M. TECH. COMPUTER SCIENCE ENGINEERING (R13) COURSE STRUCTURE AND SYLLABUS

I Year I Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Advanced Data Structures and Algorithms</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer System Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Operating Systems</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distributed Systems</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Elective - I</td>
<td>ELECTIVE – I</td>
<td>Software Process and Project Management, Natural Language Processing, Pattern Recognition</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

I Year II Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Advanced Network Programming</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Databases</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Web Services and Service Oriented Architecture</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grid and Cloud Computing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Elective - III</td>
<td>Advanced Data Mining, Storage Area Networks, Database Security</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective - IV</td>
<td>Semantic Web and Social Networks, Wireless Networks and Mobile Computing, Information Retrieval Systems</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

II Year I Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Comprehensive Viva</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Seminar</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Work</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
</tbody>
</table>

II Year II Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Project Work and Seminar</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>18</th>
<th>3</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>3</td>
<td>22</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>-</th>
<th>3</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
</tbody>
</table>
ADVANCED DATA STRUCTURES AND ALGORITHMS

Objectives:
- The fundamental design, analysis, and implementation of basic data structures.
- Basic concepts in the specification and analysis of programs.
- Principles for good program design, especially the uses of data abstraction.
- Significance of algorithms in the computer field.
- Various aspects of algorithm development.
- Qualities of a good solution.

UNIT I
Algorithms, Performance analysis-time complexity and space complexity, Asymptotic Notation-Big Oh, Omega and Theta notations, Complexity Analysis Examples.
Data structures-Linear and non linear data structures, ADT concept, Linear List ADT, Array representation, Linked representation, Vector representation, singly linked lists-insertion, deletion, search operations, doubly linked lists-insertion, deletion operations, circular lists. Representation of single, two dimensional arrays, Sparse matrices and their representation.

UNIT II
Stack and Queue ADTs, array and linked list representations, infix to postfix conversion using stack, implementation of recursion, Circular queue-insertion and deletion, Dequeue ADT, array and linked list representations, Priority queue ADT, implementation using Heaps, Insertion into a Max Heap, Deletion from a Max Heap, java.util package-Arraylist, LinkedList, Vector classes, Stacks and Queues in java.util, Iterators in java.util.

UNIT III

UNIT IV
Trees-Ordinary and Binary trees terminology, Properties of Binary trees, Binary tree ADT, representations, recursive and non recursive traversals, Java code for traversals, Threaded binary trees.
Graphs-Graphs terminology, Graph ADT, representations, graph traversals/search methods-dfs and bfs, Java code for graph traversals, Applications of Graphs-Minimum cost spanning tree using Kruskal's algorithm, Dijkstra's algorithm for Single Source Shortest Path Problem.

UNIT V
Search trees-Binary search tree-Binary search tree ADT, insertion, deletion and searching operations, Balanced search trees, AVL trees-Definition and examples only, Red Black trees -Definition and examples only, B-Trees-definition, insertion and searching operations, Trees in java.util-TreeSet, TreeMap Classes, Trie (examples only), Comparison of Search trees.
Text compression-Huffman coding and decoding, Pattern matching-KMP algorithm.

TEXT BOOKS:
1. Data structures, Algorithms and Applications in Java, S.Sahni, Universities Press.

REFERENCE BOOKS:
1. Java for Programmers, Deitel and Deitel, Pearson education.
4. Data structures and Algorithms in Java, M.T.Goodrich, R.Tomassia, 3rd edition,
6. Classic Data structures in Java, T.Budd, Addison-Wesley (Pearson Education).
7. Data structures with Java, Ford and Topp, Pearson Education.
10. Data structures and Software Development in an Object-Oriented Domain,
Objectives:

- To apply the fundamentals of Computer Systems Design and IT in devising IT solutions.
- To Design, simulate, and analyze digital hardware.
- To Interface between basic hardware and software computing systems.
- To Simulate and evaluate different computing architectures.

UNIT I
Computer structure – hardware, software, system software, Von-Neumann architecture – case study. IA -32 Pentium: registers and addressing, instructions, assembly language, program flow control, logic and shift/rotate instructions, multiply, divide MMX, SIMD instructions, I/O operations, subroutines.
Input/output organization, interrupts, DMA, Buses, Interface circuits, I/O interfaces, device drivers in windows, interrupt handlers

UNIT II
Processing Unit: Execution of a complete instruction, multiple bus organization, hardwired control, micro programmed control.
Pipelining: data hazards, instruction hazards, influence on instruction sets, data path & control consideration, and RISC architecture introduction.

UNIT – III
Memory: types and hierarchy, model level organization, cache memory, performance considerations, mapping, virtual memory, swapping, paging, segmentation, replacement policies.

UNIT – IV
Processes and Threads: processes, threads, inter process communication, classical IPC problems, Deadlocks.

UNIT – V
File system: Files, directories, Implementation, Unix file system
Security: Threats, intruders, accident data loss, basics of cryptography, user authentication.

