequired to be conducted:

- 1. Brake test on DC shunt motor (Determination of performance curves)
- 2. Load test on DC compound generator (Determination of characteristics.
- 3. Fields test on DC series machines (Determination of efficiency)
- 4. Retardation test on DC shunt motor (Determination of losses at rated speed)
- 5. Separation of losses in DC shunt motor.
- 6. Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-PhaseTransformer
- 7. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)

TEXT BOOKS:

- 1. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.
- 2. I.J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

- 1. Prithwiraj Purkait, Indrayudh Bandyopadhyay, "Electrical Machines", Oxford, 2017.
- 2. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.
- 3. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.
- 4. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

EE106PC: ANALOG ELECTRONIC CIRCUITS LABORATORY

B.Tech. I Sem.

L	Т	Ρ	С
0	0	2	1

Prerequisites: Analog Electronic Circuits

Course Objectives:

- To introduce components such as diodes, BJTs and FETs their switching characteristics, applications
- Learn the concepts of high frequency analysis of transistors.
- To give understanding of various types of basic and feedback amplifier circuits such as smallsignal, cascaded, large signal and tuned amplifiers.
- To introduce the basic building blocks of linear integrated circuits.
- To introduce the concepts of waveform generation and introduce some special function ICs.

Course Outcomes: At the end of this course, students will demonstrate the ability to

- Know the characteristics, utilization of various components.
- Understand the biasing techniques
- Design and analyze various rectifiers, small signal amplifier circuits.
- Design sinusoidal and non-sinusoidal oscillators.
- Design OP-AMP based circuits with linearintegrated circuits.

List of Experiments:

- 1. Draw the VI Characteristics of given PN Junction diode. Determine the Static and Dynamic resistance of theDiode.
- 2. Determine the Ripple factor, %Regulation PIV and TUF of the given Rectifier with & without filter.
- 3. Obtain the I/O Characteristics of CE configurations of BJT. Calculate h-parameters from the Characteristics.
- 4. Obtain the I/O Characteristics of CB configurations of BJT. Calculate h-parameters from the Characteristics.
- 5. Obtain the I/O Characteristics of CC configurations of BJT. Calculate h-parameters from the Characteristics.
- 6. Obtain the Drain and Transfer characteristics of CD,CS configuration of JFET. Calculate gm, rd from the Characteristics Adder and Subtractor using Op Amp.
- 7. Inverting and Non-inverting Amplifiers using Op Amps
- 8. Adder and Subtractor using Op Amp
- 9. Integrator Circuit using IC 741.
- 10. Differentiator circuit using Op Amp.
- 11. Current Shunt Feedback amplifier
- 12. Design an RC phase shift oscillator circuit and derive the gain condition for oscillations practically for givenfrequency.
- 13. Design a Colpitts oscillator circuit for the given frequency and draw the output waveform.
- 14. Design transformer coupled class A power amplifier and draw the input and output waveforms, find itsefficiency
- Experiments related to MOSFET may be included

EE107PC: ELECTRICAL SIMULATION TOOLS LABORATORY

B.Tech. I Sem.

L	Т	Ρ	С
0	0	2	1

Course Objectives:

- To understand basic block sets of different simulation platform used in electrical/electronic circuit design.
- To understand use and coding in different software tools used in electrical/ electronic circuit design.
- To understand the simulation of electric machines/circuits for performance analysis.

Course Outcomes: After learning the contents of this paper the student must be able to

- Develop knowledge of software packages to model and program electrical and electronics systems.
- Model different electrical and electronic systems and analyze the results.
- Articulate importance of software packages used for simulation in laboratory experimentation by analyzing the simulation results.

Course Objectives		Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
To understand basic block sets of different simulation platform used in electrical/electronic circuit design	3	3	3	3	3	3	2	2	1	2	2	1	
To understand use and coding in different software tools used in electrical/ electronic circuit design	3	3	3	1	1	3	1	2	1	2	2	1	
To understand the simulation of electric machines/circuits for performance analysis	3	3	2	1	2	3	2	1	2	1	2	3	

Course Outcomes	Program Outcomes											
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Develop knowledge of software packages to model and program electrical and electronics systems	3	3	1	3	2	3	2	3	1	2	2	3
Model different electrical and electronic systems and analyse the results	3	2	2	1	2	1	2	1	2	2	2	3
Articulate importance of software packages used for simulation in laboratory experimentation by analysing the simulation results	3	2	0	0	2	0	1	0	2	0	2	3

Students should be encouraged to use open-source software's such as SCILAB, ORCAD, LTSPICE, Ngspice, Octave, Solve Elec, Simulide, CircuitLab, QElectroTech, Circuit Sims, DcAcLab, Every Circuit, DoCircuitsetc. for carrying out the lab simulation listed below.

Use of Professional Licensed versions of softwareslike MATLAB, LabVIEW, NI Multisim, PSpice, PowerSim, TINA etc. is also allowed.

Use of 'Python' platform for simulating components/ circuit behaviour.

Suggested List of Laboratory Experiments:

The following experiments need to be performed from various subject domains.

- 1. Introduction to basic block sets of simulation platforms. Basic matrix operations, Generation of standard test signals
- 2. Solving the linear and nonlinear differential equations
- 3. Measurement of Voltage, Current and Power in DC circuits.
- 4. Verification of different network theorems with dependent and independent sources using suitable simulation tools.
- 5. Verification of performance characteristics of basic Electronic Devices using suitable simulation tools.
- 6. Analysis of series and parallel resonance circuits using suitable simulation tools
- 7. Obtaining the response of electrical network for standard test signals using suitable simulation tools.
- 8. Modeling and Analysis of Low pass and High pass Filters using suitable simulation tools
- 9. Performance analysis of DC motor using suitable simulation tools
- 10. Modeling and analysis of Equivalent circuit of transformer using suitable simulation tools.
- 11. Analysis of single-phase bridge rectifier with and without filter using suitable Simulation tools.
- 12. Modeling and Verification of Voltage Regulator using suitable simulation tools.
- 13. Modeling of transmission line using simulation tools.
- 14. Performance analysis of Solar PV model using suitable simulation tools

L T P C 3 0 0 3

EE201PC: POWER SYSTEM - I

B.Tech. II Sem.

Prerequisites: Electrical Circuit Analysis-1 & Electrical Circuit Analysis-2

Electrical Machines-I & Electrical Machines-II

Course Objectives:

- To understand the power generation through conventional and non-conventional sources.
- To illustrate the economic aspects of power generation and tariff methods.
- To know about overhead line insulators, substations and AC & DC distribution systems.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand the operation of conventional and renewable electrical power generating stations.
- Evaluate the power tariff methods and Economics associated with power generation.
- Analyze the operations of AIS & GIS, Insulators and Distribution systems.

Course Objectives	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To understand the power generation through conventional and non-conventional sources	3	3	3	1	1	3	2	3	1	1	2	2
To illustrate the economic aspects of power generation and tariff methods	3	3	2	1	1	3	2	2	1	1	2	1
To know about overhead line insulators, substations and AC & DC distribution systems	3	3	2	1	1	3	2	3	1	1	1	1

Course Outcomes	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
Understand the operation of conventional and renewable electrical power generating stations	3	3	2	1	1	3	2	2	2	1	2	1
Evaluate the power tariff methods and Economics associated with power generation	3	3	2	1	1	3	2	3	2	1	2	1
Analyse the operations of AIS & GIS, Insulators and Distribution systems	3	3	3	3	1	2	2	2	1	1	1	1

UNIT-I:

GENERATION OF ELECTRIC POWER:

Conventional Sources (Qualitative): Hydro station, Steam Power Plant, Nuclear Power Plant and Gas Turbine Plant.

Non-Conventional Sources (Elementary Treatment):

Solar Energy, Wind Energy, Fuel Cells, Ocean Energy, Tidal Energy, Wave Energy, Cogeneration, Energy conservation and storage.

UNIT-II:

ECONOMICS OF POWER GENERATION: Introduction, definitions of connected load, maximum demand, demand factor, load factor, diversity factor, Load duration curve, number and size of generator units. Base load and peak load plants.

Cost of electrical energy-fixed cost, running cost, Tariff on charge to customer.

UNIT-III:

OVER HEAD TRANSMISSION LINES: Line conductors, inductance and capacitance of single phase and three phase lines with symmetrical and unsymmetrical spacing, Composite conductors-transposition, bundled conductors, and effect of earth on capacitance, skin and proximity effects.

OVERHEAD LINE INSULATORS: Introduction, types of insulators, Potential distribution over a string of suspension insulators, Methods of equalizing the potential, testing of insulators, Sag and tension calculations.

UNIT-IV:

SUBSTATIONS:

AIR INSULATED SUBSTATIONS (AIS): Indoor & Outdoor substations: Substations layout showing the location of all the substation equipment. Bus bar arrangements in the Sub-Stations: Simple arrangements like single bus bar, sectionalized single bus bar, main and transfer bus bar system with relevant diagrams.

GAS INSULATED SUBSTATIONS (GIS): Advantages of Gas insulated substations, different types of gas insulated substations, single line diagram of gas insulated substations, bus bar, construction aspects of GIS, Installation and maintenance of GIS, Comparison of Air insulated substations and Gas insulated substations.

UNIT-V:

DC DISTRIBUTION: Classification of Distribution Systems. - Comparison of DC vs. AC and Under-Ground vs. Over- Head Distribution Systems. - Requirements and Design features of Distribution Systems. -Voltage Drop Calculations (Numerical Problems) in D.C Distributors for the following cases: Radial D.C Distributor fed one end and at the both the ends (equal/unequal Voltages) and Ring Main Distributor.

A.C. DISTRIBUTION: Introduction, AC distribution, Single phase, 3-phase, 3 phase 4 wire system, bus bar arrangement, Selection of site for substation. Voltage Drop Calculations (Numerical Problems) in A.C. Distributors for the following cases: Power Factors referred to receiving end voltage and with respect to respective load voltages.

TEXT BOOKS:

- 1. C.L. Wadhwa, "Generation, Distribution and Utilization of Electrical Energy", 2nd Edition, New AgeInternational, 2009.
- 2. V.K Mehta andRohit Mehta, "Principles of Power Systems", S. Chand & Company Ltd, New Delhi, 2004.

- 1. A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar, "A Text book on Power System Engineering", Dhanpat Rai Publishing Company (P) Ltd, 2008.
- 2. C.L. Wadhwa, "Electrical Power Systems", 5th Edition, New Age International, 2009.
- 3. M.V. Deshpande, "Elements of Electrical Power Station Design", 3rd Edition, Wheeler Pub. 1998.
- 4. H.Cotton & H. Barber, "The Transmission and Distribution of Electrical Energy", 3rd Edition, 1970.
- 5. W.D.Stevenson, "Elements of Power System Analysis", 4th Edition, McGraw Hill, 1984.

EE202PC: SOLID MECHANICS AND HYDRAULIC MACHINES

B.Tech. II Sem.

L	Т	Ρ	С
3	0	0	3

Course Objectives:

- To identify an appropriate structural system and work comfortably with basic engineering mechanics and types of loading & support conditions that act on structural systems.
- To Understand the meaning of centers of gravity, centroids, moments of Inertia and rigid body dynamics.
- To Study the characteristics of hydroelectric power plant and Design of hydraulic machinery.

Course Outcomes: After learning the contents of this paper the student must be able to

- Solve problems dealing with forces, beam and cable problems and understand distributed force systems.
- Solve friction problems and determine moments of Inertia and centroid of practical shapes.
- Apply knowledge of mechanics in addressing problems in hydraulic machinery and its principles that will be utilized in Hydropower development and for other practical usages.

Course Objectives	Program Outcomes											
_	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
To identify an appropriate structural system and work comfortably with basic engineering mechanics and types of loading & support conditions that act on structural systems.	3	3	3	3	3	3	1	1	2	2	1	3
To Understand the meaning of centers of gravity, centroids, moments of Inertia and rigid body dynamics.	3	2	3	2	3	3	2	2	2	3	2	3
To Study the characteristics of hydroelectric power plant and Design of hydraulic machinery.	3	2	3	1	3	3	1	1	2	2	2	3

Course Outcomes	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Solve problems dealing with forces, beam and cable problems and understand distributed force systems.	3	3	3	3	3	3	3	1	2	1	1	2
Solve friction problems and determine moments of Inertia and centroid of practical shapes.	3	3	3	3	3	3	3	3	3	3	2	3
Apply knowledge of mechanics in addressing problems in hydraulic machinery and its principles that will be utilized in Hydropower development and for other practical usages.	3	2	2	2	3	3	3	2	1	3	3	2

UNIT-I:

INTRODUCTION OF ENGINEERING MECHANICS: Basic concepts of System of Forces-Coplanar Forces-Components in Space-Resultant- Moment of Forces and the Application – Couples and Resultant of Force System-Equilibrium of System of Forces-Free body diagrams-Direction of Force Equations of Equilibrium of Coplanar Systems and Spatial Systems – Vector cross product- Support reactions different beams for different types of loading – concentrated, uniformly distributed and uniformly varying loading. Types of friction – Limiting friction – Laws of Friction – static and Dynamic Frictions – Angle of Friction –Cone of limiting friction

UNIT-II:

CENTROID AND CENTER OF GRAVITY: Centroids – Theorem of Pappus- Centroids of Composite figures – Centre of Gravity of Bodies – Area momentof Inertia:–polar Moment of Inertia–Transfer–Theorems - Moments of Inertia of Composite Figures.

SIMPLE STRESSES AND STRAINS ANALYSIS: Concept of stress and strain- St. Venant's Principle-Stress and Strain Diagram - Elasticity and plasticity – Types of stresses and strains- Hooke's law – stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio and volumetric strain – Pure shear and Complementary shear - Elastic modulii, Elasticconstants and the relationship between them

UNIT-III:

KINEMATICS & KINETICS: Introduction – Rectilinear motion – Motion with uniform and variable acceleration–Curvilinear motion– Components of motion– Circular motion Kinetics of a particle – D'Alembert's principle – Motion in a curved path – work, energy and power. Principleof conservation of energy – Kinetics of a rigid body in translation, rotation – work done – Principle of work-energy – Impulse-momentum.

UNIT-IV:

BASICS OF HYDRAULIC MACHINERY: Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes, Jet striking centrally and at tip, Velocity triangles at inlet and outlet, expressions for work done and efficiency Elements of a typical Hydropower installation – Heads and efficiencies

UNIT-V:

TURBINES & PUMPS: Classification of turbines – Pelton wheel – Francis turbine – Kaplan turbine – working, working proportions, velocity diagram, work done and efficiency, hydraulic design. Draft tube – Classification, functions and efficiency. Governing of turbines, Performance of turbines

Pump installation details – classification – work done – Manometric head – minimum starting speed – losses and efficiencies – specific speed. Multistage pumps – pumps in parallel

TEXT BOOKS:

- 1. M.V. Seshagirirao and Durgaih, "Engineering Mechanics", University Press.
- 2. P.N Modi and Seth, "Fluid Mechanics and Hydraulic Machinery", standard Book House

- 1. B. Bhattacharya, "Engineering Mechanics", Oxford University Publications.
- 2. Hibbler, "Engineering Mechanics (Statics and Dynamics)", Pearson Education.
- 3. Fedrinand L. Singer, "Engineering Mechanics" Harper Collings Publishers.
- 4. A.K.Tayal, "Engineering Mechanics", Umesh Publication.
- 5. Domkundwar & Domkundwar, "Fluid mechanics & Hydraulic Machines", Dhanpat Rai & C
- 6. R.C.Hibbeler, "Fluid Mechanics", Pearson India Education Servieces Pvt. Ltd
- 7. D.S.Kumar, "Fluid Mechanic & Fluid Power Engineering", Kataria & Sons Publications Pvt. Ltd.
- 8. Banga & Sharma, "Hydraulic Machines" Khanna Publishers.

EE203PC: ELECTRICAL MACHINES - II

B.Tech. II Sem.

LTPC

3 0 0 3

Prerequisites: Electrical Circuit Analysis-1 & Electrical Circuit Analysis-2 & Electrical Machines-I **Course Objectives**:

- To deal with the detailed analysis of poly-phase induction motors & Alternators.
- To understand operation, construction and types of single-phase motors and their applications in household appliances and control systems.
- To introduce the concept of parallel operation of alternators.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand the concepts of rotating magnetic fields.
- Examine the operation of ac machines.
- Analyze performance characteristics of ac machines.

Course Objectives	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To deal with the detailed analysis of poly-phase induction motors & Alternators	2	1	2	1	1	2	2	1	1	1	2	3
To understand operation, construction and types of single-phase motors and their applications in household appliances and control systems	2	1	2	1	1	2	2	1	2	1	2	3
To introduce the concept of parallel operation of alternators	2	1	2	1	1	3	2	1	2	2	3	3

Course Outcomes		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Understand the concepts of rotating magnetic fields	2	1	1	2	1	1	1	1	1	1	1	3
Examine the operation of ac machines	2	1	1	2	2	1	1	1	1	1	2	3
Analyse performance characteristics of ac machines	2	1	2	1	3	3	3	1	1	1	3	3

UNIT-I:

POLY-PHASE INDUCTION MACHINES: Constructional details of cage and wound rotor machinesproduction of a rotating magnetic field - principle of operation - rotor EMF and rotor frequency - rotor reactance, rotor current and Power factor at standstill and during operation. Rotor power input, rotor copper loss and mechanical power developed and their inter relation.

UNIT-II:

CHARACTERISTICS OF INDUCTION MACHINES: Torque equation-expressions for maximum torque and starting torque - torque slip characteristic - equivalent circuit - phasor diagram - crawling and cogging, No-load Test and Blocked rotor test –Predetermination of performance-Methods of starting and starting current and Torque calculations, Applications.

SPEED CONTROL METHODS: Change of voltage, change of frequency, voltage/frequency, injection of an EMF into rotor circuit (qualitative treatment only)-induction generator-principle of operation.

UNIT-III:

SYNCHRONOUS MACHINES: Constructional Features of round rotor and salient pole machines – Armature windings – Integral slot and fractional slot windings; Distributed and concentrated windings – distribution, pitch and winding factors – E.M.F Equation. Harmonics in generated e.m.f. – suppression of harmonics – armature reaction - leakage reactance – synchronous reactance and impedance – experimental determination - phasor diagram – load characteristics.

Regulation by synchronous impedance method, M.M.F. method, Z.P.F. method and A.S.A. methods – salient pole alternators – two reaction analysis – experimental determination of X_d and X_q (Slip test) Phasor diagrams – Regulation of salient pole alternators.

UNIT-IV:

PARALLEL OPERATION OF SYNCHRONOUS MACHINES: Synchronizing alternators with infinite bus bars – synchronizing power torque – parallel operation and load sharing -Effect of change of excitation and mechanical power input. Analysis of short circuit current wave form – determination of sub-transient, transient and steady state reactance's and Applications.

SYNCHRONOUS MOTORS: Theory of operation – phasor diagram – Variation of current and power factor with excitation – synchronous condenser – Mathematical analysis for power developed. - Hunting and its suppression – Methods of starting – synchronous induction motor.

UNIT-V:

SINGLE PHASE MACHINES: Single phase induction motor – Constructional Features-Double revolving field theory – split-phase motors – AC series motor- Universal Motor- -Shadedpole motor and Applications.

TEXT BOOKS:

- 1. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.
- 2. I.J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

- 1. Prithwiraj Purkait, Indrayudh Bandyopadhyay, "Electrical Machines", Oxford, 2017.
- 2. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.
- 3. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.
- 4. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

EE204PC: DIGITAL ELECTRONICS

B.Tech. II Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisites: Analog Electronics

Course Objectives:

- To learn fundamental concepts of digital system design and common forms of number representations and their conversions.
- To implement and design logical operations using combinational logic circuits and sequential logic circuits.
- To understand the semiconductor memories and programmable logic devices.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand the working of logic families and logic gates.
- Design and implement Combinational and Sequential logic circuits.
- Implement the given logical problems using programmable logic devices.

Course Objectives		Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
To learn fundamental concepts of digital system design and common forms of number representations and their conversions	2	1	3	2	1	1	1	1	3	2	1	3	
To implement and design logical operations using combinational logic circuits and sequential logic circuits	2	1	3	2	1	1	1	1	3	2	1	3	
To understand the semiconductor memories and programmable logic devices	2	2	3	3	2	2	2	1	1	1	3	1	

Course Outcomes	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
Understand the working of logic families and logic gates	2	2	3	3	1	2	3	3	1	1	1	1
Design and implement Combinational and Sequential logic circuits	2	2	1	2	3	1	2	2	2	1	1	1
Implement the given logical problems using programmable logic devices	3	2	2	2	2	2	2	1	1	1	1	1

UNIT-I:

Fundamentals of Digital Systems and Logic Families: Digital signals, Digital circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, Examples of IC gates, Number systems-binary, Signed binary, Octal hexadecimal number, Binary arithmetic, One's and Two's complements arithmetic.

UNIT-II:

Combinational Circuits-I: Standard representation for logic functions, K-map representation and simplification of logic functions using K- map, Minimization of logical functions, Don't care conditions, Multiplexer, De-Multiplexer

UNIT-III:

Combinational Circuits-II: Adders, Subtractors, Carry look ahead adder, Digital comparator, Parity checker/generator, Code converters, Priority encoders, Decoders/Drivers for display devices, Q-M method of function realization.

UNIT-IV:

Sequential Circuits: Introduction to flip-flops, SR, JK, T and D type's flip-flops, Shift registers, Conversion of flip-flops, Ring counter, Ripple (Asynchronous) counters, Synchronous counters.

UNIT-V:

Semiconductor Memories and Programmable Logic Devices: Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read-only memory (ROM), ROM types, Read and write memory (RAM) types, Programmable logic array, Programmable array logic, Field Programmable Gate Array (FPGA).

TEXT BOOKS:

- 1. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.
- 2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.

- 1. R.S. Sedha, "A Textbook of Digital Electronics", S.Chand, 2005
- 2. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.

B.Tech. II Sem.

EE205PC: DIGITAL ELECTRONICS LAB

L	т	Ρ	С
0	0	2	1

Prerequisites: Analog Electronics & Digital Electronics **Course Objectives**:

- To learn basic techniques for the design of digital circuits and number conversion systems.
- To implement simple logical operations using combinational logic circuits.
- To design combinational logic circuits, sequential logic circuits.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand the working of logic families and logic gates.
- Design and implement Combinational and Sequential logic circuits.
- Analyze different types of semiconductor memories.

Course Objectives	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To learn basic techniques for the design of digital circuits and number conversion systems	3	2	3	1	1	1	3	1	2	1	2	3
To implement simple logical operations using combinational logic circuits	3	3	3	2	2	1	3	1	2	2	2	3
To design combinational logic circuits, sequential logic circuits	2	2	1	2	2	1	3	1	2	2	2	3

Course Outcomes		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12
Understand the working of logic families and logic gates	2	2	2	3	3	2	1	1	3	3	3	3
DesignandimplementCombinationalandSequentiallogiccircuits.	2	1	3	1	2	3	3	1	3	2	2	3
Analyse different types of semiconductor memories	1	1	2	1	1	3	3	1	3	3	3	3

List of Experiments:

- 1. Realization of Boolean Expressions using Gates
- 2. Design and realization logic gates using universal gates
- 3. Generation of clock using NAND/NOR gates
- 4. Design a 4 bit Adder / Subtractor
- 5. Design and realization a 4 bit gray to Binary and Binary to Gray Converter
- 6. Design and realization of a 4-bit pseudo random sequence generator using logic gates.
- 7. Design and realization of an 8-bit parallel load and serial out shift register using flip-flops.
- 8. Design and realization Asynchronous and Synchronous counters using flip-flops
- 9. Design and realization 8x1 using 2x1 mux
- 10. Design and realization 2-bit comparator

- 11. Verification of truth tables and excitation tables
- 12. Realization of logic gates using DTL, TTL, ECL, etc.,

TEXT BOOKS:

- 1. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.
- 2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.

- 1. R.S. Sedha, "A Textbook of Digital Electronics", S.Chand, 2005
- 2. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.

EE206PC: ELECTRICAL MACHINES LABORATORY - II

B.Tech. II Sem.

L	т	Ρ	С
0	0	2	1

Prerequisites: Electrical Machines-I & Electrical Machines-II **Course Objectives:**

- To understand the operation of Induction, Synchronous machines and Transformers. •
- To study the performance analysis of Induction and Synchronous Machines through various • testing methods.
- To analyze the performance of single and 3-phase phase transformer with experiments.

Course Outcomes: After learning the contents of this paper the student must be able to

- Assess the performance of different types of AC machines using different testing methods. •
- Analyze the suitability of AC machines and Transformers for real word applications.
- Design the machine models based on the application requirements.

Course Objectives		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12
To understand the operation of Induction, Synchronous machines and Transformers	3	3	3	1	1	3	2	3	2	1	3	1
To study the performance analysis of Induction and Synchronous Machines through various testing methods	3	3	3	1	1	3	2	3	1	2	3	1
To analyse the performance of single and 3-phase phase transformer with experiments	3	3	3	2	1	2	1	3	1	1	3	1

Course Outcomes		Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	
Assess the performance of different types of AC machines using different testing methods	3	3	3	2	1	3	2	1	1	1	3	2	
Analyse the suitability of AC machines and Transformers for real word applications	3	3	3	1	3	2	2	2	1	1	1	3	
Design the machine models based on the application requirements	3	3	3	2	1	3	2	2	1	2	1	3	

The following experiments are required to be conducted as compulsory experiments:

- 1. Sumpner's test on a pair of single-phase transformers
- 2. No-load & Blocked rotor tests on three phase Induction motor
- 3. Regulation of a three --phase alternator by synchronous impedance & m.m.f. methods

- 4. 'V' and 'Inverted V' curves of a three—phase synchronous motor.
- 5. Equivalent Circuit of a single-phase induction motor
- 6. Determination of Xd and Xq of a salient pole synchronous machine
- 7. Load test on three phase Induction Motor
- 8. Regulation of three-phase alternator by Z.P.F. and A.S.A methods

In addition to the above experiments, at least any two of the following experiments are required to beconducted from the following list:

- 1. Separation of core losses of a single-phase transformer
- 2. Efficiency of a three-phase alternator
- 3. Parallel operation of Single-phase Transformers
- 4. Heat run test on a bank of 3 Nos. of single-phase Delta connected transformers
- 5. Measurement of sequence impedance of a three-phase alternator.
- 6. Vector grouping of Three Transformer
- 7. Scott Connection of transformer

TEXT BOOKS:

- 1. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.
- 2. I.J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

- 1. Prithwiraj Purkait, Indrayudh Bandyopadhyay, "Electrical Machines", Oxford, 2017.
- 2. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.
- 3. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.
- 4. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

EE301PC: MEASUREMENTS AND INSTRUMENTATION

B.Tech. III Sem.

L T P C 3 0 0 3

Prerequisites: Electrical Circuit Analysis-1 & Electrical Circuit Analysis-2, Analog Electronics Electro Magnetic Fields.

Course Objectives:

- To introduce the basic principles of all measuring instruments.
- To deal with the measurement of voltage, current, Power factor, power, energy and magneticmeasurements.
- To understand the basic concepts of smart and digital metering.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand different types of measuring instruments, their construction, operation and characteristics and identify the instruments suitable for typical measurements.
- Apply the knowledge about transducers and instrument transformers to use them effectively.
- Apply the knowledge of smart and digital metering for industrial applications.

Course Objectives		Program Outcomes										
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12
To introduce the basic principles of all measuring instruments	3	3	3	3	3	3	1	1	2	2	1	3
To deal with the measurement of voltage, current, Power factor, power, energy and magnetic measurements.	2	1	2	2	2	2	2	1	1	1	2	3
To understand the basic concepts of smart and digital metering	2	1	2	2	2	2	2	1	1	1	2	3

Course Outcomes		Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
Understand different types of measuring instruments, their construction, operation and characteristics and identify the instruments suitable for typical measurements	2	1	2	2	2	2	2	1	2	1	2	3	
Apply the knowledge about transducers and instrument transformers to use them effectively	2	1	2	2	2	2	2	1	2	1	2	3	
Apply the knowledge of smart and digital metering for industrial applications	2	1	2	2	2	2	2	1	2	1	2	3	

UNIT - I:

INTRODUCTION TO MEASURING INSTRUMENTS: Classification – deflecting, control and damping torques – Ammeters and Voltmeters – PMMC, moving iron type instruments – expression for the deflecting torque and control torque – Errors and compensations, extension of rangeusing shunts and series resistance. Electrostatic Voltmeters-electrometer type and attracted disc type – extension of range of E.S. Voltmeters.

UNIT-II:

POTENTIOMETERS & INSTRUMENT TRANSFORMERS: Principle and operation of D.C. Crompton's potentiometer – standardization – Measurement of unknown resistance, current, voltage. A.C. Potentiometers: polar and coordinate type's standardization – applications. CT and PT – Ratio and phase angle errors

UNIT-III:

MEASUREMENT OF POWER & ENERGY: Single phase dynamometer wattmeter, LPF and UPF, Double element and three element dynamometer wattmeter, expression for deflecting and control torques – Extension of range of wattmeter using instrument transformers – Measurement of active and reactive powers in balanced and unbalanced systems.

Single phase induction type energy meter – driving and braking torques – errors and compensations – testing by phantom loading using R.S.S. meter. Three phase energy meter – tri-vector meter, maximum demand meters.

UNIT-IV:

DC & AC BRIDGES: Method of measuring low, medium and high resistance – sensitivity of Wheatstone's bridge – Carey Foster's bridge, Kelvin's double bridge for measuring low resistance, measurement of high resistance – loss of charge method.

Measurement of inductance- Maxwell's bridge, Hay's bridge, Anderson's bridge - Owen's bridge. Measurement of capacitance and loss angle –Desaunty's Bridge - Wien's bridge – Schering Bridge.

UNIT-V:

TRANSDUCERS: Definition of transducers, Classification of transducers, Advantages of Electrical transducers, Characteristics and choice of transducers; Principle operation of LVDT and capacitor transducers; LVDT Applications, Strain gauge and its principle of operation, gauge factor, Thermistors, Thermocouples, Piezo electric transducers, photovoltaic, photo conductive cells, and photo diodes. **INTRODUCTION TO SMART AND DIGITAL METERING:** Digital Multi-meter, True RMS meters,

Clamp- on meters, Digital Energy Meter, Cathode Ray Oscilloscope, Digital Storage Oscilloscope.

TEXTBOOKS:

- 1. A. K. Sawhney, "Electrical & Electronic Measurement & Instruments", Dhanpat Rai & Co. Publications,2005.
- 2. Dr. Rajendra Prasad, "Electrical Measurements & Measuring Instruments", Khanna Publishers 1989.

- G. K. Banerjee, "Electrical and Electronic Measurements", PHI Learning Pvt. Ltd., 2nd Edition, 2016.
- 2. R. K. Rajput, "Electrical & Electronic Measurement & Instrumentation", S. Chand and Company Ltd., 2007.
- 3. S. C. Bhargava, "Electrical Measuring Instruments and Measurements", BS Publications, 2012.
- 4. Buckingham and Price, "Electrical Measurements", Prentice Hall, 1988.
- 5. Reissland, M. U, "Electrical Measurements: Fundamentals, Concepts, Applications", New Age International (P) Limited Publishers, 1st Edition 2010.
- 6. E.W. Golding and F. C. Widdis, "Electrical Measurements and measuring Instruments", fifth Edition, Wheeler Publishing, 2011.

EE302PC: POWER SYSTEMS - II

B.Tech. III Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisites: Power Systems –I & Electro Magnetic Fields **Course Objectives**:

- To study the performance of transmission lines and travelling waves.
- To understand the concept of voltage control, compensation methods and per unit representation of power systems.
- To know the methods of overvoltage protection, Insulation coordination, Symmetrical components and fault calculation analysis.

Course Outcomes: After learning the contents of this paper the student must be able to

- Analyze transmission line performance and Apply load compensation techniques to control reactive power.
- Understand the application of per unit quantities in power systems.
- Design over voltage protection, insulation coordination and determine the fault currents for symmetrical and unbalanced faults.

Course Objectives	Program Outcomes											
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To study the performance of transmission lines and travelling waves	3	3	3	1	1	3	2	3	1	1	2	2
To understand the concept of voltage control, compensation methods and per unit representation of power systems.	3	3	2	1	1	3	2	2	1	1	2	1
To know the methods of overvoltage protection, Insulation coordination, Symmetrical components and fault calculation analysis.	3	3	2	1	1	3	2	3	1	1	1	1

Course Outcomes	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Analyse transmission line performance and Apply load compensation techniques to control reactive power.	3	3	3	3	3	3	3	3	3	1	3	2
Understand the application of per unit quantities in power systems	3	3	3	1	1	2	2	3	3	1	2	2
Design over voltage protection, insulation coordination and determine the fault currents for symmetrical and unbalanced faults	3	3	2	1	1	3	2	2	2	1	2	1

UNIT - I:

PERFORMANCE OF LINES: Representation of lines, short transmission lines, medium length lines, nominal T and PI- representations, long transmission lines. The equivalent circuit representation of a

long Line, A, B, C, D constants, Ferranti Effect.

Corona: Introduction, disruptive critical voltage, corona loss, Factors affecting corona loss and methods of reducing corona loss, Disadvantages of corona, interference between power and Communication lines.

UNIT-II:

VOLTAGE CONTROL & POWER FACTOR IMPROVEMENT: Introduction – methods of voltage control, shunt and series capacitors / Inductors, tap changing transformers, synchronous phase modifiers, power factor improvement methods.

COMPENSATION IN POWER SYSTEMS: Introduction - Concepts of Load compensation – Load ability characteristics of overhead lines – Uncompensated transmission line – Symmetrical line – Radial line with asynchronous load – Compensation of lines.

UNIT-III:

PER UNIT REPRESENTATION OF POWER SYSTEMS: The one-line diagram, impedance and reactance diagrams, per unit quantities, changing the base of per unit quantities, advantages of per unit system.

TRAVELLING WAVES ON TRANSMISSION LINES: Production of travelling waves, open circuited line, short-circuited line, line terminated through a resistance, line connected to a cable, reflection and refraction at T-junction line terminated through a capacitance, capacitor connection at a T-junction, Attenuation of travelling waves.

UNIT-IV:

OVERVOLTAGE PROTECTION AND INSULATION COORDINATION: Over voltage due to arcing ground and Peterson coil, lightning, horn gaps, surge diverters, rod gaps, expulsion type lightning arrester, valve type lightning arrester, ground wires, ground rods, counter poise, surge absorbers, insulation coordination, volt-time curves.

UNIT-V:

SYMMETRICAL COMPONENTS AND FAULT CALCULATIONS: Significance of positive, negative and zero sequence components, Average 3-phase power in terms of symmetrical components, sequence impedances and sequence networks, fault calculations, sequence network equations, single line to ground fault, line to line fault, double line to ground fault, three phase fault, faults on power systems, faults with fault impedance, reactors and their location, short circuit capacity of a bus.

TEXT BOOKS:

- 1. C.L. Wadhwa, "Electrical Power Systems", New Age International Pub. Co, Third Edition, 2001.
- 2. D.P. Kothari and I.J. Nagrath, "Modern Power System Analysis", Tata Mc Graw Hill Pub. Co., New Delhi, Fourth edition, 2011.

- 1. A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar, "A Text book on Power System Engineering", Dhanpat Rai Publishing Company (P) Ltd, 2008.
- 2. John J. Grainger & W.D. Stevenson, "Power System Analysis", Mc Graw Hill International, 1994.
- 3. Hadi Scadat, "Power System Analysis", Tata Mc Graw Hill Pub. Co. 2002.
- 4. W.D. Stevenson, "Elements of Power system Analysis", McGraw Hill International Student Edition.

EE303PC: POWER ELECTRONICS

III Sem.

L	Т	Ρ	С
4	0	0	4

Prerequisite: Analog Electronics, Digital Electronics **Course Objectives:**

- To understand the various power semiconductor devices operations.
- To know the AC-DC, AC-AC power conversions.
- To know the DC-DC, DC-AC power conversions.

Course Outcomes: At the end of this course, students will be able to:

- Understand the differences between signal level and power level devices.
- Analyze controlled rectifier circuits.
- Analyze the operation of DC-DC choppers and voltage source inverters.

UNIT-I:

Power Switching Devices: Concept of power electronics, scope and applications, types of power converters; Power semiconductor switches and their V-I characteristics - Power Diodes, Power BJT, SCR, Power MOSFET, Power IGBT; Thyristor ratings and protection, methods of SCR commutation, UJT as a trigger source, gate drive circuits for BJT and MOSFETs

UNIT-II:

AC-DC Converters (Phase Controlled Rectifiers): Principles of single-phase fully-controlled converter with R, RL, and RLE load, Principles of single-phase half-controlled converter with RL and RLE load, Principles of three-phase fully-controlled converter operation with RLE load, Effect of load and source inductances, General idea of gating circuits, Single phase and Three phase dual converters

UNIT-III:

DC-DC Converters (Chopper/SMPS): Introduction, elementary chopper with an active switch and diode, concepts of duty ratio, average inductor voltage, average capacitor current. Buck converter - Power circuit, analysis and waveforms at steady state, duty ratio control of output voltage. Boost converter - Power circuit, analysis and waveforms at steady state, relation between duty ratio and average output voltage. Buck-Boost converter - Power circuit, analysis and average output voltage. Relation between duty ratio and average output voltage.

UNIT-IV:

AC-DC Converters (Inverters): Introduction, principle of operation, performance parameters, single phase bridge inverters with R, RL loads, 3-phase bridge inverters - 120- and 180-degrees mode of operation, Voltage control of single-phase inverters –single pulse width modulation, multiple pulse width modulation, sinusoidal pulse width modulation.