TEXT BOOKS:

REFERENCE BOOKS:

ADVANCED OPERATING SYSTEMS

Objectives:
- To understand main components of Real time Operating system and their working
- To study the operations performed by OS as a resource manager
- To understand the scheduling policies of DOS
- To implement the working principles of OS
- To study different OS and compare their features

UNIT I
Real-time operating systems: Design issues, principles and case study.

UNIT II
Distributed operating system: Design issues, features and principles of working, case study.

UNIT III
Network operating system: Design issues, working principles and characteristic features, case study.

UNIT IV
Kernel development: Issues and development principles, case study.

UNIT V
Protection, privacy, access control and security issues, solutions.

TEXT BOOKS:

REFERENCE BOOKS:
6. The UNIX Programming Environment – Kernighan & Pike, PE.
DISTRIBUTED SYSTEMS

Objectives:
- To explain what a distributed system is, why you would design a system as a distributed system, and what the desired properties of such systems are;
- To list the principles underlying the functioning of distributed systems, describe the problems and challenges associated with these principles, and evaluate the effectiveness and shortcomings of their solutions;
- To recognize how the principles are applied in contemporary distributed systems, explain how they affect the software design, and be able to identify features and design decisions that may cause problems;
- To design a distributed system that fulfills requirements with regards to key distributed systems properties (such as scalability, transparency, etc.), be able to recognize when this is not possible, and explain why;
- To build distributed system software using basic OS mechanisms as well as higher-level middleware and languages.

UNIT I
Distributed objects and Remote Invocation-Introduction, Communication between distributed objects, RPC, Events and notifications, Case study-Java RMI.

UNIT II
Name Services-Introduction, Name Services and the Domain Name System, Case study of the Global Name Service, Case study of the X.500 Directory Service.

UNIT III
Peer to Peer Systems-Introduction, Napster and its legacy, Peer to Peer middleware, Routing overlays, Overlay case studies-Pastry, Tapestry, Application case studies-Squirrel, OceanStore.
Time and Global States-Introduction, Clocks, events and Process states, Synchronizing physical clocks, logical time and logical clocks, global states, distributed debugging.
Coordination and Agreement - Introduction, Distributed mutual exclusion, Elections, Multicast communication, consensus and related problems.

UNIT IV
Transactions and Concurrency control - Introduction, Transactions, Nested Transactions, Locks, Optimistic concurrency control, Timestamp ordering, Comparison of methods for concurrency controls. Distributed Transactions - Introduction, Flat and Nested Distributed Transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery, Replication-Introduction, System model and group communication, Fault tolerant services, Transactions with replicated data.

UNIT V
Security - Introduction, Overview of Security techniques, Cryptographic algorithms, Digital signatures, Case studies-Kerberos, TLS, 802.11 WiFi.
Distributed shared memory, Design and Implementation issues, Sequential consistency and Ivy case study, Release consistency and Munin case study, other consistency models, CORBA case study-Introduction, CORBA RMI, CORBA Services.

TEXT BOOKS:

REFERENCE BOOKS:

SOFTWARE PROCESS AND PROJECT MANAGEMENT
(ELECTIVE – I)

Objectives:
- Describe and determine the purpose and importance of project management from the perspectives of planning, tracking and completion of project.
- Compare and differentiate organization structures and project structures.
- Implement a project to manage project schedule, expenses and resources with the application of suitable project management tools.

UNIT I
Software Process Maturity
Process Reference Models
Capability Maturity Model (CMM), CMMI, PCMM, PSP, TSP.

UNIT II
Software Project Management Renaissance
Life-Cycle Phases and Process artifacts
Engineering and Production stages, inception phase, elaboration phase, construction phase, transition phase, artifact sets, management artifacts, engineering artifacts and pragmatic artifacts, model based software architectures.

UNIT III
Workflows and Checkpoints of process
Software process workflows, Iteration workflows, Major milestones, Minor milestones, Periodic status assessments.
Process Planning
Work breakdown structures, Planning guidelines, cost and schedule estimating process, iteration planning process, Pragmatic planning.

UNIT IV
Project Organizations
Line-of- business organizations, project organizations, evolution of organizations, process automation.
Project Control and process instrumentation
The seven core metrics, management indicators, quality indicators, life-cycle expectations, Pragmatic software metrics, and metrics automation.

UNIT V
CCPDS-R Case Study and Future Software Project Management Practices

TEXT BOOKS:
2. Software Project Management, Walker Royce, Pearson Education.

REFERENCE BOOKS:
5. Head First PMP, Jennifer Greene & Andrew Stellman, O'Reilly, 2007
M. TECH. COMPUTER SCIENCE ENGINEERING-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – I Sem. (Computer Science & Engg)

NATURAL LANGUAGE PROCESSING
(ELECTIVE-I)

Objectives:
- To acquire basic understanding of linguistic concepts and natural language complexity, variability.
- To acquire basic understanding of machine learning techniques as applied to language.
- To implement N-grams Models.