UNIT-V:

AC-AC Converters: Phase Controller (AC Voltage Regulator)-Introduction, principle of operation of single-phase voltage controllers for R, R-L loads and its applications. Cyclo-converter-Principle of operation of single phase cyclo-converters, relevant waveforms, circulating current mode of operation, Advantages and disadvantages.

TEXT BOOKS:

- 1. M. H. Rashid, "Power electronics: circuits, devices, and applications", Pearson Education India, 2009.
- 2. N. Mohan and T. M. Undeland, "Power Electronics: Converters, Applications and Design", John Wiley & Sons, 2007.

- 1. R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics", Springer Science & Business Media, 2007.
- 2. L. Umanand, "Power Electronics: Essentials and Applications", Wiley India, 2009.

EE304PC: CONTROL SYSTEMS

III Sem.

LTPC

3 0 0 3

Prerequisite: Matrix Algebra and Calculus, Applied and Multivariable Calculus, Numerical Methods and Complex Variables, Fundamental physical laws

Course objectives:

- Understand the mathematical modeling of physical systems.
- Comprehend the representation of dynamical systems through input-output models, including transfer functions and state-space models.
- Understand the design of controllers and compensators to enhance the performance and stability of dynamical systems

Course Outcomes: At the end of this course, students will be able to:

- Find the transfer function and state-space representation of linear time-invariant dynamical systems.
- Analyze the performance and stability of linear time-invariant systems in both time and frequency domains.
- Design classical controllers/compensators to improve the performance and stability of linear time-invariant systems.

UNT-I:

Modeling of Physical Systems and Their Representations: Industrial and domestic Control examples. Mathematical modeling of physical systems: Mechanical and Electrical Systems, Concept of Control Systems Configurations: Open – loop and Closed loop Systems, Introduction to types of Systems: Linear, Non-Linear, Time Varying and Time Invariant. Representation of Linear time-invariant Systems through Input-output Models: Transfer function, Block-diagram Techniques, Signal flow graph. Concept of Feedback Control, Benefits of Feedback and Effects of feedback. Controller Components: DC Servo motors, AC Servomotors, Synchros.

UNT-II:

TIME – Domain Analysis With Input-Output Models: Time response of first and second order systems for standard test inputs. Analysis of standard Second order systems with step input, Types of System, Error Analysis for Linear time Invariant Systems, Design specifications for second-order systems based on the time-response.

Concept of Stability. Routh-Hurwitz Criteria. Relative Stability analysis. Root-Locus technique. Construction of Root-loci.

UNT-III:

Frequency Domain Analysis: Introduction to frequency response, Relationship between time and frequency response, Polar plots, Nyquist stability criterion. Relative stability using Nyquist criterion – gain and phase margin. Concept of Bode plots and construction. Closed-loop frequency response.

UNT-IV:

Introduction To Design Of Classical Controllers And Compensators: Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness of control systems. Root-loci method of feedback controller design. Design specifications in frequency-domain. Frequency-domain methods of design. Application of Proportional, Integral and Derivative Controllers, Lead and Lag compensation in designs. Analog and Digital implementation of controllers.

UNT-V:

State Variable Analysis And Design: Concept of State, State variables and State model. State – State Representation, Transformation of State variables, Solution of state equations and Complete response of the Systems. Stability Analysis of Linear Systems. Concept of controllability and observability. Design of State feedback Controllers through Pole-placement.

TEXT BOOKS:

- 1. M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.
- 2. B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.

- 1. K. Ogata, "Modern Control Engineering", Prentice Hall, 1991.
- 2. I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009.

EE305PC: CONTROL SYSTEMS LAB

III Sem.	L	т	Ρ	С
	0	0	2	1
Dreve guisites Control Systems				

Prerequisite: Control Systems

Course Objectives:

- Understand system representations like transfer function and state space, and assess system dynamic response.
- Evaluate system performance using both time and frequency domain analyses, identifying methods to enhance performance.
- Design controllers and compensators to improve system performance based on the assessments from time and frequency domain analyses.

Course Outcomes: At the end of this course, students will be able to:

- Improve system performance by skillfully selecting appropriate controllers and compensators tailored to specific applications.
- Apply diverse time domain and frequency domain techniques to effectively assess and enhance system performance.
- Demonstrate the application of various control strategies to different systems such as power systems and electrical drives, showcasing adaptability and versatility in control applications.

The following experiments are required to be conducted compulsory experiments:

- 1. Time response of Second order system
- 2. Characteristics of Synchros
- 3. Programmable logic controller Study and verification of truth tables of logic gates, simple Boolean expressions, and application of speed control of motor.
- 4. Effect of feedback on DC servo motor
- 5. Transfer function of DC motor
- 6. Transfer function of DC generator
- 7. Characteristics of AC servo motor
- 8. Lag and lead compensation Magnitude and phase plot

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted

- 9. Temperature controller using PID
- 10. Effect of P, PD, PI, PID Controller on a second order systems
- 11. (a) Simulation of P, PI, PID Controller.(b) Linear system analysis (Time domain analysis, Error analysis) using suitable software
- 12. Stability analysis (Bode, Root Locus, Nyquist) of Linear Time Invariant system using suitable software
- 13. State space model for classical transfer function using suitable software -Verification.
- 14. Design of Lead-Lag compensator for the given system and with specification using suitable software

TEXT BOOKS:

- 1. M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.
- 2. B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.

- 1. K. Ogata, "Modern Control Engineering", Prentice Hall, 1991.
- 2. I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009.

III Sem.

EE306PC: POWER ELECTRONICS LAB

L T P C 0 0 2 1

Prerequisite: Power Electronics

Course Objectives:

- To apply the concepts of power electronic converters for efficient conversion
- To control of power converters power flow from source to load.
- To Design the power converter with suitable switches meeting a specific load requirement.

Course Outcomes: At the end of this course, students will be able to:

- Understand the operating principles of various power electronic converters.
- Use power electronic simulation packages& hardware to develop the power converters.
- Analyse and choose the appropriate converters for various applications

Any eight experiments should be conducted

- 1. Study of Characteristics of SCR, MOSFET & IGBT,
- 2. Gate firing circuits for SCR's
- 3. Single Phase AC Voltage Controller with R and RL Loads
- 4. Single Phase half controlled &fully controlled bridge converter with R and RL loads
- 5. Forced Commutation circuits (Class A, Class B, Class C, Class D & Class E)
- 6. Single Phase Cyclo-converter with R and RL loads
- 7. Single Phase series& parallel inverter with R and RL loads
- 8. Single Phase Bridge inverter with R and RL loads

Any two experiments should be conducted

- 1. DC Jones chopper with R and RL Loads
- 2. Three Phase half-controlled bridge converter with R-load
- 3. Single Phase dual converter with RL loads
- (a)Simulation of single-phase Half wave converter using R and RL loads
 (b)Simulation of single-phase full converter using R, RL and RLE loads
 (c)Simulation of single-phase Semi converter using R, RL and RLE loads
- 5. (a)Simulation of Single-phase AC voltage controller using R and RL loads (b)Simulation of Single phase Cyclo-converter with R and RL-loads
- 6. Simulation of Buck chopper
- 7. Simulation of single-phase Inverter with PWM control
- 8. Simulation of three phase fully controlled converter with R and RL loads, with and without freewheeling diode. Observation of waveforms for Continuous and Discontinuous modes of operation.
- 9. Study of PWM techniques

TEXT BOOKS:

- 1. M. H. Rashid, Simulation of Electric and Electronic circuits using PSPICE by M/s PHI Publications.
- 2. User's manual of related software's

- 1. Reference guides of related software's
- 2. Rashid, Spice for power electronics and electric power, CRC Press
EE307PC: MEASUREMENTS AND INSTRUMENTATION LABORATORY

B.Tech. III Sem.	LTPC
	0 0 2 1
Prerequisites: Measurements and Instrumentation	

Course Objectives:

- To calibrate Watt, Energy and PF Meter and determination of three phase active & reactive powers.
- To determine unknown inductance, resistance, capacitance by performing experiments on D.C Bridges & A. C Bridges.
- To determine the ratio and phase angle errors of Instrument transformers.

Course Outcomes: After learning the contents of this paper the student must be able to

- Choose and test any measuring instruments.
- Find the accuracy of any instrument by performing experiments.
- Calculate the various parameters using different types of measuring instruments.

Course Objectives		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To calibrate Watt, Energy and PF Meter and determination of three phase active & reactive powers.	3	3	3	3	3	3	1	1	2	2	1	3
To determine unknown inductance, resistance, capacitance by performing experiments on D.C Bridges & A. C Bridges.	3	2	3	2	3	3	2	2	2	3	2	3
To determine the ratio and phase angle errors of Instrument transformers	3	2	3	1	3	3	1	1	2	2	2	3

Course Outcomes		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Choose and test any measuring instruments	3	3	3	3	3	3	3	1	2	1	1	2
Find the accuracy of any instrument by performing experiments	3	3	3	3	3	3	3	3	3	3	2	3
Calculate the various parameters using different types of measuring instruments	3	2	2	2	3	3	3	2	1	3	3	2

The following experiments are required to be conducted as compulsory experiments:

- 1. Calibration and Testing of single-phase energy Meter.
- 2. Calibration of dynamometer power factor meter.
- 3. Crompton D.C. Potentiometer Calibration of PMMC ammeter and PMMC voltmeter.
- 4. Kelvin's double Bridge Measurement of resistance Determination of Tolerance.
- 5. Dielectric oil testing using H.T. testing Kit.
- 6. Schering Bridge & Anderson Bridge.
- 7. Measurement of 3 Phase reactive power with single-phase wattmeter.
- 8. Measurement of displacement with the help of LVDT.

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted:

- 1. Calibration LPF wattmeter by Phantom testing.
- 2. Measurement of 3-phase power with single watt meter and two CTs.
- 3. C.T. testing using mutual Inductor Measurement of % ratio error and phase angle of given CT by Null method.
- 4. PT testing by comparison V. G. as Null detector Measurement of % ratio error and phase angle of the given PT
- 5. Resistance strain gauge strain measurements and Calibration.
- 6. Transformer turns ratio measurement using AC bridges.
- 7. Measurement of % ratio error and phase angle of given CT by comparison.

TEXT BOOKS:

- 1. A. K. Sawhney, "Electrical & Electronic Measurement & Instruments", Dhanpat Rai & Co. Publications, 2005.
- 2. Dr. Rajendra Prasad, "Electrical Measurements & Measuring Instruments", Khanna Publishers 1989.

- G. K. Banerjee, "Electrical and Electronic Measurements", PHI Learning Pvt. Ltd., 2nd Edition, 2016.
- 2. R. K. Rajput, "Electrical & Electronic Measurement & Instrumentation", S. Chand and Company Ltd., 2007.
- 3. S. C. Bhargava, "Electrical Measuring Instruments and Measurements", BS Publications, 2012.
- 4. Buckingham and Price, "Electrical Measurements", Prentice Hall, 1988.
- 5. Reissland, M. U, "Electrical Measurements: Fundamentals, Concepts, Applications", New Age International (P) Limited Publishers, 1st Edition 2010.
- 6. E.W. Golding and F. C. Widdis, "Electrical Measurements and measuring Instruments", fifth Edition, Wheeler Publishing, 2011.

EE401PC: MICROPROCESSORS & MICROCONTROLLERS

IV Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisite: Programming, Digital Electronics

Course Objectives:

- To develop an understanding of the operations of microprocessors and micro controllers
- To understand machine language programming and interfacing techniques.
- To gain knowledge about input output and memory systems.

Course Outcomes: At the end of this course, students will be able to:

- Understand the internal architecture and organization of 8086, 8051 and ARM processors/controllers.
- Understand the interfacing techniques to 8086 and 8051
- Develop assembly language programming to design microprocessor/ micro controller-based systems.

UNIT-I:

8086 Architecture-Pin diagram, Register Organization, Memory Segmentation, Programming Model, Modes of operation, Timing diagrams, Memory addresses, Physical Memory Organization, interrupts of 8086.

Instruction Set And Assembly Language Programming Of 8086: Instruction formats, addressing modes, Instruction Set, Assembler Directives, Macros, and Simple Programs involving Logical, Branch and Call Instructions, Sorting, String Manipulations, Software Debugging tools, MDS.

UNIT-II:

I/O Interface: 8255 PPI, Various modes of operations and interface of I/O devices to 8086, A/D, D/A Converter Interfacing.

Interfacing With Advanced Devices: 8086 System bus structure, Memory and I/O Interfacing with 8086, Interfacing through various IC Peripheral Chips, 8257 (DMA Controller), 8259 (Interrupt Priority Control).

UNIT-III:

Communication Interface: Serial Communication Standards, USART Interfacing RS-232, IEEE-488, 20mA Current Loop, Prototyping and Troubleshooting,

UNIT-IV:

Introduction To Micro Controllers: Overview of 8051 Micro Controller, Architecture, I/O ports and Memory Organization, addressing modes and Instruction set of 8051, Simple Programs using Stack Pointer, Assembly language programming of 8051

Interrupts Communication: Interrupts - Timer/Counter and Serial Communication, Interrupt Priority in the 8051, Programming of 8051- Timers, Counters and Interrupts.

UNIT-V:

Interfacing And Industrial Applications: Applications of Micro Controllers, Interfacing 8051 to LED's, Keyboard Interfacing, Interfacing Seven Segment Display, ADC and DAC Interfacing, Stepper Motor Interfacing

TEXT BOOKS:

- 1. Advanced Microprocessors and Peripherals A. K. Ray and K.M. Bhurchandani, MHE, 2nd Edition 2006.
- 2. The 8051 Microcontroller, Kenneth. J. Ayala, Cengage Learning, 3rd Ed.

- 1. ARM System Developers guide, Andrew N SLOSS, Dominic SYMES, Chris WRIGHT, Elsevier, 2012
- 2. Microprocessors and Interfacing, D. V. Hall, MGH, 2nd Edition 2006.
- 3. Introduction to Embedded Systems, Shibu K.V, MHE, 2009
- **4.** The 8051 Microcontrollers, Architecture and Programming and Applications -K.Uma Rao, Andhe Pallavi, Pearson, 2009.

SM402MS: BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

IV Sem.

L T P C 3 0 0 3

Course Objective: To learn the basic business types, impact of the economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company.

UNIT – I: Introduction to Business and Economics

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply and Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics.

UNIT - II: Demand and Supply Analysis

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

Supply Analysis: Determinants of Supply, Supply Function and Law of Supply.

UNIT - III: Production, Cost, Market Structures & Pricing

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition. **Pricing:** Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT - IV: Financial Accounting: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts (Simple Problems).

UNIT - V: Financial Ratios Analysis: Concept of Ratio Analysis, Importance and Types of Ratios, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios – Analysis and Interpretation (simple problems).

TEXT BOOKS:

- 1. D. D. Chaturvedi, S. L. Gupta, Business Economics Theory and Applications, International Book House Pvt. Ltd. 2013.
- 2. Dhanesh K Khatri, Financial Accounting, Tata Mc Graw Hill, 2011.
- 3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata Mc Graw Hill Education Pvt. Ltd. 2012.

- 1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.
- 2. S. N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013.

EE411PE: IOT APPLICATIONS IN ELECTRICAL ENGINEERING (Professional Elective-I.1)

IV Sem

L	Т	Ρ	С
3	0	0	3

Prerequisite: Programming, Digital Electronics **Course Objectives:**

- To learn about a few applications of Internet of Things and distinguish between motion less and motion detectors as IoT applications
- To know about Micro Electro Mechanical Systems (MEMS) fundamentals in design and fabrication process
- To understand about applications of IoT in smart grid and new concept of IoE for various applications

Course Outcomes: At the end of this course, students will be able to:

- To get exposed to recent trends in few applications of IoT in Electrical Engineering
- To understand about usage of various types of motionless sensors and motion detectors
- To get exposed to various applications of IoT in smart grid
- To get exposed to future working environment with Energy internet

UNIT-I:

Sensors: Definitions, Terminology, Classification, Temperature sensors, Thermoresistive, Resistance, temperature detectors, Silicon resistive thermistors, Semiconductor, Piezoelectric, Humidity and moisture sensors. Capacitive, Electrical conductivity, Thermal conductivity, time domain reflectometer, Pressure and Force sensors: Piezoresistive, Capacitive, force, strain and tactile sensors, Strain gauge, Piezoelectric.

UNIT-II:

Occupancy and Motion detectors: Capacitive occupancy, Inductive and magnetic, potentiometric - Position, displacement and level sensors, Potentiometric, Capacitive, Inductive, magnetic velocity and acceleration sensors, Capacitive, Piezoresistive, piezoelectric cables, Flow sensors, Electromagnetic, Acoustic sensors -Resistive microphones, Piezoelectric, Photo resistors.

UNIT-III:

MEMS: Basic concepts of MEMS design, Beam/diaphragm mechanics, electrostatic actuation and fabrication, Process design of MEMS based sensors and actuators, Touch sensor, Pressure sensor, RF MEMS switches, Electric and Magnetic field sensors.

UNIT-IV:

IoT for Smart grid: Driving factors, Generation level, Transmission level, Distribution level, Applications, Metering and monitoring applications, Standardization and interoperability, Smart home.

UNIT-V:

Internet of Energy: Concept of Internet of Energy, Evaluation of IoE concept, Vision and motivation of IoE, Architecture, Energy routines, information sensing and processing issues, Energy internet as smart grid.

TEXT BOOKS:

- 1. 1.Jon S. Wilson, "Sensor Technology Hand book", Newnes Publisher, 2004
- 2. Tai Ran Hsu, "MEMS and Microsystems: Design and manufacture", 1st Edition, McGraw hill Education, 2017
- 3. Ersan Kabalci and Yasin Kabalci, "From Smart grid to Internet of Energy", 1st Edition, Academic Press, 2019.

- 1. Raj Kumar Buyya and Amir Vahid Dastjerdi, "Internet of Things: Principles and Paradigms", Kindle Edition, Morgan Kaufmann Publisher, 2016
- 2. Yen Kheng Tan and Mark Wong, "Energy Harvesting Systems for IoT Applications": Generation, Storage and Power Management, 1st Edition, CRC Press, 2019
- 3. RMD Sundaram Shriram, K. Vasudevan and Abhishek S. Nagarajan, "Internet of Things", Wiley, 2019.

EE412PE: HIGH VOLTAGE ENGINEERING (Professional Elective-I.2)

IV Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisite: Power Systems – I, Electro Magnetic Fields **Course Objectives:**

- To deal with the detailed analysis of Breakdown occurring in gaseous, liquids and solid dielectrics
- To inform about generation and measurement of High voltage and current
- To introduce High voltage testing methods

Course outcomes: At the end of this course, students will be able to:

- Understand the basic physics related to various breakdown processes in solid, liquid and gaseous insulating materials, generation and measurement of D. C., A.C., & Impulse voltages.
- Knowledge of tests on H. V. equipment and on insulating materials, as per the standards.
- Knowledge of how over-voltages arise in a power system, and protection against these overvoltages.

UNIT-I:

Breakdown In Gases: Ionization processes and de-ionization processes, Types of Discharge, Gases as insulating materials, Breakdown in Uniform gap, non-uniform gaps, Townsend's theory, Streamer mechanism, Corona discharge

Breakdown In Liquid And Solid Insulating Materials: Breakdown in pure and commercial liquids, Solid dielectrics and composite dielectrics, intrinsic breakdown, electromechanical breakdown and thermal breakdown, Partial discharge, applications of insulating materials.

UNIT-II:

Generation Of High Voltages: Generation of high voltages, generation of high D. C. and A.C. voltages, generation of impulse voltages, generation of impulse currents, tripping and control of impulse generators.

UNIT-III:

Measurements Of High Voltages And Currents: Peak voltage, impulse voltage and high direct current measurement method, cathode ray oscillographs for impulse voltage and current measurement, measurement of dielectric constant and loss factor, partial discharge measurements.

UNIT-IV:

Lightning And Switching Over-Voltages: Charge formation in clouds, Stepped leader, Dart leader, Lightning Surges. Switching overvoltage's, Protection against over-voltages, Surge diverters, Surge modifiers.

UNIT-V:

High Voltage Testing Of Electrical Apparatus And High Voltage Laboratories Various standards for HV Testing of electrical apparatus, IS, IEC standards, testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables, power transformers and some high voltage equipment, High voltage laboratory layout, indoor and outdoor laboratories, testing facility requirements, safety precautions in H. V. Labs.

TEXT BOOKS:

- 1. M. S. Naidu and V. Kamaraju, "High Voltage Engineering", McGraw Hill Education, 2013.
- 2. C. L. Wadhwa, "High Voltage Engineering", New Age International Publishers, 2007.

- 1. D. V. Razevig (Translated by Dr. M. P. Chourasia), "High Voltage Engineering Fundamentals", Khanna Publishers, 1993.
- 2. E. Kuffel, W. S. Zaengl and J. Kuffel, "High Voltage Engineering Fundamentals", Newnes Publication, 2000.
- 3. R. Arora and W. Mosch "High Voltage and Electrical Insulation Engineering", John Wiley & Sons, 2011.
- 4. Various IS standards for HV Laboratory Techniques and Testing.

EE413PE: COMPUTER AIDED ELECTRICAL MACHINE DESIGN (Professional Elective-I.3)

IV Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisite: Electrical Machines-I, Electrical Machines-II

Course Objectives:

- To know the major considerations in electrical machine design, electrical engineering materials, space factor, choice of specific electrical and magnetic loadings,
- To analyze the thermal considerations, heat flow, temperature rise, rating of machines.
- To understand the design of machines and CAD design concepts

Course Outcomes: At the end of this course, students will be able to:

- Understand the construction and performance characteristics of electrical machines.
- Understand the various factors which influence the design: electrical, magnetic and thermal loading of electrical machines
- Understand the principles of electrical machine design and carry out a basic design of an ac machine using software tools.

UNIT-I:

Introduction: Major considerations in electrical machine design, electrical engineering materials, space factor, choice of specific electrical and magnetic loadings, thermal considerations, heat flow, temperature rise, rating of machines.

UNIT-II:

Transformers: Sizing of a transformer, main dimensions, kVA output for single- and three-phase transformers, window space factor, overall dimensions, operating characteristics, regulation, no load current, temperature rise in transformers, design of cooling tank, methods for cooling of transformers.

UNIT-III:

Induction Motors: Sizing of an induction motor, main dimensions, length of air gap, rules for selecting rotor slots of squirrel cage machines, design of rotor bars & slots, design of end rings, design of wound rotor, magnetic leakage calculations, leakage reactance of poly-phase machines, magnetizing current, short circuit current, circle diagram, operating characteristics.

UNIT-IV:

Synchronous Machines: Sizing of a synchronous machine, main dimensions, design of salient pole machines, short circuit ratio, shape of pole face, armature design, armature parameters, estimation of airgap length, design of rotor, design of damper winding, determination of full load field mmf, design of field winding, design of turbo alternators, rotor design.

UNIT-V:

Computer Aided Design (CAD): Limitations (assumptions) of traditional designs need for CAD analysis, synthesis and hybrid methods, design optimization methods, variables, constraints and objective function, problem formulation. Introduction to FEM based machine design. Introduction to complex structures of modern machines-PMSMs, BLDCs, SRM and claw-pole machines.

TEXT BOOKS:

- 1. A. K. Sawhney, "A Course in Electrical Machine Design", Dhanpat Rai and Sons, 1970.
- 2. M.G. Say, "Theory & Performance & Design of A.C. Machines", ELBS London.

- 1. S. K. Sen, "Principles of Electrical Machine Design with computer programmes", Oxford and IBH Publishing, 2006.
- 2. K. L. Narang, "A Text Book of Electrical Engineering Drawings", Satya Prakashan, 1969.
- 3. A. Shanmugasundaram, G. Gangadharan and R. Palani, "Electrical Machine Design Data Book", New Age International, 1979.
- 4. M. V. Murthy, "Computer Aided Design of Electrical Machines", B.S. Publications, 2008.
- 5. Electrical machines and equipment design exercise examples using Ansoft's Maxwell 2D machine design package.

L T P C 3 0 0 3

EE4110E: RENEWABLE ENERGY SOURCES (Open Elective-I.1)

IV Sem.

Pre-requisites:	None
-----------------	------

Course Objectives:

- To recognize the awareness of energy conservation in students
- To identify the use of renewable energy sources for electrical power generation
- To collect different energy storage methods and detect about environmental effects of energy conversion

Course Outcomes: At the end of the course the student will be able to:

- Understand the principles of wind power and solar photovoltaic power generation, fuel cells.
- Assess the cost of generation for conventional and renewable energy plants
- Design suitable power controller for wind and solar applications and analyze the issues involved in the integration of renewable energy sources to the grid

UNIT-I:

Introduction

Renewable Sources of Energy-Grid-Supplied Electricity-Distributed Generation-Renewable Energy Economics-Calculation of Electricity Generation Costs –Demand side Management Options –Supply side Management Options-Modern Electronic Controls of Power Systems.

Wind Power Plants:

Appropriate Location -Evaluation of Wind Intensity -Topography -Purpose of the Energy Generated -General Classification of Wind Turbines-Rotor Turbines-Multiple-Blade Turbines Drag Turbines -Lifting Turbines-Generators and Speed Control used in Wind Power Energy Analysis of Small Generating Systems.

UNIT-II:

Photovoltaic Power Plants

Solar Energy-Generation of Electricity by Photovoltaic Effect -Dependence of a PV Cell Characteristic on Temperature-Solar cell Output Characteristics-Equivalent Models and Parameters for Photovoltaic Panels-Photovoltaic Systems-Applications of Photovoltaic Solar Energy-Economical Analysis of Solar Energy.

Fuel Cells: The Fuel Cell-Low and High Temperature Fuel Cells-Commercial and Manufacturing Issues Constructional Features of Proton Exchange-Membrane Fuel Cells –Reformers-Electrolyzer Systems and Related Precautions-Advantages and Disadvantages of Fuel Cells-Fuel Cell Equivalent Circuit-Practical Determination of the Equivalent Model Parameters -Aspects of Hydrogen as Fuel.

UNIT-III:

Induction Generators

Principles of Operation-Representation of Steady-State Operation-Power and Losses Generated-Self-Excited Induction Generator-Magnetizing Curves and Self-Excitation Mathematical Description of the Self-Excitation Process-Interconnected and Stand-alone operation -Speed and Voltage Control - Economical Aspects.

UNIT-IV:

Storage Systems

Energy Storage Parameters-Lead–Acid Batteries-Ultra Capacitors-Flywheels –Superconducting Magnetic Storage System-Pumped Hydroelectric Energy Storage - Compressed Air Energy Storage - Storage Heat -Energy Storage as an Economic Resource.

UNIT-V:

Integration of Alternative Sources of Energy

Principles of Power Injection-Instantaneous Active and Reactive Power Control Approach Integration of Multiple Renewable Energy Sources-Islanding and Interconnection Control-DG Control and Power Injection.

Interconnection Of Alternative Energy Sources with the Grid:

Interconnection Technologies -Standards and Codes for Interconnection-Interconnection Considerations -Interconnection Examples for Alternative Energy Sources.

TEXT BOOKS:

- 1. Felix A. Farret, M. Godoy Simoes, "Integration of Alternative Sources of Energy", John Wiley& Sons, 2006.
- 2. Solanki: Renewable Energy Technologies: Practical Guide For Beginneers, PHI Learning Pvt. Ltd., 2008.

- 1. D. Mukherjee: Fundamentals of Renewable Energy Systems, New Age International publishers, 2007.
- 2. Remus Teodorescu, Marco Liserre, Pedro Rodríguez: Grid Converters for Photovoltaic and Wind Power Systems, John Wiley & Sons, 2011.
- 3. Gilbert M. Masters: Renewable and Efficient Electric Power Systems, John Wiley & Sons, 2004.

EE412OE: FUNDAMENTAL OF ELECTRIC VEHICLES (Open Elective-I.2)

IV Sem.

L	Т	Ρ	С
3	0	0	3

Pre-requisites: None; Interest in electric Vehicles **Course Objectives:**

- To understand the fundamentals of Electric Vehicles (EVs), especially in Indian Context.
- To examine technology associated with each element of EV drive-train;
- To get into the economics of EVs in India vis-à-vis petrol vehicles.

Course Outcomes: At the end of the course the student will be able to:

- Understand the fundamentals of Electric Vehicles.
- Design of batteries, EV motors and Power electronic controllers for EV systems.
- Analyze the economics of EV market and EV data using Analytical tools.

UNIT-I:

Introduction

Overview of Electric Vehicles in India, India's EV program, Charging and Swapping Infrastructure, brief introduction of batteries, Lithium for batteries, EV Subsystems.

UNIT-II:

Vehicle Dynamics: Forces acting when a vehicle move, Aerodynamic drag, Rolling Resistance and Uphill Resistance, Power and Torque to accelerate. **Drive Cycle:** Concept of Drive Cycle, Drive Cycles and Energy used per km.

UNIT-III:

EV Powertrain: Design of EV Drive Train, Introduction to Battery Parameters, Why Lithium Ion Battery? Batteries in Future, Li-Ion Battery Cells, SoH and SoC estimation and Self Discharge, Battery Pack Development, Computation of Effective cost of battery, Charging Batteries.

Fundamentals of EV Battery Pack design: Mechanical, Thermal and Electrical Design, BMS Design of Electric Vehicle.

UNIT-IV:

EV Motors and Controllers: Fundamentals and Design, Understanding Flow of Electricity, Magnetism and Heat, Power and Efficiency, Torque Production, Speed and Back EMF, the d-q Equivalent circuit, Field-oriented Control, Understanding Three phase AC and DC to AC conversion systems, Understanding the thermal design of the motors, Engineering Considerations, Future Frontiers.

UNIT-V:

EV Charging: Introduction, Slow or Fast EV Chargers, Battery Swapping, Standardization and On board Chargers, Public Chargers, Bulk Chargers/Swap Stations, Economics of Public Chargers in context, Analytics and Tools for EV systems.

TEXT BOOKS:

- 1. Electric Powertrain Energy Systems, Power electronics and drives for Hybrid, electric and fuel cell vehicles by John G. Hayes and A. Goodarzi, Wiley Publication
- 2. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004
- 3. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003

4. **REFERENCE BOOKS:**

1. James Larminie, John Lowry, *Electric Vehicle Technology Explained*, Wiley, 2003

- 2. Chris Mi, M. Abul Masrur, David Wenzhong Gao, *Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives*, John Wiley & Sons Ltd., 2011
- 3. Fundamentals of Electric Vehicles: technology and economics <u>https://onlinecourses.nptel.ac.in/noc20_ee99/preview</u> <u>https://archive.nptel.ac.in/courses/108/106/108106170/</u>
- Link to EV101 course <u>https://www.pupilfirst.school/courses/641/curriculum</u> Link to EV201 course: <u>https://www.pupilfirst.school/courses/643/curriculum</u>

EE403PC: MICROPROCESSORS & MICROCONTROLLERS LAB

IV Sem.	L	т	Ρ	С
	0	0	2	1

Prerequisites: Digital Electronics, Microprocessors and Microcontrollers

Course Objectives:

- To develop an understanding of the operations of microprocessors and micro controllers;
- To develop assembly language programming to perform various applications.
- To understand the interfacing of various external devices to the processor and controllers.

Course Outcomes: At the end of this course, students will be able to:

- Understands the internal architecture and organization of 8086, 8051 and ARM processors/controllers.
- Understands the interfacing techniques to 8086 and 8051 and can develop assembly language programming to design microprocessor/ micro controller-based systems.
- Develop programs for interfacing various external devices,

The following programs/experiments are to be written for assembler and to be executed the same with 8086 and 8051 kits.

List of Experiments:

- 1. Programs for 16-bit arithmetic operations 8086(using various addressing modes)
- 2. Programs for sorting an array for 8086.
- 3. Programs for searching for a number of characters in a string for 8086.
- 4. Programs for string manipulation for 8086.
- 5. Programs for digital clock design using 8086.
- 6. Interfacing ADC and DAC to 8086.
- 7. Parallel communication between two microprocessor kits using 8255.
- 8. Serial communication between two microprocessor kits using 8251.
- 9. Interfacing to 8086 and programming to control stepper motor.
- 10. Programming using arithmetic, logical and bit manipulation instructions of 8051.
- 11. Program and verify Timer/Counter in 8051.
- 12. Program and verify interrupt handling in 8051.
- 13. UART operation in 8051.
- 14. Communication between 8051 kit and PC
- 15. Interfacing LCD to 8051
- 16. Interfacing Matrix/Keyboard to 8051
- 17. Data transfer from peripheral to memory through DMA controller 8237/8257

TEXT BOOKS:

- Advanced Microprocessors and Peripherals A. K. Ray and K.M. Bhurchandani, MHE, 2nd Edition 2006.
- 2. The 8051 Microcontroller, Kenneth. J. Ayala, Cengage Learning, 3rd Ed.

- 1. ARM System Developers guide, Andrew N SLOSS, Dominic SYMES, Chris WRIGHT, Elsevier, 2012
- 2. Microprocessors and Interfacing, D. V. Hall, MGH, 2nd Edition 2006.
- 3. Introduction to Embedded Systems, Shibu K.V, MHE, 2009
- 4. The 8051 Microcontrollers, Architecture and Programming and Applications -K.Uma Rao, Andhe Pallavi, Pearson, 2009.

EN404HS: ADVANCED ENGLISH COMMUNICATION SKILLS LAB

IV Sem.	L	т	Ρ	С
	0	0	2	1

1. Introduction

The introduction of the Advanced English Communication Skills Lab is considered essential at the B.Tech 3rd year level. At this stage, the students need to prepare themselves for their career which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be a laboratory course to enable students to use appropriate English and perform the following:

- 1. Gathering ideas and information to organise ideas relevantly and coherently.
- 2. Making oral presentations.
- 3. Writing formal letters.
- 4. Transferring information from non-verbal to verbal texts and vice-versa.
- 5. Writing project/research reports/technical reports.
- 6. Participating in group discussions.
- 7. Engaging in debates.
- 8. Facing interviews.
- 9. Taking part in social and professional communication.

2. Objectives:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, with a focus on vocabulary
- To enable them to listen to English spoken at normal conversational speed by educated English speakers
- To respond appropriately in different socio-cultural and professional contexts
- To communicate their ideas relevantly and coherently in writing
- To prepare the students for placements.

3. Syllabus:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

- Activities on Listening and Reading Comprehension: Active Listening Development of Listening Skills Through Audio clips - Benefits of Reading – Methods and Techniques of Reading – Basic Steps to Effective Reading – Common Obstacles – Discourse Markers or Linkers - Subskills of reading - Reading for facts, negative facts and Specific Details- Guessing Meanings from Context, Inferring Meaning - Critical Reading — Reading Comprehension – Exercises for Practice.
- Activities on Writing Skills: Vocabulary for Competitive Examinations Planning for Writing Improving Writing Skills - Structure and presentation of different types of writing – Free Writing and Structured Writing - Letter Writing –Writing a Letter of Application –Resume vs. Curriculum Vitae – Writing a Résumé – Styles of Résumé - e-Correspondence – Emails – Blog Writing - (N)etiquette – Report Writing – Importance of Reports – Types and Formats of Reports– Technical Report Writing– Exercises for Practice.
- 3. Activities on Presentation Skills Starting a conversation responding appropriately and relevantly using the right language and body language Role Play in different situations including Seeking Clarification, Making a Request, Asking for and Refusing Permission, Participating in a Small Talk Oral presentations (individual and group) through JAM sessions- PPTs Importance of Presentation Skills Planning, Preparing, Rehearsing and Making a Presentation Dealing with Glossophobia or Stage Fear Understanding Nuances of Delivery Presentations through Posters/Projects/Reports Checklist for Making a Presentation and Rubrics of Evaluation

- Activities on Group Discussion (GD): Types of GD and GD as a part of a Selection Procedure -Dynamics of Group Discussion- Myths of GD - Intervention, Summarizing - Modulation of Voice, Body Language, Relevance, Fluency and Organization of Ideas – Do's and Don'ts - GD Strategies – Exercises for Practice.
- 5. **Interview Skills**: Concept and Process Interview Preparation Techniques Types of Interview Questions Pre-interview Planning, Opening Strategies, Answering Strategies Interview Through Tele-conference & Video-conference Mock Interviews.

4. Minimum Requirement:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- One PC with latest configuration for the teacher
- T. V, a digital stereo & Camcorder
- Headphones of High quality

5. Suggested Software: The software consisting of the prescribed topics elaborated above should be procured and used.

- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- Oxford Advanced Learner's Dictionary, 10th Edition
- Cambridge Advanced Learner's Dictionary
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dreamtech

6. Books Recommended:

- 1. Rizvi, M. Ashraf (2018). *Effective Technical Communication*. (2nd ed.). McGraw Hill Education (India) Pvt. Ltd.
- 2. Suresh Kumar, E. (2015). *Engineering English.* Orient BlackSwan Pvt. Ltd.
- 3. Bailey, Stephen. (2018). Academic *Writing: A Handbook for International Students.* (5th Edition). Routledge.
- 4. Koneru, Aruna. (2016). Professional Communication. McGraw Hill Education (India) Pvt. Ltd.
- 5. Raman, Meenakshi & Sharma, Sangeeta. (2022). *Technical Communication, Principles and Practice.* (4TH Edition) Oxford University Press.
- 6. Anderson, Paul V. (2007). Technical Communication. Cengage Learning Pvt. Ltd. New Delhi.
- 7. McCarthy, Michael; O'Dell, Felicity & Redman, Stuart. (2017). *English Vocabulary in Use* Series. Cambridge University Press
- 8. Sen, Leela. (2009). Communication Skills. PHI Learning Pvt Ltd., New Delhi.
- 9. Elbow, Peter. (1998). *Writing with Power.* Oxford University Press.
- 10. Goleman, Daniel. (2013). *Emotional Intelligence: Why it can matter more than IQ.* Bloomsbury Publishing.