UNIT I
Introduction and Overview

UNIT II
Context Free Grammars

UNIT III
Language modeling and Naive Bayes

UNIT IV
Probabilistic Context Free Grammars
Weighted context free grammars. Weighted CYK. Pruning and beam search. Parsing with PCFGs
A tree bank and what it takes to create one. The probabilistic version of CYK. Also: How do humans parse? Experiments with eye-tracking. Modern parsers. Maximum Entropy Classifiers
The maximum entropy principle and its relation to maximum likelihood. Maximum entropy classifiers and their application to document classification, sentence segmentation, and other language tasks

UNIT V
Maximum Entropy Markov Models & Conditional Random Fields
Part-of-speech tagging, noun-phrase segmentation and information extraction models that combine maximum entropy and finite-state machines. State-of-the-art models for NLP. Lexical Semantics Mathematics of Multinomial and Dirichlet distributions, Dirichlet as a smoothing for multinomial’s.

TEXT BOOKS:

1. "Speech and Language Processing": Jurafsky and Martin, Prentice Hall
2. "Statistical Natural Language Processing": Manning and Schutze, MIT Press

REFERENCES BOOKS:

4. Lutz and Ascher - “Learning Python”, O'Reilly
M. TECH. COMPUTER SCIENCE ENGINEERING-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – I Sem. (Computer Science & Engg)

PATTERN RECOGNITION
(ELECTIVE – I)

Objectives:
- To implement pattern recognition and machine learning theories
- To design and implement certain important pattern recognition techniques
- To apply the pattern recognition theories to applications of interest
- To implement the entropy minimization, clustering transformation and feature ordering

UNIT I
INTRODUCTION - Basic concepts, Applications, Fundamental problems in pattern Recognition system design, Design concepts and methodologies, Examples of Automatic Pattern recognition systems, Simple pattern recognition model
DECISION AND DISTANCE FUNCTIONS - Linear and generalized decision functions, Pattern space and weight space, Geometrical properties, implementations of decision functions, Minimum-distance pattern classifications.

UNIT II
PROBABILITY - Probability of events: Random variables, Joint distributions and densities, Movements of random variables. Estimation of parameter from samples. STATISTICAL DECISION MAKING - Introduction, Baye’s theorem, Multiple features, Conditionally independent features, Decision boundaries, Unequal cost of error, estimation of error rates, the leaving-one-out-techniques, characteristic curves, estimating the composition of populations. Baye’s classifier for normal patterns.

UNIT III
NON PARAMETRIC DECISION MAKING - Introduction, histogram, kernel and window estimation, nearest neighbour classification techniques. Adaptive decision boundaries, adaptive discriminate functions, Minimum squared error discriminate functions, choosing a decision making techniques.

UNIT IV
PATTERN PREPROCESSING AND FEATURE SELECTION:
Introduction, distance measures, clustering transformation and feature ordering, clustering in feature selection through entropy minimization, features selection through orthogonal expansion, binary feature selection.

UNIT V
SYNTACTIC PATTERN RECOGNITION & APPLICATION OF PATTERN RECOGNITION
Introduction, concepts from formal language theory, formulation of syntactic pattern recognition problem, syntactic pattern description, recognition grammars, automata as pattern recognizers, Application of pattern recognition techniques in bio-metric, facial recognition, IRIS scon, Finger prints, etc.,

TEXT BOOKS:

REFERENCE BOOK:
Objectives:

- To be able to formulate machine learning problems corresponding to different applications.
- To understand a range of machine learning algorithms along with their strengths and weaknesses.
- To understand the basic theory underlying machine learning.
- To be able to apply machine learning algorithms to solve problems of moderate complexity.
- To be able to read current research papers and understand the issues raised by current research.

UNIT I

INTRODUCTION - Well-posed learning problems, Designing a learning system, Perspectives and issues in machine learning

Concept learning and the general to specific ordering – Introduction, A concept learning task, Concept learning as search, Find-S: finding a maximally specific hypothesis, Version spaces and the candidate elimination algorithm, Remarks on version spaces and candidate elimination, Inductive bias

UNIT II

Decision Tree learning – Introduction, Decision tree representation, Appropriate problems for decision tree learning, The basic decision tree learning algorithm, Hypothesis space search in decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning

Artificial Neural Networks – Introduction, Neural network representation, Appropriate problems for neural network learning, Perceptions, Multilayer networks and the back propagation algorithm, Remarks on the back propagation algorithm, An illustrative example face recognition

Advanced topics in artificial neural networks

Evaluation Hypotheses – Motivation, Estimation hypothesis accuracy, Basics of sampling theory, A general approach for deriving confidence intervals, Difference in error of two hypotheses, Comparing learning algorithms

UNIT III

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum likelihood and least squared error hypotheses, Maximum likelihood hypotheses for predicting probabilities, Minimum description length principle, Bayes optimal classifier, Gibbs algorithm, Naïve Bayes classifier, An example learning to classify text, Bayesian belief networks, The EM algorithm

Computational learning theory – Introduction, Probability learning an approximately correct hypothesis, Sample complexity for Finite Hypothesis Space, Sample Complexity for infinite Hypothesis Spaces, The mistake bound model of learning, Instance-Based Learning – Introduction, k-Nearest Neighbour Learning, Locally Weighted Regression, Radial Basis Functions, Case-Based Reasoning, Remarks on Lazy and Eager Learning

UNIT IV

Analytical Learning - Introduction, Learning with Perfect Domain Theories: Prolog-EBG, Remarks on Explanation-Based Learning, Explanation-Based Learning of Search Control Knowledge

UNIT V

Combining Inductive and Analytical Learning – Motivation, Inductive-Analytical Approaches to Learning, Using Prior Knowledge to Initialize the Hypothesis, Using Prior Knowledge to Alter the Search Objective, Using Prior Knowledge to Augment Search Operators

Reinforcement Learning – Introduction, The Learning Task, Q Learning, Non-Deterministic, Rewards and Actions, Temporal Difference Learning, Generalizing from Examples, Relationship to Dynamic Programming
TEXT BOOKS:
1. Machine Learning – Tom M. Mitchell, - MGH

REFERENCE BOOKS:
3. Chris Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995
OBJECTIVES:

- To learn parallel and distributed algorithms development techniques for shared memory and message passing models.
- To study the main classes of parallel algorithms.
- To study the complexity and correctness models for parallel algorithms.

UNIT I
Basic Techniques, Parallel Computers for increasing Computation speed, Parallel & Cluster Computing

UNIT II
Message Passing Technique- Evaluating Parallel programs and debugging, Partitioning and Divide and Conquer strategies examples

UNIT III
Pipelining- Techniques computing platform, pipeline programs examples

UNIT IV
Synchronous Computations, load balancing, distributed termination examples, programming with shared memory, shared memory multiprocessor constructs for specifying parallelism sharing data parallel programming languages and constructs, open MP

UNIT V
Distributed shared memory systems and programming achieving constant memory distributed shared memory programming primitives, algorithms – sorting and numerical algorithms.

TEXT BOOK:

REFERENCE BOOK:
1. Introduction to Parallel algorithms by Jaja from Pearson, 1992.
Objectives:
After completing this course, the student should be able to:

- To understand the concept of patterns and the Catalog.
- To discuss the Presentation tier design patterns and their affect on: sessions, client access, validation and consistency.
- To understand the variety of implemented bad practices related to the Business and Integration tiers.
- To highlight the evolution of patterns.
- To how to add functionality to designs while minimizing complexity
- To understand what design patterns really are, and are not
- To learn about specific design patterns.
- To learn how to use design patterns to keep code quality high without overdesign.

UNIT I
Envisioning Architecture

Creating an Architecture
Quality Attributes, Achieving qualities, Architectural styles and patterns, designing the Architecture, Documenting software architectures, Reconstructing Software Architecture.

UNIT II
Analyzing Architectures
Architecture Evaluation, Architecture design decision making, ATAM, CBAM.

Moving from one system to many
Software Product Lines, Building systems from off the shelf components, Software architecture in future.

UNIT III
Patterns
Pattern Description, Organizing catalogs, role in solving design problems, Selection and usage.

Creational and Structural patterns
Abstract factory, builder, factory method, prototype, singleton, adapter, bridge, composite, façade, flyweight.

UNIT IV
Behavioral patterns
Chain of responsibility, command, Interpreter, iterator, mediator, memento, observer, state, strategy, template method, visitor.

UNIT V
Case Studies
A-7E – A case study in utilizing architectural structures, The World Wide Web - a case study in interoperability, Air Traffic Control – a case study in designing for high availability, Celsius Tech – a case study in product line development,

TEXT BOOKS:

REFERENCE BOOKS:

ADVANCED DATA STRUCTURES AND ALGORITHMS LAB

Objectives:
- The fundamental design, analysis, and implementation of basic data structures.
- Basic concepts in the specification and analysis of programs.
- Principles for good program design, especially the uses of data abstraction.

Sample Problems on Data structures:
1. Write Java programs that use both recursive and non-recursive functions for implementing the following searching methods:
 a) Linear search
 b) Binary search
2. Write Java programs to implement the following using arrays and linked lists
 a) List ADT
3. Write Java programs to implement the following using an array.
 a) Stack ADT
 b) Queue ADT
4. Write a Java program that reads an infix expression and converts the expression to postfix form.
 (Use stack ADT).
5. Write a Java program to implement circular queue ADT using an array.
6. Write a Java program that uses both a stack and a queue to test whether the given string is a palindrome or not.
7. Write Java programs to implement the following using a singly linked list.
 a) Stack ADT
 b) Queue ADT
8. Write Java programs to implement the deque (double ended queue) ADT using
 a) Array
 b) Singly linked list
 c) Doubly linked list.
9. Write a Java program to implement priority queue ADT.
10. Write a Java program to perform the following operations:
 a) Construct a binary search tree of elements.
 b) Search for a key element in the above binary search tree.
 c) Delete an element from the above binary search tree.
11. Write a Java program to implement all the functions of a dictionary (ADT) using Hashing.
12. Write a Java program to implement Dijkstra's algorithm for Single source shortest path problem.
13. Write Java programs that use recursive and non-recursive functions to traverse the given binary tree in
 a) Preorder
 b) Inorder
 c) Postorder.
14. Write Java programs for the implementation of bfs and dfs for a given graph.
15. Write Java programs for implementing the following sorting methods:
 a) Bubble sort
 b) Insertion sort
 c) Quick sort
 d) Merge sort
 e) Heap sort
 f) Radix sort
16. Write a Java program to perform the following operations:
 a) Insertion into a B-tree
 b) Searching in a B-tree
17. Write a Java program that implements Kruskal's algorithm to generate minimum cost spanning tree.
18. Write a Java program that implements KMP algorithm for pattern matching.