EE5210E: UTILIZATION OF ELECTRIC ENERGY (Open Elective-II.1)

V Sem.

L	Т	Ρ	С
3	0	0	3

Pre-requisites: Electrical Machines-I and Electrical Machines-II

Course Objectives: Objectives of this course are

- To understand the fundamentals of illumination and good lighting practices
- To understand the methods of electric heating and welding.
- To understand the concepts of electric drives and their application to electrical traction systems.

Course Outcomes: At the end of the course the student will be able to:

- Understand basic principles of electric heating and welding.
- Determine the lighting requirements for flood lighting, household and industrial needs.
- Calculate heat developed in induction furnace and evaluate speed time curves for traction

UNIT-I:

Electrical Heating: Advantages and methods of electric heating, resistance heating, induction heating and dielectric heating.

UNIT-II:

Electric Welding: Electric welding equipment, resistance welding and arc welding, comparison between AC and DC welding. Electrolysis process: principle of electrolysis, electroplating, metal extraction and metal processing, electromagnetic stirs.

UNIT-III:

Illumination: Terminology, Laws of illumination, coefficient of Utilization and depreciation, Polar curves, Photometry, integrating sphere, sources of light, fluorescent lamps, compact fluorescent lamps, LED lamps discharge lamps, mercury vapor lamps, sodium vapor lamps and neon lamps, comparison between tungsten filament lamps and fluorescent tubes. Basic principles of light control, Types and design of lighting scheme, lighting calculations, factory lighting, streetlighting and flood lighting.

UNIT-IV:

Electric Traction: Systems of electric traction and track electrification- DC system, single phase and 3-phase low frequency and high frequency system, composite system, kando system, comparison between AC and DC systems, problems of single-phase traction with current unbalance and voltage unbalance. Mechanics of traction movement, speed – time curves for different services, trapezoidal and quadrilateral speed – time curves, tractive effort, power, specific energy consumption, effect of varying acceleration and braking, retardation, adhesive weight and braking retardation, coefficient of adhesion.

UNIT-V:

Systems of Train Lighting: special requirements of train lighting, methods of obtaining unidirectional polarity constant output- single battery system, Double battery parallel block system, coach wiring, lighting by making use of 25KV AC supply.

TEXT BOOKS:

- 1. H. Partab: Modern Electric Traction, Dhanpat Rai & Co, 2007.
- 2. E. Openshaw Taylor: Utilisation of Electric Energy, Orient Longman, 2010.

- 1. H. Partab: Art & Science of Utilization of Electric Energy, Dhanpat Rai & Sons, 1998.
- 2. N.V. Suryanarayana: Utilization of Electrical power including Electric drives and Electric Traction, New Age Publishers, 1997.

EE522OE: ENERGY STORAGE SYSTEMS (Open Elective-II.2)

V Sem.

L T P C 3 0 0 3

Course Objectives: to prepare the students to

- To introduce generalized storage techniques and analyze the different features of storage systems
- To know the management and applications of energy storage technologies
- To know about electrical energy storage market potential by different forecasting methods

Course Outcomes: At the end of this course, students will be able to:

- Understand the role of electrical energy storage technologies in electricity usage
- Know the behavior and features and applications of energy storage system
- Understand the hierarchy, demand for energy storage and valuation techniques.

UNIT-I:

The Roles Of Electrical Energy Storage Technologies In Electricity Use: Characteristics of electricity, Electricity and the roles of EES, High generation cost during peak-demand periods, Need for continuous and flexible supply, Long distance between generation and consumption, Congestion in power grids, Transmission by cable, Emerging needs for EES, More renewable energy, less fossil fuel, Smart Grid uses, The roles of electrical energy storage technologies, The roles from the viewpoint of a utility, The roles from the viewpoint of consumers, The roles from the viewpoint of generators of renewable energy.

UNIT-II:

Types And Features Of Energy Storage Systems: Classification of EES systems, Mechanical storage systems, Pumped hydro storage (PHS), Compressed air energy storage (CAES), Flywheel energy storage (FES), Electrochemical storage systems, Secondary batteries, Lead-Acid Batteries, Lithium-Ion Batteries, Flow batteries, Other Batteries in Development, Chemical energy storage, Hydrogen (H2), Synthetic natural gas (SNG), Electrical storage systems, Double-layer capacitors (DLC), Superconducting magnetic energy storage (SMES),Thermal storage systems, Standards for EES, Technical comparison of EES technologies.

UNIT-III:

Applications Of EES: Present status of applications, Utility use (conventional power generation, grid operation & service), Consumer use (uninterruptable power supply for large consumers), EES installed capacity worldwide, new trends in applications, Renewable energy generation, Smart Grid, Smart Micro grid, Smart House, Electric vehicles,

UNIT- IV:

Management And Control Hierarchy Of EES: Internal configuration of battery storage systems, External connection of EES systems, Aggregating EES systems and distributed generation (Virtual Power Plant), "Battery SCADA" – aggregation of many dispersed batteries.

Demand For Energy Storage: Growth in Variable Energy Resources, Relationship between balancing services and variable energy resources, Energy Storage Alternatives, Variable Generator Control, Demand Management, Market Mechanisms, and Longer-Term Outlook.

Valuation Techniques: Overview, Energy Storage Operational Optimization, Market Price Method, Power System Dispatch Model Method, Ancillary Service Representation, Energy Storage Representation, Survey of Valuation Results.

UNIT-V:

Forecast Of EES Market Potential By 2030: EES market potential for overall applications, EES market estimation by Sandia National Laboratory (SNL), EES market estimation by the Boston Consulting Group (BCG), EES market estimation for Li-ion batteries by the Panasonic Group, EES market potential estimation for broad introduction of renewable energies, EES market potential estimation for Germany by Fraunhofer, Storage of large amounts of energy in gas grids, EES market potential estimation for Europe by Siemens, EES market potential estimation by the IEA, Vehicle to grid concept, EES market potential in the future.

TEXT BOOKS:

- 1. Power System Energy Storage Technologies, 1st Edition by Paul Breeze, Academic Press
- 2. Energy Storage: Systems and Components, by Alfred Rufer, CRC Press, 2017

- 1. Energy Storage Fundamentals, Materials and Applications, by Huggins and Robert, Springer.
- 2. www.ecofys.com/com/publications

EE521PE: CYBER-PHYSICAL SYSTEMS (Professional Elective-II.1)

V Sem.

L	Т	Ρ	С
3	0	0	3

Pre-requisites: None; Interest in cyber-physical systems

Course Objectives:

- To gain insight into the seamless integration of computational algorithms and physical processes within cyber-physical systems.
- To develop proficiency in analyzing and managing the dynamic interactions between the cyber and physical components in diverse applications.
- To explore practical applications, focusing on the design, implementation, and optimization of cyber-physical systems for real-world

Course Outcomes: At the end of the course the student will be able to:

- Achieve a thorough understanding of the core principles that form the foundation of Cyber-Physical Systems.
- Apply the knowledge to successfully identify safety specifications and critical properties crucial for ensuring the safety of CPS.
- Develop proficiency in utilizing abstraction techniques for system designs, and effectively express pre- and post-conditions as well as invariants for CPS models.

UNIT-I:

Introduction to Cyber-Physical Systems (CPS): Cyber-Physical Systems in the real world, Basic principles of design and validation of CPS, Industry 4.0 and its implications, Auto SAR and IIOT (Industrial Internet of Things), Applications in Building Automation and Medical CPS.

UNIT-II:

CPS Platform Components: CPS Hardware platforms: Processors, Sensors, Actuators, CPS Network: Wireless Hart, CAN, Automotive Ethernet, CPS Software stack: Real-Time Operating Systems (RTOS), Scheduling, Overview of CPS Software components and their mapping to Electronic Control Units (ECUs).

UNIT-III:

Principles of Automated Control Design: Dynamical Systems and Stability, Controller Design Techniques, Stability Analysis using Common Lyapunov Functions (CLFs) and Multiple Lyapunov Functions (MLFs), Performance analysis under Packet drop and Noise.

UNIT-IV:

CPS Implementation and Performance Analysis: Translating features into software components, Mapping software components to ECUs, Performance Analysis of CPS, considering scheduling, bus latency, and faults, Network congestion and its impact on control performance.

UNIT-V:

Formal Methods, Software Analysis, and Secure Deployment: Advanced Automata-based modeling and analysis, Timed and Hybrid Automata for CPS, Formal Analysis techniques: Flow pipe construction, reachability analysis, Analysis of CPS Software: Weakest Pre-conditions, Bounded Model Checking, Frama-C, CBMC, Secure Deployment of CPS: Attack models, Secure Task mapping, and Partitioning, State estimation for attack detection. Case Studies in CPS Automotive Case Study: Vehicle ABS hacking, Power Distribution Case Study: Attacks on Smart Grids

TEXT BOOKS:

- 1. Raj Rajkumar, Dionisio De Niz, and Mark Klein, *Cyber-Physical Systems*, ddison-Wesley Professional
- 2. Rajeev Alur, Principles of Cyber-Physical Systems, MIT Press, 2015.

- 1. André Platzer, *Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.*, Springer, 2010. 426 pages, ISBN 978-3-642-14508-7.
- 2. Jean J. Labrosse, *Embedded Systems Building Blocks: Complete and Ready-To-Use Modules in C*, The publisher, Paul Temme, 2011.
- Introduction to Embedded Systems A Cyber-Physical Systems Approach, by E. A. Lee and S. A. Seshia, 2014. The book is available in two forms: a free PDF download and low-cost paperback.

EE522PE: POWER SEMICONDUCTOR DRIVES (Professional Elective-II.2)

V Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisite: Power Electronics, Electrical Machines – I, Electrical Machines – II **Course Objectives:**

- To introduce the drive system and operating modes of drive and its characteristics
- To understand Speed Torque characteristics of different motor drives by various power converter topologies
- To appreciate the motoring and braking operations of drive and differentiate DC and AC drives

Course Outcomes: After completion of this course the student is able to

- Identify the drawbacks of speed control of motor by conventional methods.
- Differentiate Phase controlled and chopper-controlled DC drives speed-torque characteristics merits and demerits
- Understand Ac motor drive speed-torque characteristics using different control strategies its merits and demerits and describe Slip power recovery schemes

UNIT-I:

Control of DC Motors

Introduction to Thyristor controlled Drives, Single Phase semi and fully controlled converters connected to DC separately excited and DC series motors – continuous current operation – output voltage and current waveforms – Speed and Torque expressions – Speed – Torque Characteristics- Problems on Converter fed DC motors.

Three phase semi and fully controlled converters connected to DC separately excited and DC series motors – output voltage and current waveforms – Speed and Torque expressions – Speed – Torque characteristics – Problems.

UNIT-II:

Four Quadrant Operation of DC Drives

Introduction to Four quadrant operation – Motoring operations, Electric Braking – Plugging, Dynamic, and Regenerative Braking operations. Four quadrant operation of D.C motors by single phase and three phase dual converters – Closed loop operation of DC motor (Block Diagram Only)

Control of DC Motors by Choppers: Single quadrant, two quadrant and four quadrant chopper fed dc separately excited and series motors – Continuous current operation – Output voltage and current wave forms – Speed and torque expressions – speed-torque characteristics – Problems on Chopper fed D.C Motors – Closed Loop operation (Block Diagram Only)

UNIT-III:

Control of Induction Motor

Variable voltage characteristics-Control of Induction Motor by Ac Voltage Controllers – Waveforms – speed torque characteristics.

Variable frequency characteristics-Variable frequency control of induction motor by Voltage source and current source inverter and cyclo-converters- PWM control – Comparison of VSI and CSI operations – Speed torque characteristics – numerical problems on induction motor drives – Closed loop operation of induction motor drives (Block Diagram Only)

UNIT-IV:

Rotor Side Control of Induction Motor

Static rotor resistance control – Slip power recovery – Static Scherbius drive – Static Kramer Drive – their performance and speed torque characteristics – advantages, applications, problems.

UNIT-V:

Control of Synchronous Motors

Separate control and self-control of synchronous motors – Operation of self-controlled synchronous motors by VSI, CSI and Cyclo-converters. Load commutated CSI fed Synchronous Motor – Operation – Waveforms – speed torque characteristics – Applications – Advantages and Numerical Problems – Closed Loop control operation of synchronous motor drives (Block Diagram Only), variable frequency control – Cyclo-converter, PWM based VSI& CSI.

TEXT BOOKS:

- 1. "G K Dubey", Fundamentals of Electric Drives, CRC Press, 2002.
- 2. "Vedam Subramanyam", Thyristor Control of Electric drives, Tata McGraw Hill Publications, 1987.

- 1. "S K Pillai", A First course on Electrical Drives, New Age International (P) Ltd. 2nd Edition. 1989
- 2. "P. C. Sen", Thyristor DC Drives, Wiley-Blackwell, 1981
- 3. "B. K. Bose", Modern Power Electronics, and AC Drives, Pearson 2015.
- 4. "R. Krishnan", Electric motor drives modelling, Analysis and control, Prentice Hall PTR, 2001

EE523PE: WIND AND SOLAR ENERGY SYSTEMS (Professional Elective-II.3)

V Sem.	L	т	Ρ	С
	3	0	0	3

Prerequisite: Renewable Energy Systems

Course Objectives:

- To study the physics of wind power and energy, understanding the principles governing wind generator operation.
- To gain knowledge about solar power resources, analyze solar photovoltaic cells, and discuss solar thermal power generation.
- To identify and understand network integration issues associated with renewable energy sources like wind and solar power.

Course Outcomes: At the end of this course, students will be able to:

- Understand the energy scenario and the consequent growths of the power generate renewable energy sources.
- Understand the basic physics of wind and solar power generation.
- Understand the power electronic interfaces for wind and solar generation and grid-integration issues.

UNIT-I:

Physics Of Wind Power: History of wind power, Indian and Global statistics, Wind physics, Betz limit ratio, stall and pitch control, Wind speed statistics-probability distributions, and Wind power-cumulative distribution functions.

UNIT-II:

Wind Generator Topologies: Review of modern wind turbine technologies, Fixed and Variable speed wind turbine, Induction Generators, Doubly-Fed Induction Generators and their characteristics, Permanent Magnet Synchronous Generators, Power electronics converters. Generator configurations, Converter Control.

UNIT-III:

The Solar Resource: Introduction, solar radiation spectra, solar geometry, Earth Sun angles, observer Sun angles, solar day length, Estimation of solar energy availability.

Solar Photovoltaic: Technologies-Amorphous, mono-crystalline, polycrystalline; V-I characteristics of a PV cell, PV module, array, Power Electronic Converters for Solar Systems, Maximum Power point Tracking (MPPT) algorithms. Converter Control.

UNIT-IV:

Network Integration Issues: Overview of grid code technical requirements. Fault ride-through for wind farms - real and reactive power regulation, voltage and frequency operating limits, solar PV and wind farm behavior during grid disturbances. Power quality issues. Power system interconnection experiences in the world. Hybrid and isolated operations of solar PV and wind systems.

UNIT-V:

Solar Thermal Power Generation: Technologies, Parabolic trough, central receivers, parabolic dish, Fresnel, solar pond, elementary analysis.

TEXT BOOKS:

- 1. T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2005.
- 2. G. M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley and Sons, 2004.

- 1. S. P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", McGraw Hill, 1984.
- 2. H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley and Sons Ltd., 2006.
- 3. G. N. Tiwari and M. K. Ghosal, "Renewable Energy Applications", Narosa Publications, 2004.
- 4. J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes", John Wiley & Sons, 1991.

EE501PC: DIGITAL SIGNAL PROCESSING

V Sem.

LTPC

3 0 0 3

Pre-requisites: Laplace Transforms, Numerical Methods and Complex variables, Control Systems **Course Objectives:**

- Provide foundational knowledge for the analysis and processing of digital signals.
- Explore the relationships between continuous-time and discrete-time signals and systems, emphasizing time, frequency, and Z-plane analysis.
- Introduce real-world signal processing applications while studying the design and structures of digital filters, including IIR and FIR, and addressing finite word length effects.

Course Outcomes: At the end of this course, students will be able to:

- Demonstrate proficiency in performing time, frequency, and Z-transform analysis on signals and systems.
- Understand the inter-relationship between DFT and various transforms, appreciate the significance of filter structures, and recognize the effects of round-off errors in the design.
- Apply knowledge to design digital filters, comprehend fast computation methods such as FFT, and understand trade-offs between normal and multi-rate DSP techniques, including finite length word effects.

UNIT-I:

Introduction: Introduction to Digital Signal Processing: Discrete Time Signals & Sequences, conversion of continuous to discrete signal, Normalized Frequency, Linear Shift Invariant Systems, Stability, and Causality, linear differential equation to difference equation, Linear Constant Coefficient Difference Equations, Frequency Domain Representation of Discrete Time Signals and Systems **Realization of Digital Filters:** Applications of Z – Transforms, Solution of Difference Equations of Digital Filters, Realization, Stability Criterion, Frequency Response of Stable Systems, Realization

of Digital Filters – Direct, Canonic, Cascade and Parallel Forms.

UNIT-II:

Discrete Fourier Transforms: Properties of DFT, Linear Convolution of Sequences using DFT, Computation of DFT: Over-Lap Add Method, Over-Lap Save Method, Relation between DTFT, DFS, DFT and Z-Transform.

Fast Fourier Transforms: Fast Fourier Transforms (FFT) - Radix-2 Decimation-in-Time and Decimation-in-Frequency FFT Algorithms, Inverse FFT, and FFT with General Radix-N.

UNIT-III:

IIR Digital Filters: Analog filter approximations – Butterworth and Chebyshev, Design of IIR Digital Filters from Analog Filters, Step and Impulse Invariant Techniques, Bilinear Transformation Method, Spectral Transformations.

UNIT-IV:

FIR Digital Filters: Characteristics of FIR Digital Filters, Frequency Response, and Design of FIR Filters: Fourier Method, Digital Filters using Window Techniques, Frequency Sampling Technique, Comparison of IIR & FIR filters.

UNIT-V:

Multi-Rate Digital Signal Processing: Introduction, Down Sampling, Decimation, Up sampling, Interpolation, Sampling Rate Conversion, Conversion of Band Pass Signals, Concept of Resampling, Applications of Multi Rate Signal Processing.

Finite Word Length Effects: Limit cycles, Overflow Oscillations, Round-off Noise in IIR Digital Filters, Computational Output Round off Noise, Methods to Prevent Overflow, Tradeoff between Round Off and Overflow Noise, Measurement of Coefficient Quantization Effects through Pole-Zero Movement, Dead Band Effects.