REFERENCE BOOKS:
2. Data Structures with Java, J.R.Hubbard, 2nd edition, Schaum's Outlines, TMH.
 (Note: Use packages like java.io, java.util, etc)
ADVANCED NETWORK PROGRAMMING

Objectives:
Computer network programming involves writing computer programs that enable processes to communicate with each other across a computer network.

Network programming is client–server programming
Interprocess communication, even if it is bidirectional, cannot be implemented in a perfectly symmetric way: to establish a communication channel between two processes, one process must take the initiative, while the other is waiting for it. Therefore, network programming unavoidably assumes a client–server model: The process initiating the communication is a client, and the process waiting for the communication to be initiated is a server. The client and server processes together form a distributed system. In a peer-to-peer communication, the program can act both as a client and a server.

UNIT – I
Linux Utilities - File handling utilities, Security by file permissions, Process utilities, Disk utilities, Networking utilities, Filters, Text processing utilities and Backup utilities.
Bourne again shell(bash) - Introduction, pipes and redirection, here documents, running a shell script, the shell as a programming language, shell meta characters, file name substitution, shell variables, command substitution, shell commands, the environment, quoting, test command, control structures, arithmetic in shell, shell script examples.
Review of C programming concepts - arrays, strings (library functions), pointers, function pointers, structures, unions, libraries in C.

UNIT - II
Process - Process concept, Kernel support for process, process attributes, process control - process creation, replacing a process image, waiting for a process, process termination, zombie process, orphan process.

UNIT - III
Signals - Introduction to signals, Signal generation and handling, Kernel support for signals, Signal function, unreliable signals, reliable signals, kill, raise, alarm, pause, abort, sleep functions.
Interprocess Communication - Introduction to IPC mechanisms, Pipes- creation, IPC between related processes using unnamed pipes, FIFOs-creation, IPC between unrelated processes using FIFOs(Named pipes), differences between unnamed and named pipes, popen and pclose library functions, Introduction to message queues, semaphores and shared memory.
Message Queues- Kernel support for messages, UNIX system V APIs for messages, client/server example.
Semaphores-Kernel support for semaphores, UNIX system V APIs for semaphores.

UNIT – IV
Shared Memory- Kernel support for shared memory, UNIX system V APIs for shared memory, client/server example.
Network IPC - Introduction to Unix Sockets, IPC over a network, Client-Server model, Address formats(Unix domain and Internet domain), Socket system calls for Connection Oriented - Communication, Socket system calls for Connectionless-Communication, Example-Client/Server Programs- Single Server-Client connection, Multiple simultaneous clients, Socket options – setsockopt, getssockopt, fcntl.

UNIT-V
Network Programming in Java- Network basics, TCP sockets, UDP sockets (datagram sockets), Server programs that can handle one connection at a time and multiple connections (using
multithreaded server). Remote Method Invocation (Java RMI)-Basic RMI Process, Implementation
details- Client-Server Application.

TEXT BOOKS:

1. Unix System Programming using C++, T.Chan, PHI.(Units II,III,IV)
3. An Introduction to Network Programming with Java, Jan Graba, Springer, rp 2010.(Unit V)
4. Unix Network Programming ,W.R. Stevens, PHI.(Units II,III,IV)

REFERENCE BOOKS:

1. Linux System Programming, Robert Love, O’Reilly, SPD.
 Education.
3. UNIX for programmers and users, 3rd Edition, Graham Glass, King Ables, Pearson
 Education.
5. Unix Network Programming The Sockets Networking API, Vol.-1,W.R.Stevens, Bill Fenner,
 A.M.Rudoff, Pearson Education.
8. C Programming Language, Kernighan and Ritchie, PHI
ADVANCED DATABASES

Objectives:
By the end of the course, you will know:

- History and Structure of databases
- How to design a database
- How to convert the design into the appropriate tables
- Handling Keys appropriately
- Enforcing Integrity Constraints to keep the database consistent
- Normalizing the tables to eliminate redundancies
- Querying relational data
- Optimizing and processing the queries
- Storage Strategies for easy retrieval of data through index
- Triggers, Procedures and Cursors, Transaction Management
- Distributed databases management system concepts and implementation

UNIT I
Database System Applications, Purpose of Database Systems, View of Data – Data Abstraction, Instances and Schemas, Data Models – the ER Model, Relational Model, Other Models – Database Languages – DDL, DML, Database Access from Applications Programs, Transaction Management, Data Storage and Querying, Database Architecture, Database Users and Administrators, ER diagrams., Relational Model: Introduction to the Relational Model – Integrity Constraints Over Relations, Enforcing Integrity constraints, Querying relational data, Logical data base Design, Introduction to Views – Altering Tables and Views, Relational Algebra, Basic SQL Queries, Nested Queries, Complex Integrity Constraints in SQL, Triggers

UNIT II

UNIT III
Transaction Management: The ACID Properties, Transactions and Schedules, Concurrent Execution of Transactions – Lock Based Concurrency Control, Deadlocks – Performance of Locking – Transaction Support in SQL.
Concurrency Control: Serializability, and recoverability – Introduction to Lock Management – Lock Conversions, Dealing with Dead Locks, Specialized Locking Techniques – Concurrency Control without Locking.
Crash recovery: Introduction to Crash recovery, Introduction to ARIES, the Log, and Other Recovery related Structures, the Write-Ahead Log Protocol, Check pointing, recovering from a System Crash, Media recovery

UNIT IV
Overview of Storage and Indexing: Data on External Storage, File Organization and Indexing – Clustered Indexes, Primary and Secondary Indexes, Index data Structures – Hash Based Indexing, Tree based Indexing
Storing data: Disks and Files: -The Memory Hierarchy – Redundant Arrays of Independent Disks.
Tree Structured Indexing: Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM)
B+ Trees: A Dynamic Index Structure, Search, Insert, Delete.
Hash Based Indexing: Static Hashing, Extendable hashing, Linear Hashing, Extendable vs. Linear Hashing.

UNIT V
Distributed databases: Introduction to distributed databases, Distributed DBMS architectures, Storing data in a distributed DBMS, Distributed catalog management, Distributed query processing Updating distributed data, Distributed transactions, Distributed concurrency control, Distributed recovery
TEXT BOOKS:

REFERENCE BOOKS:

1. Introduction to Database Systems, C.J.Date, Pearson Education.
2. Database Management System Oracle SQL and PL/SQL, P.K.Das Gupta, PHI.
9. Distributed Databases Principles & Systems, Stefano Ceri, Giuseppe Pelagatti, TMH.
WEB SERVICES AND SERVICE ORIENTED ARCHITECTURE

Objectives:
- To Understand Web Services and implementation model for SOA
- To Understand the SOA, its Principles and Benefits
- To Understand XML concepts
- To Understand paradigms needed for testing Web Services
- To explore different Test Strategies for SOA-based applications
- To Implement functional testing, compliance testing and load testing of Web Services
- To Identify bug-finding ideas in testing Web Services

UNIT I
Evolution and Emergence of Web Services – Evolution of distributed computing, Core distributed computing technologies – client/server, CORBA, JAVA RMI, Micro Soft DCOM, MOM, Challenges in Distributed Computing, role of J2EE and XML in distributed computing, emergence of Web Services and Service Oriented Architecture (SOA). Introduction to Web Services – The definition of web services, basic operational model of web services, tools and technologies enabling web services, benefits and challenges of using web services.

UNIT II
Web Service Architecture – Web services Architecture and its characteristics, core building blocks of web services, standards and technologies available for implementing web services, web services communication, basic steps of implementing web services. Describing Web Services – WSDL introduction, non functional service description, WSDL1.1 Vs WSDL 2.0, WSDL document, WSDL elements, WSDL binding, WSDL tools, WSDL port type, limitations of WSDL.

UNIT III

UNIT IV
Registering and Discovering Services : The role of service registries, Service discovery, Universal Description, Discovery, and Integration, UDDI Architecture, UDDI Data Model, Interfaces, UDDI Implementation, UDDI with WSDL, UDDI specification, Service Addressing and Notification, Referencing and addressing Web Services, Web Services Notification.

UNIT V

TEXT BOOKS:
2. Developing Java Web Services, R. Nagappan, R. Skoczylas, R.P. Srigaresh, Wiley India.
3. Developing Enterprise Web Services, S. Chatterjee, J. Webber, Pearson Education.

REFERENCE BOOKS:
1. XML, Web Services, and the Data Revolution, F.P.Coyle, Pearson Education.
3. Java Web Services, D.A. Chappell & T. Jewell, O'Reilly, SPD.
GRID AND CLOUD COMPUTING

Objectives:
- To implement Basics, techniques and tools for Grid & Cloud Computing
- To understand any kind of heterogeneous resources over a network using open standards
- To implement the Service models

UNIT-I
System models for advanced computing—clusters of cooperative computing, grid computing and cloud computing; software systems for advanced computing-service oriented software and parallel and distributed programming models with introductory details, Features of grid and cloud platform.

UNIT-II
Cloud Computing services models and features in Saas, Paas and Iaas. Service oriented architecture and web services; Features of cloud computing architectures and simple case studies.

UNIT-III

UNIT-IV
Cloud programming Environmental- Map Reduce Hadoop Library from Apache, Open Source Cloud Software Systems—Eucalyptus.

UNIT-V
Grid Architecture and Service modeling, Grid resource management, Grid Application trends.