TEXT BOOKS:

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G. Manolakis, Pearson Education / PHI, 2007.
- 2. Discrete Time Signal Processing A. V. Oppenheim and R.W. Schaffer, PHI, 2009.

- 1. Fundamentals of Digital Signal Processing Loney Ludeman, John Wiley, 2009
- 2. Digital Signal Processing Fundamentals and Applications Li Tan, Elsevier, 2008
- 3. Fundamentals of Digital Signal Processing using MATLAB Robert J. Schilling, Sandra L. Harris, Thomson, 2007
- 4. Digital Signal Processing A Practical approach, Emmanuel C. Ifeachorand Barrie W. Jervis, 2nd Edition, Pearson Education, 2009

EE502PC: POWER SYSTEM PROTECTION

V Sem.

L	Т	Ρ	С
3	0	0	3

Pre-requisites: Power Systems-I, Power Systems-II **Course Objectives:**

- To introduce all kinds of circuit breakers and relays for protection of Generators, Transformers and feeder bus bars from Over voltages and other hazards.
- To describe neutral grounding for overall protection.
- To understand the phenomenon of Over Voltages and its classification.

Course Outcomes: At the end of the course the student will be able to:

- Compare and contrast electromagnetic, static and microprocessor-based relays
- Apply technology to protect power system components.
- Analyze quenching mechanisms used in air, oil and vacuum circuit breakers

UNTI-I:

Protective Relays: Introduction, Need for power system protection, effects of faults, evolution of protective relays, zones of protection, primary and backup protection, essential qualities of protection, classification of protective relays and schemes, current transformers, potential transformers, basic relay terminology.

Operating Principles and Relay Construction: Electromagnetic relays, thermal relays, static relays, microprocessor based protective relays.

UNTI-II:

Over-Current Protection: Time-current characteristics, current setting, over current protective schemes, directional relay, protection of parallel feeders, protection of ring mains, Phase fault and earth fault protection, Combined earth fault and phase fault protective scheme, Directional earth fault relay. **Distance Protection:** Impedance relay, reactance relay, MHO relay, input quantities for various types of distance relays, Effect of arc resistance, Effect of power swings, effect of line length and source impedance on the performance of distance relays, selection of distance relays, MHO relay with blinders, Reduction of measuring units, switched distance schemes, auto re-closing.

UNTI-III:

Pilot Relaying Schemes: Wire Pilot protection, Carrier current protection.

AC Machines and Bus Zone Protection: Protection of Generators, Protection of transformers, Buszone protection, frame leakage protection.

UNTI-IV:

Static Relays: Amplitude and Phase comparators, Duality between AC and PC, Static amplitude comparator, integrating and instantaneous comparators, static phase comparators, coincidence type of phase comparator, static over current relays, static directional relay, static differential relay, static distance relays, Multi input comparators, concept of Quadrilateral and Elliptical relay characteristics. **Microprocessor Based Relays**: Advantages, over current relays, directional relays, distance relays.

UNTI-V:

Circuit Breakers: Introduction, arcing in circuit breakers, arc interruption theories, re-striking and recovery voltage, resistance switching, current chopping, interruption of capacitive current, oil circuit breaker, air blast circuit breakers, SF6 circuit breaker, operating mechanism, selection of circuit breakers, high voltage DC breakers, ratings of circuit breakers, testing of circuit breakers.

Fuses: Introduction, fuse characteristics, types of fuses, application of HRC fuses, discrimination.

TEXT BOOKS:

- 1. Badriram and D.N. Vishwakarma, Power System Protection and Switchgear, TMH 2001.
- 2. U. A. Bakshi, M. V. Bakshi: Switchgear and Protection, Technical Publications, 2009.

- 1. C. Russel Mason "The art and science of protective relaying, Wiley Eastern, 1995
- 2. L. P. Singh "Protective relaying from Electromechanical to Microprocessors", New Age International

EE503PC: POWER SYSTEM OPERATION AND CONTROL

V Sem.

L	Т	Ρ	С
3	0	0	3

Pre-requisites: Power System-I, Power System-II **Course Objectives:**

- Understand the principles and significance of real power control, emphasizing the importance of frequency control in power systems.
- Analyze various methods for effective reactive power control in power systems.
- Grasp the concepts of unit commitment, economic load dispatch, and real-time control, highlighting their importance in power system operation.

Course Outcomes: At the end of the course the student will be able to:

- Understand operation and control of power systems.
- Analyze various functions of EMS functions and stability of machines.
- Understand power system deregulation and restructuring

UNIT-I:

Load Flow Studies

Introduction, Bus classification -Nodal admittance matrix - Load flow equations - Iterative methods - Gauss and Gauss Seidel Methods, Newton-Raphson Method-Fast Decoupled Method-Merits and demerits of the above methods-System data for load flow study

UNIT-II:

Economic Operation Of Power Systems

Distribution of load between units within a plant-Transmission loss as a function of plant generation, Calculation of loss coefficients-Distribution of load between plants.

UNIT-III:

PF Control

Introduction, load frequency problem-Megawatt frequency (or P-f) control channel, MVAR voltages (or Q-V) control channel-Dynamic interaction between P-f and Q-V loops. Mathematical model of speedgoverning system-Turbine models, division of power system into control areas, P-f control of single control area (the uncontrolled and controlled cases)-P-f control of two area systems (the uncontrolled cases and controlled cases)

UNIT-IV:

Power System Stability

The stability problem-Steady state stability, transient stability and Dynamic Stability-Swing equation. Equal area criterion of stability-Applications of Equal area criterion, Step by step solution of swing equation-Factors affecting transient stability, Methods to improve steady state and Transient stability, Introduction to voltage stability

UNIT-V:

Computer Control of Power Systems

Need of computer control of power systems. Concept of energy control centre (or) load dispatch centre and the functions - system monitoring - data acquisition and control. System hardware configuration – SCADA and EMS functions. Network topology – Importance of Load Forecasting and simple techniques of forecasting.

TEXT BOOKS:

- 1. C. L. Wadhwa, Electrical Power Systems, 3rd Edn, New Age International Publishing Co., 2001.
- 2. D. P. Kothari and I. J. Nagrath, Modern Power System Analysis, 4th Edn, Tata McGraw Hill Education Private Limited 2011.

- 1. D. P. Kothari: Modern Power System Analysis-Tata Mc Graw Hill Pub. Co. 2003.
- 2. Hadi Sadat: Power System Analysis Tata Mc Graw Hill Pub. Co. 2002.

EE504PC: DIGITAL SIGNAL PROCESSING LAB

V Sem.

L	Т	Ρ	С
0	0	2	1

Pre-requisites: Digital Signal Processing

Course Objectives:

- To implement Linear and Circular Convolution.
- To implement FIR and IIR filter and architecture of DSP processor.
- To demonstrate Finite word length effect.

Course Outcomes: At the end of this course, students will be able to:

- Carry out simulation of DSP system and abilities towards DSP processor-based implementation of DSP systems.
- Analyze Finite word length effect on DSP systems and applications of FFT to DSP.
- Implement adaptive filters for various applications of DSP.

List of Experiments (programs):

- 1. Generation of Sinusoidal Waveform / Signal based on Recursive Difference Equations
- 2. To find DFT / IDFT of given DT Signal
- 3. To find Frequency Response of a given System given in Transfer Function/ Differential equation form.
- 4. Implementation of FFT of given Sequence
- 5. Determination of Power Spectrum of a given Signal(s).
- 6. Implementation of LP FIR Filter for a given Sequence/Signal.
- 7. Implementation of HP FIR Filter for a given Sequence/Signal
- 8. Implementation of LP IIR Filter for a given Sequence/Signal
- 9. Implementation of HP IIR Filter for a given Sequence/Signal
- 10. Generation of Sinusoidal Signal through Filtering
- 11. Generation of DTMF Signals
- 12. Implementation of Decimation Process
- 13. Implementation of Interpolation Process
- 14. Implementation of I/D Sampling Rate Converters
- 15. Audio application such as to plot a Time and Frequency display of Microphone plus a Cosine using DSP. Read a .wav file and match with their respective spectrograms.
- 16. Noise Removal: Add noise above 3 KHz and then remove, interference suppression using 400 Hz tone.
- 17. Impulse Response of First order and Second Order Systems.

(The above Programs shall be implemented in Software (Using MATLAB / Lab View / C Programming/ Equivalent) and Hardware (Using TI / Analog Devices / Motorola / Equivalent DSP processors) Note: - Minimum of 12 experiments has to be conducted.

LIST OF MAJOR EQUIPMENTS & SOFTWARE

- MATLAB with Simulink
- TMS 320C50 DSP Processors (Kit & Add-on Cards)
- Signal Processing Tool Box
- Function Generators (1MHz)
- Cathode Ray Oscilloscope (30MHz)

TEXT BOOKS:

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G. Manolakis, Pearson Education / PHI, 2007.
- 2. Discrete Time Signal Processing A. V. Oppenheim and R.W. Schaffer, PHI, 2009.

REFERENCE BOOKS:

- 1. Fundamentals of Digital Signal Processing Loney Ludeman, John Wiley, 2009
- 2. Digital Signal Processing Fundamentals and Applications Li Tan, Elsevier, 2008
- 3. Fundamentals of Digital Signal Processing using MATLAB Robert J. Schilling, Sandra L. Harris, Thomson, 2007
- 4. Digital Signal Processing A Practical approach, Emmanuel C. If each orand Barrie W. Jervis, 2nd Edition, Pearson Education, 2009

ONLINE RESOURCES:

- 1. NPTEL DSP Course: Lectures, notes, and lab assignments for DSP (<u>NPTEL DSP Course</u>)
- 2. DSP Course on edX: Video lectures, lab assignments, and quizzes (DSP Course on edX)
- 3. https://sjce.ac.in/wp-content/uploads/2021/11/dsp-lab-manual-2021-22.pdf

EE601PC: FUNDAMENTALS OF MANAGEMENT FOR ENGINEERS

VI Sem.

L T P C 3 0 0 3

Course Objective: To understand the Management Concepts, applications of Concepts in Practical aspects of business and development of Managerial Skills for Engineers.

Course Outcome: The students understand the significance of Management in their Profession. The various Management Functions like Planning, Organizing, Staffing, Leading, Motivation and Control aspects are learnt in this course. The students can explore the Management Practices in their domain area.

UNIT- 1: Introduction to Management:

Definition, Nature and Scope, Functions, Managerial Roles, Levels of Management, Managerial Skills, Challenges of Management; Evolution of Management- Classical Approach- Scientific and Administrative Management; The Behavioral approach; The Quantitative approach; The Systems Approach; Contingency Approach, IT Approach.

UNIT – 2: Planning and Decision Making:

General Framework for Planning - Planning Process, Types of Plans, Management by Objectives; Production Planning and Control. Decision making and Problem Solving - Programmed and Non Programmed Decisions, Steps in Problem Solving and Decision Making; Bounded Rationality and Influences on Decision Making; Group Problem Solving and Decision Making, Creativity and Innovation in Managerial Work.

UNIT- 3: Organization and HRM:

Principles of Organization: Organizational Design & Organizational Structures; Departmentalization, Delegation; Empowerment, Centralization, Decentralization, Recentralization; Organizational Culture; Organizational Climate and Organizational Change.

Human Resource Management & Business Strategy: Job Satisfaction, Job Enrichment, Job Enlargement, Talent Management, Strategic Human Resource Planning; Recruitment and Selection; Training and Development; Performance Appraisal.

UNIT- 4: Leading and Motivation:

Leadership, Power and Authority, Leadership Styles; Behavioral Leadership, Situational Leadership, Leadership Skills, Leader as Mentor and Coach, Leadership during adversity and Crisis; Handling Employee and Customer Complaints, Team Leadership.

Motivation - Types of Motivation; Relationship between Motivation, Performance and Engagement, Content Motivational Theories - Needs Hierarchy Theory, Two Factor Theory, Theory X and Theory Y.

UNIT- 5: Controlling:

Control, Types and Strategies for Control, Steps in Control Process, Budgetary and Non-Budgetary Controls. Characteristics of Effective Controls, Establishing control systems, Control frequency and Methods.

TEXT BOOKS:

- 1. Management Essentials, Andrew DuBrin, 9e, Cengage Learning, 2012.
- 2. Fundamentals of Management, Stephen P. Robbins, Pearson Education, 2009.

- 1. Essentials of Management, Koontz Kleihrich, Tata Mc Graw Hill.
- 2. Management Fundamentals, Robert N Lussier, 5e, Cengage Learning, 2013.
- 3. Industrial Engineering and Management: Including Production Management, T. R. Banga, S.C. Sharma, Khanna Publishers.

L T P C 3 0 0 3

EE631PE: MOBILE APPLICATION DEVELOPMENT (Professional Elective-III.1)

VI Sem.

_			
Pre	req	uis	ites

3

- 1. Acquaintance with JAVA programming
- 2. A Course on DBMS

Course Objectives

- To demonstrate their understanding of the fundamentals of Android operating systems
- To improves their skills of using Android software development tools
- To demonstrate their ability to develop software with reasonable complexity on mobile platform
- To demonstrate their ability to deploy software to mobile devices
- To demonstrate their ability to debug programs running on mobile devices

Course Outcomes

- Understand the working of Android OS Practically.
- Develop Android user interfaces
- Develop, deploy and maintain the Android Applications.

UNIT - I

Introduction to Android Operating System: Android OS design and Features – Android development framework, SDK features, Installing and running applications on Android Studio, Creating AVDs, Types of Android applications, Best practices in Android programming, Android tools Android application components – Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes

Android Application Lifecycle - Activities, Activity lifecycle, activity states, monitoring state changes

UNIT - II

Android User Interface: Measurements – Device and pixel density independent measuring unit - s Layouts – Linear, Relative, Grid and Table Layouts

User Interface (UI) Components –Editable and non-editable Text Views, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers

Event Handling – Handling clicks or changes of various UI components

Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

UNIT - III

Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS

Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity

Notifications - Creating and Displaying notifications, Displaying Toasts

UNIT - IV

Persistent Storage: Files – Using application specific folders and files, creating files, reading data from files, listing contents of a directory Shared Preferences – Creating shared preferences, saving and retrieving data using Shared Preference

UNIT - V

Database – Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and etindelg data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

TEXT BOOK:

1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012.

- 1. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013.
- 2. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013.

EE632PE: SIGNALS AND SYSTEMS (Professional Elective-III.2)

VI Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisite: Digital Signal Processing, Control Systems, Laplace Transforms, Numerical Methods and Complex variables

Course Objectives:

- To develop ability to analyze linear systems and signals
- To develop critical understanding of mathematical methods to analyze linear systems and signals
- To know the various transform techniques and sampling principles

Course Outcomes: At the end of this course, students will be able to:

- Understand the concepts of continuous time and discrete time systems.
- Analyze systems in complex frequency domain.
- Understand sampling theorem and its implications.

UNIT-I:

Introduction To Signals And Systems: Signals and systems as seen in everyday life, and in various branches of engineering and science. Signal properties: periodicity, absolute integrability, determinism and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, some special time-limited signals; continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, reliability. Examples.

UNIT-II:

Behaviour of Continuous and Discrete-Time LTI Systems: Impulse response and step response, convolution, input-output behaviour with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi-input, multi-output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response.

UNIT-III:

Fourier Transforms: Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem.

UNIT-IV:

Laplace and Z- Transforms: Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis.

UNIT-V:

Sampling And Reconstruction

The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems.
TEXT BOOKS:

- 1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signals and systems", Prentice Hall India, 1997.
- 2. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", Pearson, 2006.

- 1. H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.
- 2. S. Haykin and B. V. Veen, "Signals and Systems", John Wiley and Sons, 2007.
- 3. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2009.
- 4. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- 5. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2009.

EE633PE: ELECTRIC AND HYBRID VEHICLES (Professional Elective-III.3)

VI Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisite: Power Semiconductor Drives, Electrical Drives and Control, Utilization of Electric Energy **Course Objectives:**

- To understand the fundamental concepts, principles, analysis and design of hybrid and electric vehicles.
- To know the various aspects of hybrid and electric drive train such as their configuration, t
- To have a knowledge on types of electric machines that can be used energy storage devices, etc.

Course Outcomes: At the end of this course, students will be able to :

- Understand the models to describe hybrid vehicles and their performance.
- Understand the different possible ways of energy storage.
- Understand the different strategies related to energy storage systems.

UNIT-I:

Introduction: Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.

UNIT-II:

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.

Hybrid Electric Drive-Trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

UNIT-III:

Electric Trains: Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. **Electric Propulsion Unit:** Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

UNIT-IV:

Energy Storage: Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

UNIT-V:

Energy Management Strategies: Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.

Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).

TEXT BOOKS:

- 1. C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.
- 2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.

- 1. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 2. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

EE641PE: HVDC TRANSMISSION (Professional Elective-IV.1)

VI Sem.

L T P C 3 0 0 3

Prerequisite: Power System-I, Power System-II, Power System Protection, Power System Operation and Control, Power Electronics

Course Objectives:

- To compare EHV AC and HVDC and understand Graetz circuit with 6 and 12 pulse operation
- To control HVDC systems with various methods and to perform power flow analysis in AC/DC systems
- To describe various protection methods for HVDC systems and Harmonics

Course Outcomes: At the end of this course, students will be able to:

- Compare EHV AC and HVDC system and to describe various types of DC links
- Describe various methods for the control of HVDC systems and to perform power flow analysis in AC/DC systems
- Describe various protection methods for HVDC systems and classify Harmonics and design different types of filters

UNIT-I

Basic Concepts Necessity of HVDC systems, Economics and Terminal equipment of HVDC transmission systems, Types of HVDC Links, Apparatus required for HVDC Systems, Comparison of AC and DC Transmission, Application of DC Transmission System, Planning and Modern trends in D.C. Transmission.

Analysis of HVDC Converters: Choice of Converter Configuration, Analysis of Graetz circuit, Characteristics of 6 Pulse and 12 Pulse converters, Cases of two 3 phase converters in Y/Y mode – their performance.

UNIT- II

Converter and HVDC System Control: Principle of DC Link Control, Converters Control Characteristics, Firing angle control, Current and extinction angle control, Effect of source inductance on the system, Starting and stopping of DC link, Power Control.

Reactive Power Control in HVDC: Introduction, Reactive Power Requirements in steady state, sources of reactive power- Static VAR Compensators, Reactive power control during transients.

UNIT- III

Power Flow Analysis in AC/DC Systems: Modelling of DC Links, DC Network, DC Converter, Controller Equations, Solution of DC load flow, P.U. System for DC quantities, solution of AC-DC Power flow-Simultaneous Method-Sequential method.

UNIT- IV

Converter Faults and Protection: Converter faults, protection against over current and over voltage in converter station, surge arresters, smoothing reactors, DC breakers, Audible noise, space charge field, corona effects on DC lines, Radio interference.

UNIT-V:

Harmonics: Generation of Harmonics, Characteristics harmonics, calculation of AC Harmonics, Non-Characteristics harmonics, adverse effects of harmonics, Calculation of voltage and Current harmonics, Effect of Pulse number on harmonics

Filters: Types of AC filters, Design of Single tuned filters –Design of High pass filters.

TEXT BOOKS:

- 1. "K. R. Padiyar", HVDC Power Transmission Systems: Technology and system Interactions, New Age International (P) Limited, and Publishers, 1990.
- 2. "S K Kamakshaiah, V Kamaraju", HVDC Transmission, TMH Publishers, 2011

- 1. "S. Rao", EHVAC and HVDC Transmission Engineering and Practice, Khanna publications, 3rd Edition 1999.
- 2. "Jos Arrillaga", HVDC Transmission, The institution of electrical engineers, IEE power & energy series 29, 2nd edition 1998.
- 3. "E. W. Kimbark", Direct Current Transmission, John Wiley and Sons, volume 1, 1971.
- 4. "E. Uhlmann", Power Transmission by Direct Current, B. S. Publications, 2009

EE642PE: POWER SYSTEM RELIABILITY (Professional Elective-IV.2)

VI Sem.

LTPC

3 0 0 3

Prerequisite: Reliability Engineering, Power System-I, Power System-II, Power System Operation and Control

Course Objectives:

- To describe the generation system model and recursive relation for capacitive model building
- To explain the equivalent transitional rates, cumulative probability and cumulative frequency
- To develop the understanding of risk, system and load point reliability indices

Course Outcomes: At the end of this course, students will be able to

- Describe merging generation and load models
- Estimate loss of load and energy indices for generation systems model
- Apply various indices for distribution system and evaluate reliability of interconnected systems

UNIT-I:

Basic Probability Theory: Elements of probability, probability distributions, Random variables, Density and Distribution functions- Binomial distribution- Expected value and standard deviation - Binomial distribution, Poisson distribution, normal distribution, exponential distribution, Weibull distribution. **Definition of Reliability:** Definition of terms used in reliability, Component reliability, Hazard rate, derivation of the reliability function in terms of the hazard rate. Hazard models - Bath tub curve, Effect of preventive maintenance. Measures of reliability: Mean Time to Failure and Mean Time between Failures.

UNIT-II:

Generating System Reliability Analysis

Generation system model – capacity outage probability tables – Recursive relation for capacitive model building – sequential addition method – unit removal – Evaluation of loss of load and energy indices – Examples. Frequency and Duration methods – Evaluation of equivalent transitional rates of identical and non-identical units – Evaluation of cumulative probability and cumulative frequency of non-identical generating units – 2-level daily load representation - merging generation and load models – Examples.

UNIT-III:

Operating Reserve Evaluation

Basic concepts - risk indices – PJM methods – security function approach – rapid start and hot reserve units – Modeling using STPM approach.

Bulk Power System Reliability Evaluation:

Basic configuration – conditional probability approach – system and load point reliability indices – weather effects on transmission lines – Weighted average rate and Markov model – Common mode failures.

Interconnected System Reliability Analysis

Probability array method – Two inter connected systems with independent loads – effects of limited and unlimited tie capacity - imperfect tie – Two connected Systems with correlated loads – Expression for cumulative probability and cumulative frequency.

UNIT-IV:

Distribution System Reliability Analysis

Basic Techniques – Radial networks – Evaluation of Basic reliability indices, performance indices – load point and system reliability indices – customer oriented, loss and energy-oriented indices – Examples. Basic concepts of parallel distribution system reliability

UNIT-V:

Substations and Switching Stations

Effects of short-circuits - breaker operation – Open and Short-circuit failures – Active and Passive failures – switching after faults – circuit breaker model – preventive maintenance – exponential maintenance times.

TEXT BOOKS:

- 1. Reliability Evaluation of Power systems by R. Billinton, R. N. Allan, BS Publications, 2007.
- 2. Reliability Modeling in Electric Power Systems by J. Endrenyi, John Wiley and Sons, 1978

- 1. Reliability Engineering: Theory and Practice by Alessandro Birolini, Springer Publications.
- 2. An Introduction to Reliability and Maintainability Engineering by Charles Ebeling, TMH Publications.
- 3. Reliability Engineering by E. Balaguruswamy, TMH Publications.
- 4. Reliability Engineering by Elsayed A. Elsayed, Prentice Hall Publications.

EE643PE: EMBEDDED SYSTEMS APPLICATIONS (Professional Elective-IV.3)

VI Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisite: C Language, I/O, Analog and Digital interfacing, and peripherals. **Course Objectives:**

- To equip with the basic concepts of embedded system, applications in which they are used,
- To describe tools and methodologies needed for embedded system design.
- To know RTOS concepts and familiar with the characteristics of latency in real-time systems.

Course Outcomes: At the end of this course, students will be able to:

- Understand the microprocessor architecture and its components used in embedded systems
- Write the 8051-assembly language code and Embedded 'C' code for interfacing various devices.
- Develop simple embedded systems for real time operations

UNIT-I:

Embedded Systems Basics:

Introduction to Embedded systems, Examples of embedded systems, Typical Hardware, Gates, Timing Diagrams, Memory, Microprocessors, Buses, Direct Memory Access, Interrupts, Microprocessor Architecture, and Interrupt Basics.

UNIT-II:

The 8051 Architecture: Introduction, 8051 Micro controller Hardware, Input/output Pin Ports and Circuits, External Memory, Serial data Input/output, Interrupts.

UNIT-III:

Embedded C Programming: Overview of the C standard library, Embedded System Oriented Topics, MISRA C — Designing Safer C Programs, Basics of event driven programming.

Basic Assembly Language Programming Concepts: The Assembly Language Programming Process, Programming Tools and Techniques, Programming the 8051.

UNIT-IV:

Moving Data: Introduction, Addressing Modes, External Data Moves, Code Memory ReadOnly Data Moves, Push and Pop Opcodes, Data Exchanges.

Basic Design Using a Real-Time Operating System: Message Queues, Mailboxes and Pipes, Timer Functions, Events, Memory Management, Interrupt Routines in an RTOS Environment

UNIT-V:

Applications: Introduction, keyboards, Human Factor, Key Switch Factors, Keyboard Configurations, Displays, Seven-Segment Numeric Display, D/A and A/D Conversions.

Embedded Software Development Tools: Host and Target machines, Linker/Locators for Embedded Software, Getting Embedded Software into the Target System; Debugging Techniques: Testing on Host Machine, Using Laboratory Tools, An Example System.

TEXT BOOKS:

- 1. An Embedded Software Primer, David E. Simon, Pearson Education.
- 2. The 8051 Microcontroller, Third Edition, Kenneth J.Ayala, Thomson.

- 1. Embedded Microcomputer Systems Real Time Interfacing, Jonathan W.Valvano, Cengage Learning.
- 2. 8051 Microcontrollers, Satish Shah, Oxford Higher Education.
- 3. Micro Controllers, Ajay V Deshmukhi, TMH.
- 4. Embedded System Design, Frank Vahid, Tony Givargis, John Wiley.
- 5. Microcontrollers, Raj kamal, Pearson Education. a. http://nptel.ac.in/courses.php b. http://jntukcoeerd.in/

EE6310E: CHARGING INFRASTRUCTURE FOR ELECTRIC VEHICLES (Open Elective - III.1)

VI Sem.

L	Т	Ρ	С
3	0	0	3

Prerequisite: None, Interest in Electric Vehicles.

Course Objectives:

- Gain understanding of the various components involved in an electric vehicle charging system.
- Comprehend the different types of electric vehicle chargers, along with the applicable standards governing their design and operation.
- Interpret the diverse communication protocols utilized in electric vehicle charging systems and stay familiar with the latest trends in this evolving field.

Course Outcomes: At the end of this course, students will be able to:

- Understand the various components of Electric vehicle charging system
- Comprehend the different types of Electric vehicle chargers and their standards
- Interpret the various communication protocols and recent trends in Electric vehicle charging

UNIT-I:

Introduction to EV charging:

Electric Vehicle Charging; Charging Modes; Electric Vehicle Supply Equipment (EVSE): Types, Components of EV Battery Chargers; Challenges in Electric Vehicle Charging.

UNIT-II:

Charger sizing and standards:

Charger Classification; Slow Charging and Fast Charging; DC Charging and AC Charging; Selection and Sizing of Chargers: Charger Connectors and Cables; Charging Standards: Connectors, Supply Equipment; EMI/EMC; Testing Methods for Chargers and EVSE

UNIT-III:

EV charger communications protocols:

Open Charge Point Protocol (OCPP); Open System Interconnection Layer Model (OSI); Adapted PWM Signal based Low-level Communication; PLC based High-level Communication; CAN Communication; Billing and Authentication

UNIT-IV:

Public charging infrastructure:

Location, Planning and Implementation of Public Charging Stations; Components; Selection and Sizing - HT/LT Equipment & Cables; Protection; Safety Standards: Policy and Regulatory Aspects; EV Charging Station and their Business Models; Economic Aspects; Major Challenges

UNIT-V:

Future frontiers in EV charging:

Bulk Charging; Battery Swapping; Wireless Charging; EVs as Distributed Storage Resources: Grid to Vehicle (G2V) and Vehicle to Grid (V2G), V2X Concept, Integration of Charging Station with Renewable Sources and its Impact on the Grid

TEXT BOOKS:

- 1. Iqbal Husain, "Electric and Hybrid Vehicles: Design Fundamentals", 3rd Edition, CRC Press, 2021
- 2. Code of Practice for Electric Vehicle Charging Equipment Installation, 4th Edition, IET, 2020.

REFERENCE BOOKS:

- 1. Sheldon S. Williamson, "Energy Management Strategies for Electric and Plug-in Hybrid
- 2. Electric Vehicles", 1st Edition, Springer, 2013.
- 3. Tom Denton, "Automotive Electrical and Electronic Systems", 5th Edition, Routledge, 2018.
- 4. Wolfhard Lawrenz, "CAN System Engineering: From Theory to Practical Applications", Springer, 2nd Edition, 2013.

Weblink: https://www.udemy.com/course/charging-infrastructure-for-electric-vehicles/

EE632OE: RELIABILITY ENGINEERING (Open Elective - III.2)

VI Sem.

LTPC

3 0 0 3

Prerequisite: Mathematics-III (Laplace Transforms, Numerical Methods and Complex variables) **Course Objectives:**

- To introduce the basic concepts of reliability, various models of reliability
- To analyze reliability of various systems
- To introduce techniques of frequency and duration for reliability evaluation of repairable systems

Course Outcomes: At the end of this course, students will be able to:

- model various systems applying reliability networks and evaluation of the same
- estimate the limiting state probabilities of repairable systems
- apply various mathematical models for evaluating reliability of irreparable systems

UNIT-I:

Basic Probability Theory: Elements of probability, probability distributions, Random variables, Density and Distribution functions- Mathematical expected – variance and standard deviation – **BINOMIAL DISTRIBUTION:** Concepts, properties, engineering applications.

UNIT-II:

Network Modeling And Evaluation Of Simple Systems: Basic concepts- Evaluation of network Reliability / Unreliability - Series systems, Parallel systems - Series-Parallel systems- Partially redundant systems- Examples.

Network Modeling And Evaluation Of Complex Systems: Conditional probability method- tie set, Cut-set approach- Event tree and reduced event tree methods- Relationships between tie and cut-sets-Examples.

UNIT-III:

Probability Distributions In Reliability Evaluation: Distribution concepts, Terminology of distributions, General reliability functions, Evaluation of the reliability functions, shape of reliability functions –Poisson distribution – normal distribution, exponential distribution, Weibull distribution. **Network Reliability Evaluation Using Probability Distributions:** Reliability Evaluation of Series

Network Reliability Evaluation Using Probability Distributions: Reliability Evaluation of Series systems, Parallel systems – Partially redundant systems- determination of reliability measure- MTTF for series and parallel systems – Examples.

UNIT-IV:

Discrete Markov Chains: Basic concepts- Stochastic transitional probability matrix- time dependent probability evaluation- Limiting State Probability evaluation- Absorbing states – Application.

Continuous Markov Processes: Modeling concepts- State space diagrams- Unreliability evaluation of single and two component repairable systems

UNIT-V:

Frequency And Duration Techniques: Frequency and duration concepts, application to multi state problems, Frequency balance approach.

Approximate System Reliability Evaluation: Series systems – Parallel systems- Network reduction techniques- Cut set approach- Common mode failures modeling and evaluation techniques- Examples.

TEXT BOOKS:

- 1. Roy Billinton and Ronald N Allan, Reliability Evaluation of Engineering Systems, Plenum Press.
- 2. E. Balagurusamy, Reliability Engineering by Tata McGraw-Hill Publishing Company Limited

- 1. Reliability Engineering: Theory and Practice by Alessandro Birolini, Springer Publications.
- 2. An Introduction to Reliability and Maintainability Engineering by Charles Ebeling, TMH Publications.
- 3. Reliability Engineering by Elsayed A. Elsayed, Prentice Hall Publications.

EE602PC: POWER SYSTEM LAB

VI Sem.

LTPC

0 0 2 1

Prerequisite: Power System-I, Power System-II, Power System Protection, Power System Operation and Control, Electrical Machines

Course Objectives:

- To perform testing of CT, PT's and Insulator strings
- To find sequence impedances of 3-Φ synchronous machine and Transformer
- To perform fault analysis on Transmission line models and Generators.

Course Outcomes: At the end of this course, students will be able to

- Perform various load flow techniques
- Understand Different protection methods
- Analyse the experimental data and draw the conclusions.

The following experiments are required to be conducted as compulsory experiments: Part - A

- 1. Characteristics of IDMT Over-Current Relay.
- 2. Differential protection of 1-Φ transformer.
- 3. Characteristics of Micro Processor based Over Voltage/Under Voltage relay.
- 4. A, B, C, D constants of a Long Transmission line
- 5. Finding the sequence impedances of $3-\Phi$ synchronous machine.
- 6. Finding the sequence impedances of 3-Φ Transformer.

In addition to the above six experiments, at least any four of the experiments from the following list are required to be conducted.

Part - B

- 1. Formation of Y_{BUS}.
- 2. Load Flow Analysis using Gauss Seidel (GS) Method.
- 3. Load Flow Analysis using Fast Decoupled (FD) Method.
- 4. Formation of Z_{BUS}.
- 5. Simulation of Compensated Line

TEXT BOOKS:

- 1. C.L. Wadhwa: Electrical Power Systems Third Edition, New Age International Pub. Co., 2001.
- 2. Hadi Sadat: Power System Analysis Tata Mc Graw Hill Pub. Co. 2002.

REFERENCE BOOK:

1. D. P. Kothari: Modern Power System Analysis-Tata Mc Graw Hill Pub. Co. 2003.

EE751PE: POWER QUALITY & FACTS (Professional Elective-V.1)

VII Sem.

Prerequisite: Power Electronics, Power System Operation and Control, HVDC Transmission **Course Objectives:**

- Define power quality and explore various terms associated with it. Study voltage-related power quality issues, focusing on short and long interruptions.
- Conduct a detailed study on characterizing voltage sags, with a specific emphasis on magnitude and three-phase unbalanced voltage sags. Understand how power quality issues affect the behaviour of power electronics loads and rotating machinery.
- Gain an understanding of FACTS controllers, their controllable parameters, and types. Explore
 the importance of shunt and series compensation, focusing on the control and comparison of
 STATCOM and SVC, and the functioning and regulation of other FACTS devices like GCSC,
 TSSC, and TCSC.

Course Outcomes: At the end of this course, students will be able to:

- Develop an awareness of the severity of power quality issues in distribution systems, focusing on their impact and challenges.
- Understand the concept of transforming voltage sags from upstream (higher voltages) to downstream (lower voltage) in the distribution system.
- Demonstrate competence in selecting controllers based on specific applications and system requirements. Thoroughly understand various systems and their requirements, including the control circuits of shunt controllers (SVC & STATCOM) and series controllers (GCSC, TSSC, and TCSC) for enhancing transient stability, preventing voltage instability, and damping power oscillations.

UNIT-I:

Power Quality Problems In Distribution Systems: Power Quality problems in distribution systems: Transient and Steady state variations in voltage and frequency. Unbalance, Sags, Swells, Interruptions, Wave-form Distortions: harmonics, noise, notching, dc-offsets, fluctuations. Flicker and its measurement.

UNIT-II:

Transmission Lines And Series/Shunt Reactive Power Compensation: Basics of AC Transmission. Analysis of uncompensated AC transmission lines. Passive Reactive Power Compensation. Shunt and series compensation at the mid-point of an AC line. Comparison of Series and Shunt Compensation.

UNIT-III:

Static Shunt Compensators: Objectives of shunt compensation, Methods of controllable VAR generation, Static Var Compensator, its characteristics, TCR, TSC, FC-TCR configurations, STATCOM, basic operating principle, control approaches and characteristics

UNIT-IV:

Static Series Compensators: Objectives of series compensator, variable impedance type of series compensators, TCSC, TSSC-operating principles and control schemes, SSSC, Power Angle characteristics, Control range and VAR rating, Capability to provide reactive power compensation, external control

UNIT-V:

Combined Compensators: Introduction to Unified Power Flow Controller, Basic operating principles, Conventional control capabilities, independent control of real and reactive power.

TEXT BOOKS:

- 1. Electrical Power Systems Quality, Dugan Roger C, Santoso Surya, Mc Granaghan, Marks F. Beaty and H. Wayre, Mc Graw Hill
- 2. Power Systems Quality Assessment, J. Arillaga, N.R. Watson, S.Clon, John Wiley.

- 1. Power Quality, C.Sankaran, CRC Press 4. Understanding power quality problems, Math H. Bollen, IEEE press.
- 2. "Understanding FACTS –Concepts and Technology of Flexible AC Transmission Systems" Narain G. Honorani, Laszlo Gyugyi

EE752PE: SOLAR POWER BATTERIES (Professional Elective-V.2)

VII Sem.

Prerequisite: Renewable Energy Sources, Energy Storage Systems **Course Objectives:**

- To understand the PV systems and the solar power batteries operation
- To analyze the solar PV system storage with batteries.
- To understand Grid Tie vs. Off-Grid Solar Battery System

Course Outcomes: At the end of this course, students will be able to:

- Know operating principes of different types of solar power batteries
- Use the batteries for effective storage of solar PV.
- Gain the knowledge on environmental impacts of solar power batteries.

UNIT-I:

Introduction to solar PV systems, basics of Storage for solar PV systems, Storage for solar PV systems: the batteries, Introduction to Solar Power Batteries, terminology associated, understanding Solar Battery Specifications, working principle, Series Vs. Parallel, Charging parameters, cycle life, Temperature effects, Battery Design and Construction, Important components in battery construction.

UNIT-II:

Primary and Secondary batteries, Classification of Secondary batteries, i.e Lead-Acid, Lead-Antimony, Lead-Calcium, Lead-Acid Battery Chemistry, Nickel-Cadmium Batteries and their types.