TEXT BOOKS:

REFERENCE BOOKS:
ADVANCED DATA MINING
(ELECTIVE –III)

Objectives:
- To develop the abilities of critical analysis to data mining systems and applications.
- To implement practical and theoretical understanding of the technologies for data mining.
- To understand the strengths and limitations of various data mining models.

UNIT-I
Data mining Overview and Advanced Pattern Mining
Data mining tasks – mining frequent patterns, associations and correlations, classification and regression for predictive analysis, cluster analysis, outlier analysis; advanced pattern mining in multilevel, multidimensional space – mining multilevel associations, mining multidimensional associations, mining quantitative association rules, mining rare patterns and negative patterns.

UNIT-II
Advance Classification
Classification by back propagation, support vector machines, classification using frequent patterns, other classification methods – genetic algorithms, roughest approach, fuzzy-set approach;

UNIT-III
Advance Clustering
Density - based methods –DBSCAN, OPTICS, DENCLUE; Grid-Based methods – STING, CLIQUE; Exception – maximization algorithm; clustering High- Dimensional Data; Clustering Graph and Network Data.

UNIT-IV
Web and Text Mining
Introduction, web mining, web content mining, web structure mining, we usage mining, Text mining – unstructured text, episode rule discovery for texts, hierarchy of categories, text clustering.

UNIT-V
Temporal and Spatial Data Mining
Introduction; Temporal Data Mining – Temporal Association Rules, Sequence Mining, GSP algorithm, SPADE, SPIRIT Episode Discovery, Time Series Analysis, Spatial Mining – Spatial Mining Tasks, Spatial Clustering. Data Mining Applications.

TEXT BOOKS:
1. Data Mining Concepts and Techniques, Jiawei Hang Micheline Kamber, Jian pei, Morgan Kaufmannnn.
2. Data Mining Techniques – Arun K pujari, Universities Press.

REFERENCE BOOKS:
1. Introduction to Data Mining – Pang-Ning Tan, Vipin kumar, Michael Steinbach, Pearson.
M. TECH. COMPUTER SCIENCE ENGINEERING-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – II Sem. (Computer Science & Engg)

STORAGE AREA NETWORKS
(ELECTIVE–III)

Objectives:
- To understand Storage Area Networks characteristics and components.
- To become familiar with the SAN vendors and their products
- To learn Fibre Channel protocols and how SAN components use them to communicate with each other
- To become familiar with Cisco MDS 9000 Multilayer Directors and Fabric Switches
- Thoroughly learn Cisco SAN-OS features.
- To understand the use of all SAN-OS commands. Practice variations of SANOS features

UNIT I: Introduction to Storage Technology
Review data creation and the amount of data being created and understand the value of data to a business, challenges in data storage and data management, Solutions available for data storage, Core elements of a data center infrastructure, role of each element in supporting business activities

UNIT II: Storage Systems Architecture
Hardware and software components of the host environment, Key protocols and concepts used by each component, Physical and logical components of a connectivity environment, Major physical components of a disk drive and their function, logical constructs of a physical disk, access characteristics, and performance Implications, Concept of RAID and its components, Different RAID levels and their suitability for different application environments: RAID 0, RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6, Compare and contrast integrated and modular storage systems, High-level architecture and working of an intelligent storage system

UNIT III: Introduction to Networked Storage
Evolution of networked storage, Architecture, components, and topologies of FC-SAN, NAS, and IP-SAN, Benefits of the different networked storage options, understand the need for long-term archiving solutions and describe how CAS fulfills the need, understand the appropriateness of the different networked storage options for different application environments

UNIT IV: Information Availability & Monitoring & Managing Datacenter
List reasons for planned/unplanned outages and the impact of downtime, Impact of downtime, Differentiate between business continuity (BC) and disaster recovery (DR), RTO and RPO, Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures, Architecture of backup/recovery and the different backup/recovery topologies, replication technologies and their role in ensuring information availability and business continuity, Remote replication technologies and their role in providing disaster recovery and business continuity capabilities, Identify key areas to monitor in a data center, Industry standards for data center monitoring and management, Key metrics to monitor for different components in a storage infrastructure, Key management tasks in a data center

UNIT V: Securing Storage and Storage Virtualization
Information security, Critical security attributes for information systems, Storage security domains, List and analyzes the common threats in each domain, Virtualization technologies, block-level and file-level virtualization technologies and processes

Case Studies
The technologies described in the course are reinforced with EMC examples of actual solutions, Realistic case studies enable the participant to design the most appropriate solution for given sets of criteria.

TEXT BOOK:
1. EMC Corporation, Information Storage and Management, Wiley.
REFERENCE BOOKS:

OBJECTIVES:

- To learn the security of databases
- To learn the design techniques of database security
- To learn the secure software design

UNIT I
Introduction
Introduction to Databases Security Problems in Databases Security Controls Conclusions

Security Models -1
Introduction Access Matrix Model Take-Grant Model Acten Model PN Model Hartson and Hsiao’s Model Fernandez’s Model Bussolati and Martella’s Model for Distributed databases

UNIT II
Security Models -2
Bell and LaPadula’s Model Biba’s Model Dion’s Model Sea View Model Jajodia and Sandhu’s Model The Lattice Model for the Flow Control conclusion.