UNIT-III:

AC Coupled Storage vs. DC Coupled Storage, working of Solar Batteries with a Solar Power System and Hybrid Inverter, Main Degradation mechanisms of Solar Batteries, Battery Strengths and Weaknesses, Battery System Design and Selection Criteria, Life Expectancy, Battery standards, Safety precautions,

UNIT-IV:

Solar Battery Costs, Declining Cost, factors contribute to the performance of solar battery, selection of suitable batteries based on the application, Grid Tie vs. Off-Grid Solar Battery System, Benefits and disadvantages of using solar batteries,

UNIT-V:

The environmental impacts of batteries: Introduction, Service life of the components, Energy requirements for production and transport of the PV-battery system components, Contributing components, Influence of different user conditions, Uncertainties, Future research, Energy return factor, The overall battery efficiency, Different efficiency measures and battery design, The Future of Solar Battery Storage.

TEXT BOOKS:

- S. Sumathi and L. Ashok Kumar, Solar PV and Wind Energy Conversion Systems: An Introduction to Theory, Modeling with MATLAB/SIMULINK, and the Role of Soft Computing Techniques, Springer 2011
- 2. H.A. Kiehne, "Battery Technology Handbook" by Publisher: CRC Press 2003
- 3. https://core.ac.uk/download/pdf/30044842.pdf
- 4. Handbook on Battery Energy Storage System
- 5. https://www.adb.org/sites/default/files/publication/479891/handbook-battery-energy-storage-

system.pdf

- 1. Cristina Archer and S. Lovejoy, Battery Technology for Electric Vehicles: Public Science and Private Innovation, Springer 2015
- 2. Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Systems" by, Academic Press, *Year:* 2009
- 3. <u>https://files.bregroup.com/bre-co-uk-file-library-</u> copy/filelibrary/nsc/Documents%20Library/NSC%20Publications/88031-BRE_Solar-Consumer-<u>Guide-A4-12pp.pdf</u>
- 4. https://www.sunwize.com/tech-notes/solar-battery-basics/
- 5. https://palmetto.com/learning-center/blog/how-does-a-solar-battery-work
- 6. <u>https://www.letsgosolar.com/faq/what-is-a-solar-battery/</u>
- 7. https://www.purevolt.ie/domestic-solar/equipment/solar-storage-batteries.php

EE753PE: AI TECHNIQUES IN ELECTRICAL ENGINEERING (Professional Elective-V.3)

VII Sem.

L	Т	Ρ	С
4	0	0	4

Pre-requisites: Power Systems Operation and Control **Course Objectives:**

- To locate soft commanding methodologies, such as artificial neural networks, Fuzzy logic and genetic Algorithms.
- To observe the concepts of FFN and concept of fuzziness involved in various systems and comprehensive knowledge of fuzzy logic control and to design the fuzzy control
- To analyze genetic algorithm, genetic operations and genetic mutations.

Course Outcomes: At the end of this course, students will be able to:

- Understand feed forward neural networks, feedback neural networks and learning techniques.
- Understand fuzziness involved in various systems and fuzzy set theory.
- Develop fuzzy logic control and genetic algorithm for applications in electrical engineering.

UNIT-I:

Artificial Neural Networks: Introduction, Models of Neuron Network-Architectures –Knowledge representation, Artificial Intelligence and Neural networks–Learning process-Error correction learning, Hebbian learning –Competitive learning-Boltzmann learning, supervised learning-Unsupervised learning-Reinforcement Learning tasks.

UNIT-II:

ANN Paradigms: Multi-layer perceptron using Back propagation Algorithm (BPA), Self –Organizing Map (SOM), Radial Basis Function Network-Functional Link Network (FLN), Hopfield Network.

UNIT-III:

Fuzzy Logic: Introduction –Fuzzy versus crisp, Fuzzy Sets-Membership function –Basic Fuzzy set operations, Properties of Fuzzy sets –Fuzzy Cartesian Product, Operations on Fuzzy relations –Fuzzy logic–Fuzzy Quantifiers, Fuzzy Inference-Fuzzy Rule based system, Defuzzification methods.

UNIT-IV:

Genetic Algorithms: Introduction-Encoding –Fitness Function-Reproduction operators, Genetic Modeling –Genetic Operators-Cross over-Single site cross over, two points cross over –Multi point cross over Uniform cross over, Matrix cross over-Cross over Rate-Inversion & Deletion, Mutation operator –Mutation –Mutation Rate-Bit-wise operators, Generational cycle-convergence of Genetic Algorithm.

UNIT-V:

Applications Of AI Techniques: Load forecasting, Load flow studies, Economic load dispatch, Load frequency control, Single area system and two area system, Reactive power control, Speed control of DC and AC Motors.

TEXT BOOKS:

- 1. S. Rajasekaran and G.A.V.Pai Neural Networks, Fuzzy Logic & Genetic Algorithms, PHI, New Delhi, 2003.
- 2. Rober J. Schalkoff, Artificial Neural Networks, Tata McGraw Hill Edition, 2011.

- 1. P. D. Wasserman; Neural Computing Theory & Practice, Van Nostrand Reinhold, New York, 1989.
- 2. Bart Kosko; Neural Network & Fuzzy System, Prentice Hall, 1992
- 3. D. E. Goldberg, Genetic Algorithms, Addison-Wesley 1999.

EE761PE: SMART GRID TECHNOLOGIES (Professional Elective-VI.1)

VII Sem.

Pre-requisites: None

Course Objectives:

- To defend smart grid design to meet the needs of a utility
- To select issues and challenges that remain to be solved
- To analyze basics of electricity, electricity generation, economics of supply and demand, and the various aspects of electricity market operations in both regulated and deregulated environment.

Course Outcomes: At the end of the course the student will be able to:

- Understand the features of small grid in the context of Indian grid.
- Understand the role of automation in transmission and distribution.
- Apply evolutionary algorithms for smart grid and understand operation, maintenance of PMUs, PDCs, WAMs, and voltage and frequency control in micro grid

UNIT-I:

Introduction To Smart Grid: What is Smart Grid? Working definitions of Smart Grid and Associated Concepts –Smart grid Functions-Traditional Power Grid and Smart Grid –New Technologies for Smart Grid – Advantages –Indian Smart Grid –Key Challenges for Smart Grid.

UNIT-II:

Smart Grid Architecture: Components and Architecture of Smart Grid Design –Review of the proposed architectures for Smart Grid. The fundamental components of Smart Grid designs – Transmission Automation – Distribution Automation –Renewable Integration

UNIT-III:

Tools And Techniques For Smart Grid: Computational Techniques –Static and Dynamic Optimization Techniques –Computational Intelligence Techniques –Evolutionary Algorithms –Artificial Intelligence techniques.

UNIT-IV:

Distribution Generation Technologies: Introduction to Renewable Energy Technologies –Micro grids –Storage Technologies –Electric Vehicles and plug –in hybrids –Environmental impact and Climate Change –Economic Issues.

Communication Technologies And Smart Grid: Introduction to Communication Technology – Synchro-Phasor Measurement Units (PMUs) – Wide Area Measurement Systems (WAMS).

UNIT-V:

Control Of Smart Power Grid System

Load Frequency Control (LFC) in Micro Grid System –Voltage Control in Micro Grid System – Reactive Power Control in Smart Grid. Case Studies and Test beds for the Smart Grids.

TEXT BOOKS:

- 1. Stuart Borlase, Smart Grids, Infrastructure, Technology and Solutions, CRC Press, 2013
- 2. Gil Masters, Renewable and Efficient Electric Power System, Wiley-IEEE Press, 2004.

REFERENCE BOOKS:

- 1. A.G. Phadke and J.S. Thorp, "Synchronized Phasor Measurements and their Applications", Springer Edition, 2010.
- 2. T. Ackermann, Wind Power in Power Systems, Hoboken, NJ, USA, John Wiley, 2005.

Page 89 of 94

EE762PE: ELECTRICAL DISTRIBUTION SYSTEMS (Professional Elective-VI.2)

VII Sem.

Prerequisites: Power System – I, Power System - II **Course Objectives:**

- To understand design considerations of feeders
- To compute voltage, drop and power loss in feeders
- To understand protection, PF improvement and voltage control

Course Outcomes: At the end of this course, students will be able to:

- design the feeders and compute power loss and voltage drop of the feeders
- design protection of distribution systems
- understand the importance of voltage control and power factor improvement

UNIT-I:

General Concepts

Introduction to distribution system, Distribution system planning, Factors effecting the Distribution system planning, Load modelling and characteristics. Coincidence factor - contribution factor - Loss factor - Relationship between the load factor and loss factor. Load growth, Classification of loads (Residential, commercial, Agricultural and Industrial) and their characteristics.

Distribution Feeders

Design Considerations of Distribution Feeders: Radial, loop and network types of primary feeders, Introduction to low voltage distribution systems (LVDS) and High voltage distribution systems (HVDS), voltage levels, Factors effecting the feeder voltage level, feeder loading, Application of general circuit constants (A, B, C, D) to radial feeders, basic design practice of the secondary distribution system, secondary banking, secondary network types, secondary mains.

UNIT-II:

Substations: Location of Substations: Rating of distribution substation, service area with 'n' primary feeders. Benefits derived through optimal location of substations. Optimal location of Substations (Perpendicular bisector rule and X, Y co-ordinate method).

System Analysis: Voltage drop and power-loss calculations: Derivation for voltage drop and power loss in lines, manual methods of solution for radial networks, three phase balanced primary lines, analysis of non-three phase systems, method to analyze the distribution feeder cost.

UNIT-III:

Protection: Objectives of distribution system protection, types of common faults and procedure for fault calculations, over current Protective Devices: Principle of operation of Fuses, Auto-Circuit Recloser - and Auto-line sectionalizes, and circuit breakers.

Coordination: Coordination of Protective Devices: Objectives of protection co-ordination, general coordination procedure, Types of protection coordination: Fuse to Fuse, Auto-Recloser to Fuse, Circuit breaker to Fuse, Circuit breaker to Auto-Recloser.

UNIT-IV:

Compensation For Power Factor Improvement: Capacitive compensation for power-factor control -Different types of power capacitors, shunt and series capacitors, effect of shunt capacitors (Fixed and switched), effect of series capacitors, difference between shunt and series capacitors, Calculation of Power factor correction, capacitor allocation - Economic justification of capacitors - Procedure to determine the best capacitor location.

L T P C 4 0 0 4

UNIT-V:

Voltage Control: Voltage Control: Importance of voltage control, methods of voltage control, Equipment for voltage control, effect of shunt capacitors, effect of series capacitors, effect of AVB/AVR on voltage control, line drop compensation, voltage fluctuations.

TEXT BOOKS:

- 1. Turan Gonen, Electric Power Distribution System Engineering, CRC Press, 3rd Edition 2014.
- 2. V. Kamaraju, Electrical Power Distribution Systems, Tata Mc Graw Hill Publishing Company, 2nd edition, 2010.

- 1. G. Ram Murthy, Electrical Power Distribution hand book, 2nd edition, University press 2004.
- 2. A.S. Pabla, Electric Power Distribution, Tata McGraw Hill Publishing company, 6th edition, 2013.

EE763PE: MACHINE LEARNING APPLICATIONS TO ELECTRICAL ENGINEERING (Professional Elective-VI.3)

VII Sem.

L	Т	Ρ	С
4	0	0	4

Prerequisites: Mathematics, Python

Course Objectives:

- To develop a foundational understanding of machine learning principles and techniques.
- To explore and understand how machine learning can be integrated into various electrical engineering applications.
- To gain hands-on experience in implementing machine learning algorithms to solve real-world electrical engineering problems.

Course Outcomes: At the end of this course, students will be able to:

- Demonstrate proficiency in applying machine learning algorithms to solve real-world problems in electrical engineering
- Integrate machine learning principles effectively into electrical engineering applications,
- Enhance problem-solving skills by successfully addressing complex issues in electrical engineering through machine learning.

UNIT-I:

Introduction to Machine Learning:

Definition and types of machine learning, Historical perspective, Basic concepts: supervised learning, unsupervised learning, reinforcement learning

UNIT-II:

Fundamentals of Electrical Engineering Relevant to ML:

Overview of electrical circuits and systems, Signal processing basics, Introduction to control systems

UNIT-III:

Data Preprocessing and Feature Engineering:

Data cleaning and handling missing values, Feature scaling and normalization, Feature extraction and selection

UNIT-IV:

Machine Learning Algorithms for Electrical Engineering Applications

Regression and classification algorithms, Decision trees and ensemble methods, Neural networks and deep learning, Support vector machines, Clustering algorithms for pattern recognition

UNIT-V:

Case Studies and Applications in Electrical Engineering

Power system optimization using ML, Fault detection and diagnostics in electrical systems, Smart grid applications, Signal processing with ML, Control system optimization and adaptive control using ML

TEXT BOOKS:

- 1. C. Aldrin Renold and Sumathi S., Pattern Recognition and Machine Learning, Wiley India, 2015.
- 2. S. Rajasekaran and G. Aghila, Machine Learning: An Algorithmic Perspective, Chapman and Hall/CRC,2018
- 3. Chandra Shekhar Yadav, S. Ramakrishnan, and U. Rajendra Acharya, Machine Learning: Concepts, Methodologies, Tools and Applications, Springer 2018.

- 1. Ethem Alpaydin, Introduction to Machine Learning, MIT Press 2010
- 2. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
- 3. Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press 2012.

EE701PC: POWER ELECTRONIC APPLICATIONS TO RENEWABLE ENERGY SYSTEMS

L	Т	Ρ	С
4	0	0	4

Prerequisite: Power Electronics, Renewable Energy Sources **Course Objectives:**

- To impart knowledge on different types of renewable energy systems.
- To analyze the operation of electrical generators used for the wind energy conversion Systems.
- To know the operation of power converters and PV systems operation.

Course Outcomes: At the end of this course, students will be able to:

- Proficiently demonstrate various renewable energy technologies utilized for electrical power generation.
- Analyze the operating principles of different types of wind generators and identify suitable converters (AC-DC, DC-DC, AC-AC) for renewable energy systems.
- Interpret and analyze various wind and photovoltaic (PV) systems, including stand-alone, gridconnected, and hybrid configurations, showcasing a comprehensive understanding of renewable energy applications.

UNIT-I:

Solar cell characteristics and their measurement, PV Module, PV array, Partial shading of a solar cell and a module, the diode, Power conditioning unit, maximum power point tracker, Implementation of Perturb and Observe Method, Incremental Conductance Method, Battery charger/discharge controller.

UNIT-II:

Centralized Inverters, String Inverters, Multi-string Inverters, Module Integrated Inverter/Micro-inverters, Inverter Topology, Model of Inverter, Sizing Batteries and Inverters for a Solar PV System. Types of PV Systems: Grid-Connected Solar PV System, Stand-Alone Solar PV System.

UNIT-III:

Introduction to wind: Characteristics, Wind Turbine, Fixed and Variable-Speed Wind Turbines, Components of WECS, Description of Components, Types of Wind Turbine Generators, Economics of Wind Energy Conversion Systems, Linking Wind Turbines onto the Grid, Power Converter Topologies for Wind Turbine Generators.

UNIT-IV:

Modeling of Permanent Magnet Synchronous Generators, Doubly Fed Induction Generators, Squirrel cage Induction Generators wind turbine, Control of Power converters for WECS.

UNIT - V:

Hybrid Energy Systems, Need for Hybrid Energy Systems, Range and types of Hybrid systems, Hybrid Solar PV/Wind Energy System, Architecture of Solar-Wind Hybrid System and Grid connected issues.

TEXTBOOKS:

- 1. S. N. Bhadra, D. Kastha, S. Banerjee, "Wind Electrical Systems", Oxford University Press, 2005.
- 2. S. N. Bhadra, D. Kastha, & S. Banerjee "Wind Electrical Systems", Oxford University Press, 2009.
- 3. Rashid. M. H, "Power Electronics Hand book", Academic Press, 2001.

REFERENCE BOOKS:

- 1. Rai. G. D, "Non-conventional energy sources", Khanna Publishers, 1993.
- 2. Rai. G.D," Solar energy utilization", Khanna Publishes, 1993.
- 3. Gray, L. Johnson, "Wind energy system", Prentice Hall of India, 1995.

B.H.Khan "Non-conventional Energy sources", Mc Graw-hill, 2nd Edition, 2009

EE702PC: SIMULATION OF RENEWABLE ENERGY SYSTEMS LAB

VII Sem.

L	Т	Ρ	С
0	0	2	1

Prerequisite: Renewable Energy Systems, Power Electronics **Course Objectives:**

- Develop proficiency in modeling the steady-state and dynamic characteristics of photovoltaic (PV), fuel cell, and wind energy sources.
- Understand and analyze power converter topologies for stand-alone and grid-connected PV, fuel cell, and wind energy systems.
- Explore advanced topics in power electronics, including maximum power point tracking, power factor correction, switched capacitor DC-DC converters, ZVS/ZCS configurations, compensation schemes, and new power converter topologies.

Course Outcomes: At the end of this course, students will be able to:

- Demonstrate the ability to model and analyze the steady-state and dynamic characteristics of PV, fuel cell, and wind energy sources.
- Apply knowledge to understand, design, and analyze power converter topologies for both stand-alone and grid-connected PV, fuel cell, and wind energy systems.
- Acquire advanced expertise in power electronics, covering topics such as maximum power point tracking, power factor correction, switched capacitor converters, ZVS/ZCS configurations, compensation schemes, and new power converter topologies.

List of experiments:

- 1. Modelling the steady state and dynamic characteristics of the following
 - (i) PV,
 - (ii) Fuel cell and
 - (iii) Wind energy sources
- 2. Power converter topologies for stand –alone and grid connected
 - (i) PV,
 - (ii) Fuel cell and
 - (iii) Wind energy sources
- 3. Maximum Power Point Tracking Schemes
- 4. Power factor correction techniques for AC to DC systems
- 5. Switched capacitor DC DC power converters
- 6. ZVS, ZCS configurations
- 7. Compensation Schemes for VAR, harmonics and phase imbalance Power conversion and Electric Drives
- 8. New power converter topologies and their analysis, modelling and simulation
- 9. High frequency link power conversion
- 10. Radiation effects on power electronic systems and components EMI/EMC
- 11. Analysis, measurement and mitigation of EMI in Electronic and power electronic systems
- 12. Microgrid Power Quality

*Note: Perform the simulation of the above list of experiments with MATLAB/any Simulation software

TEXTBOOKS:

- 1. S. N. Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Systems", Oxford University Press, 2005.
- 2. S.N.Bhadra, D. Kastha, & S. Banerjee "Wind Electrical Systems", Oxford University Press, 2009.
- 3. Rashid.M. H, "Power Electronics Hand book", Academic Press, 2001.

- 1. Rai. G.D, "Non-conventional energy sources", Khanna Publishers, 1993.
- 2. Rai. G.D," Solar energy utilization", Khanna Publishes, 1993.
- 3. Gray, L. Johnson, "Wind energy system", Prentice Hall of India, 1995.
- 4. B.H.Khan "Non-conventional Energy sources", Mc Graw-hill, 2nd Edition, 2009