Security Mechanisms

UNIT III
Security Software Design

UNIT IV
Statistical Database Protection & Intrusion Detection Systems
Introduction Statistics Concepts and Definitions Types of Attacks Inference Controls evaluation Criteria for Control Comparison .Introduction IDES System RETISS System ASES System Discovery

UNIT V
Models For The Protection Of New Generation Database Systems -1
Introduction A Model for the Protection of Frame Based Systems A Model for the Protection of Object-Oriented Systems SORION Model for the Protection of Object-Oriented Databases

Models For The Protection Of New Generation Database Systems -2

TEXT BOOKS:

REFERENCE BOOK:

1. Database security by alfred basta, melissa zgola, CENGAGE learning.
SEMANTIC WEB AND SOCIAL NETWORKS
(ELECTIVE –IV)

Objectives:

- To learn Web Intelligence
- To learn Knowledge Representation for the Semantic Web
- To learn Ontology Engineering
- To learn Semantic Web Applications, Services and Technology
- To learn Social Network Analysis and semantic web

UNIT –I: Web Intelligence

UNIT -II: Knowledge Representation for the Semantic Web

UNIT-III: Ontology Engineering
Ontology Engineering, Constructing Ontology, Ontology Development Tools, Ontology Methods, Ontology Sharing and Merging, Ontology Libraries and Ontology Mapping, Logic, Rule and Inference Engines.

UNIT-IV: Semantic Web Applications, Services and Technology

UNIT-V: Social Network Analysis and semantic web
What is social Networks analysis, development of the social networks analysis, Electronic Sources for Network Analysis – Electronic Discussion networks, Blogs and Online Communities, Web Based Networks. Building Semantic Web Applications with social network features.

TEXT BOOKS:

REFERENCE BOOKS:

4. Programming the Semantic Web, T.Segaran, C.Evans, J.Taylor, O'Reilly, SPD.
M. TECH. COMPUTER SCIENCE ENGINEERING-R13 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I Year – II Sem. (Computer Science & Engg)

WIRELESS NETWORKS AND MOBILE COMPUTING
(ELECTIVE –IV)

Objectives:
The main objective of this course is to provide the students with the competences required for understanding and using the communications component of an universal communications environment. Students will be provided, in particular, with the knowledge required to understand
- emerging communications networks,
- their computational demands,
- the classes of distributed services and applications enabled by these networks, and
- the computational means required to create the new networks and the new applications.

UNIT I

UNIT II

UNIT III

UNIT IV
MOBILE NETWORK LAYER: Mobile IP: Goals, Assumptions, Entities and Terminology, IP Packet Delivery, Agent Discovery, Registration, Tunneling and Encapsulation, Optimizations, Dynamic Host Configuration Protocol (DHCP)

UNIT V
MOBILE TRANSPORT LAYER: Traditional TCP, Indirect TCP, Snooping TCP, Mobile TCP, Fast retransmit/fast recovery, Transmission /time-out freezing, Selective retransmission, Transaction oriented TCP, TCP over 2.5G/3G Wireless Networks.

TEXT BOOKS:

REFERENCE BOOKS:
2. Matthew S.Gast, “802.11 Wireless Networks”, SPD O’REILLY.
INFORMATION RETRIEVAL SYSTEMS
(ELECTIVE –IV)

Objectives:
On completion of this course you should have gained a good understanding of the foundation concepts of information retrieval techniques and be able to apply these concepts into practice. Specifically, you should be able to:
- To use different information retrieval techniques in various application areas
- To apply IR principles to locate relevant information large collections of data
- To analyze performance of retrieval systems when dealing with unmanaged data sources
- To implement retrieval systems for web search tasks.

UNIT I

UNIT II
Scoring, term weighting and the vector space model. Computing scores in a complete search system. Evaluation in information retrieval. Relevance feedback and query expansion.

UNIT III

UNIT IV
Support vector machines and machine learning on documents, Flat clustering, Hierarchical clustering, Matrix decompositions and latent semantic indexing.

UNIT V
Web search basics. Web crawling and indexes, Link analysis.

TEXT BOOK:
1. Introduction to Information Retrieval, Christopher D. Manning and Prabhakar Raghavan and Hinrich Schütze, Cambridge University Press, 2008.

REFERENCE BOOKS:
5. Information Storage & Retrieval, Robert Korfhage, John Wiley & Sons.
Objectives:

- To implement the technologies like WSDL, UDDI.
- To learn how to implement and deploy web service client and server

List of Programs:
1. Write a program to implement WSDL Service (Hello Service. WSDL File)
2. Write a program the service provider can be implement a single get price(), static bind() and get product operation.
3. Write a program to implement the operation can receive request and will return a response in two ways.
 a) One-Way operation
 b) Request - Response
4. Write a program to implement to create a simple web service that converts the temperature from Fahrenheit to Celsius (using HTTP Post Protocol)
5. Write a program to implement business UDDI Registry entry
6. Write a program to implement
 a) Web based service consumer
 b) Windows application based web service consumer